Dynamic FDG PET Imaging to Probe for Cardiac Metabolic Remodeling in Adults Born Premature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. PET/MRI Image Acquisition
2.3. Image Analysis
2.4. Statistical Analysis
3. Results
3.1. Enrollment and Baseline Characteristics
3.2. Vital Signs, Serum Glucose/Lactate, and Cardiac MRI Structure/Function
3.3. PET Metabolic Rates of Glucose
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, S.; Wojdyla, D.; Say, L.; Betran, A.P.; Merialdi, M.; Requejo, J.H.; Rubens, C.; Menon, R.; Van Look, P.F.A. The worldwide incidence of preterm birth: A systematic review of maternal mortality and morbidity. Bull. World Health Organ. 2010. [Google Scholar] [CrossRef]
- Younge, N.; Smith, P.B.; Gustafson, K.E.; Malcolm, W.; Ashley, P.; Cotten, C.M.; Goldberg, R.N.; Goldstein, R.F. Improved survival and neurodevelopmental outcomes among extremely premature infants born near the limit of viability. Early Hum. Dev. 2016, 95, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Carr, H.; Cnattingius, S.; Granath, F.; Ludvigsson, J.F.; Edstedt Bonamy, A.K. Preterm Birth and Risk of Heart Failure Up to Early Adulthood. J. Am. Coll. Cardiol. 2017, 69, 2634–2642. [Google Scholar] [CrossRef]
- Lewandowski, A.J.; Augustine, D.; Lamata, P.; Davis, E.F.; Lazdam, M.; Smith, N.P.; Lazdam, M.; Francis, J.; McCormick, K.; Wilkinson, A.R.; et al. Preterm Heart in Adult Life. Circulation 2013, 127, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewandowski, A.J.; Bradlow, W.M.; Augustine, D.; Davis, E.F.; Francis, J.; Singhal, A.; Lucas, A.; Neubauer, S.; McCormick, K.; Leeson, P. Right ventricular systolic dysfunction in young adults born preterm. Circulation 2013, 128, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Goss, K.N.; Haraldsdottir, K.; Beshish, A.G.; Barton, G.P.; Watson, A.M.; Palta, M.; Chesler, N.C.; Francois, C.J.; Wieben, O.; Eldridge, M.W. Association Between Preterm Birth and Arrested Cardiac Growth in Adolescents and Young Adults. JAMA Cardiol. 2020, 5, 910. [Google Scholar] [CrossRef] [PubMed]
- Telles, F.; McNamara, N.; Nanayakkara, S.; Doyle, M.P.; Williams, M.; Yaeger, L.; Marwick, T.H.; Leeson, P.; Levy, P.T.; Lewandowski, A.J. Changes in the Preterm Heart from Birth to Young Adulthood: A Meta-analysis. Pediatrics 2020, 146. [Google Scholar] [CrossRef]
- Huckstep, O.J.; Williamson, W.; Telles, F.; Burchert, H.; Bertagnolli, M.; Herdman, C.; Arnold, L.; Smillie, R.; Mohamed, A.; Boardman, H.; et al. Physiological Stress Elicits Impaired Left Ventricular Function in Preterm-Born Adults. J. Am. Coll. Cardiol. 2018, 71, 1347–1356. [Google Scholar] [CrossRef]
- Goss, K.N.; Beshish, A.G.; Barton, G.P.; Haraldsdottir, K.; Levin, T.S.; Tetri, L.H.; Battiola, T.J.; Mulchrone, A.M.; Pegelow, D.F.; Palta, M.; et al. Early pulmonary vascular disease in young adults born preterm. Am. J. Respir. Crit. Care Med. 2018, 198, 1549–1558. [Google Scholar] [CrossRef]
- Haraldsdottir, K.; Watson, A.M.; Beshish, A.G.; Pegelow, D.F.; Palta, M.; Tetri, L.H.; Brix, M.D.; Centanni, R.M.; Goss, K.N.; Eldridge, M.W. Heart rate recovery after maximal exercise is impaired in healthy young adults born preterm. Eur. J. Appl. Physiol. 2019, 119, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Kolwicz, S.C., Jr.; Tian, R. Glucose metabolism and cardiac hypertrophy. Cardiovasc. Res. 2011, 90, 194–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokhari, S.; Raina, A.; Rosenweig, E.B.; Schulze, P.C.; Bokhari, J.; Einstein, A.J.; Barst, R.J.; Johnson, L.L. PET imaging may provide a novel biomarker and understanding of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension. Circ. Cardiovasc. Imaging 2011, 4, 641–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, W.; Zhao, L.; Xiong, C.M.; Ni, X.H.; He, Z.X.; He, J.G.; Wilkins, M.R. Comparison of 18F-FDG uptake by right ventricular myocardium in idiopathic pulmonary arterial hypertension and pulmonary arterial hypertension associated with congenital heart disease. Pulm. Circ. 2012. [Google Scholar] [CrossRef] [Green Version]
- Taegtmeyer, H.; Sen, S.; Vela, D. Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Ann. N. Y. Acad. Sci. 2010, 1188, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, M.; Kassiotis, C.; Razeghi, P.; Taegtmeyer, H. Return to the fetal gene program protects the stressed heart: A strong hypothesis. Heart Fail. Rev. 2007, 12, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Mirza, H.; Garcia, J.A.; Crawford, E.; Pepe, J.; Zussman, M.; Wadhawan, R.; Oh, W. Natural History of Postnatal Cardiopulmonary Adaptation in Infants Born Extremely Preterm and Risk for Death or Bronchopulmonary Dysplasia. J. Pediatr. 2018, 198, 187–193.e1. [Google Scholar] [CrossRef]
- Chen, C.H.; Liu, Y.F.; Lee, S.D.; Huang, C.Y.; Lee, W.C.; Tsai, Y.L.; Hou, C.W.; Chan, Y.S.; Kuo, C.H. Altitude hypoxia increases glucose uptake in human heart. High Alt. Med. Biol. 2009, 10, 83–86. [Google Scholar] [CrossRef]
- Villien, M.; Wey, H.Y.; Mandeville, J.B.; Catana, C.; Polimeni, J.R.; Sander, C.Y.; Zürcher, N.R.; Chonde, D.B.; Fowler, J.S.; Rosen, B.R.; et al. Dynamic functional imaging of brain glucose utilization using fPET-FDG. Neuroimage 2014, 100, 192–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, A.; Gryglewski, G.; Nics, L.; Hienert, M.; Rischka, L.; Vraka, C.; Sigurdardottir, H.; Vanicek, T.; James, G.M.; Seiger, R.; et al. Quantification of Task-Specific Glucose Metabolism with Constant Infusion of 18F-FDG. J. Nucl. Med. 2016, 57, 1933–1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, G.P.; Vildberg, L.; Goss, K.; Aggarwal, N.; Eldridge, M.; McMillan, A.B. Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI. J. Nucl. Cardiol. 2019, 26, 1946–1957. [Google Scholar] [CrossRef]
- Palta, M.; Gabbert, D.; Fryback, D.; Widjaja, I.; Peters, M.E.; Farrell, P.; Johnson, J. Development and validation of an index for scoring baseline respiratory disease in the very low birth weight neonate. Pediatrics 1990, 86, 714–721. [Google Scholar] [PubMed]
- Palta, M.; Gabbert, D.; Weinstein, M.R.; Peters, M.E. Newborn Lung Project Multivariate assessment of traditional risk factors for chronic lung disease in very low birth weight neonates. J. Pediatr. 1991. [Google Scholar] [CrossRef]
- Bull, F.C.; Maslin, T.S.; Armstrong, T. Global physical activity questionnaire (GPAQ): Nine country reliability and validity study. J. Phys. Act. Heal. 2009. [Google Scholar] [CrossRef] [Green Version]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.H.S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Hawkins, R.A.; Huang, S.C.; Gambhir, S.S.; Brunken, R.C.; Phelps, M.E.; Schelbert, H.R. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J. Nucl. Med. 1991, 32, 733–738. [Google Scholar]
- Fang, Y.-H.D.; Muzic, R.F. Spillover and Partial-Volume Correction for Image-Derived Input Functions for Small-Animal 18F-FDG PET Studies. J. Nucl. Med. 2008, 49, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.K.; Soufer, R.; McNulty, P.H. Effect of hyperinsulinemia on myocardial fluorine-18-FDG uptake. J. Nucl. Med. 1998, 39, 379–383. [Google Scholar] [PubMed]
- Peltoniemi, P.; Lönnroth, P.; Laine, H.; Oikonen, V.; Tolvanen, T.; Grönroos, T.; Strindberg, L.; Knuuti, J.; Nuutila, P. Lumped constant for [18F]fluorodeoxyglucose in skeletal muscles of obese and nonobese humans. Am. J. Physiol. Endocrinol. Metab. 2000, 279, 1122–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, G.P.; Corrado, P.A.; François, C.J.; Chesler, N.C.; Eldridge, M.W.; Wieben, O.; Goss, K.N. Exaggerated Cardiac Contractile Response to Hypoxia in Adults Born Preterm. J. Clin. Med. 2021, 10, 1166. [Google Scholar] [CrossRef]
- Choi, Y.; Brunken, R.C.; Hawkins, R.A.; Huang, S.C.; Buxton, D.B.; Hoh, C.K.; Phelps, M.E.; Schelbert, H.R. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-d-glucose uptake in positron emission tomography studies of normal humans. Eur. J. Nucl. Med. 1993, 20, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.T.; Czernin, J.; Krivokapich, J.; Lau, Y.-K.; Bo¨ttcher, M.; Maurer, G.; Phelps, M.E.; Schelbert, H.R. Effects of Dobutamine Stimulation on Myocardial Blood Flow, Glucose Metabolism, and Wall Motion in Normal and Dysfunctional Myocardium. Circulation 1996, 94, 3146–3154. [Google Scholar] [CrossRef] [PubMed]
- Harisankar, C.N.B.; Mittal, B.R.; Agrawal, K.L.; Abrar, M.L.; Bhattacharya, A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J. Nucl. Cardiol. 2011, 18, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.; Kolodny, G.M. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am. J. Roentgenol. 2008, 190, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Bax, J.J.; Patton, J.A.; Pldermans, D.; Elhendy, A.; Sandler, M.P. 18-Fluorodeoxyglucose imaging with positron emission tomography and single photon emission computed tomography: Cardiac applications. Semin. Nucl. Med. 2000, 30, 281–298. [Google Scholar] [CrossRef]
- Okumura, W.; Iwasaki, T.; Toyama, T.; Iso, T.; Arai, M.; Oriuchi, M.; Endo, K.; Yokoyama, T.; Suzuki, T.; Kurabayashi, M. Usefulness of fasting18F-FDG PET in identification of cardiac sarcoidosis. J. Nucl. Med. 2004, 45, 1989–1998. [Google Scholar] [PubMed]
- Langah, R.; Spicer, K.; Gebregziabher, M.; Gordon, L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J. Nucl. Cardiol. 2009, 16, 801–810. [Google Scholar] [CrossRef]
- Wheaton, W.W.; Chandel, N.S. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am. J. Physiol. Cell Physiol. 2011, 300. [Google Scholar] [CrossRef] [Green Version]
- Depre, C.; Vatner, S.F. Mechanisms of cell survival in myocardial hibernation. Trends Cardiovasc. Med. 2005, 15, 101–110. [Google Scholar] [CrossRef]
- Larsen, J.J.; Hansen, J.M.; Olsen, N.V.; Galbo, H.; Dela, F. The effect of altitude hypoxia on glucose homeostasis in men. J. Physiol. 1997, 504, 241–249. [Google Scholar] [CrossRef]
- Randle, P.J.; Newsholme, E.A.; Garland, P.B. Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem. J. 1964, 93, 652. [Google Scholar] [CrossRef] [Green Version]
- Randle, P.J.; Garland, P.B.; Hales, C.N.; Newsholme, E.A. The Glucose Fatty-Acid Cycle. Its Role in Insulin Sensitivity and the Metabolic Disturbances of Diabetes Mellitus. Lancet 1963, 281, 785–789. [Google Scholar] [CrossRef]
- Hue, L.; Taegtmeyer, H. The Randle cycle revisited: A new head for an old hat. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E578–E591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankaralingam, S.; Lopaschuk, G.D. Cardiac energy metabolic alterations in pressure overload–induced left and right heart failure (2013 Grover conference series). Pulm. Circ. 2015, 5, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Gropler, R.J.; Geltman, E.M.; Sampathkumaran, K.; Pérez, J.E.; Schechtman, K.B.; Conversano, A.; Sobel, B.E.; Bergmann, S.R.; Siegel, B.A. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J. Am. Coll. Cardiol. 1993, 22, 1587–1597. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Wallhaus, T.R.; Degrado, T.R.; Russell, D.C.; Stanko, P.; Nickles, R.J.; Stone, C.K. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J. Nucl. Med. 2001, 42, 55–62. [Google Scholar]
- Stone, C.K.; Pooley, R.A.; DeGrado, T.R.; Renstrom, B.; Nickles, R.J.; Nellis, S.H.; Liedtke, A.J.; Holden, J.E. Myocardial uptake of the fatty acid analog 14-fluorine-18-fluoro-6- thia-heptadecanoic acid in comparison to beta-oxidation rates by tritiated palmitate. J. Nucl. Med. 1998, 39, 1690–1696. [Google Scholar] [PubMed]
- Gobel, F.L.; Norstrom, L.A.; Nelson, R.R.; Jorgensen, C.R.; Wang, Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 1978, 57, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Barton, G.P.; Goss, K.N. Increased mitochondrial oxygen consumption in adult survivors of preterm birth. Pediatr. Res. 2021, 1–6. [Google Scholar] [CrossRef]
- Klein, L.J.; Visser, F.C.; Knaapen, P.; Peters, J.H.; Teule, G.J.J.; Visser, C.A.; Lammertsma, A.A. Carbon-11 acetate as a tracer of myocardial oxygen consumption. Eur. J. Nucl. Med. 2001, 28, 651–668. [Google Scholar] [CrossRef]
Term | Preterm | p-Value | |
---|---|---|---|
N | 18 | 28 | -- |
Male Sex (n, %) | 8, 44% | 8, 29% | 0.27 |
Age (years) | 25.4 (4.0) | 25.8 (4.4) | 0.75 |
Gestational age at birth (weeks) | 39.8 (1.0) | 29.2 (2.7) | <0.001 |
Birth weight (kg) | 3.40 (0.57) | 1.23 (0.42) | <0.001 |
BPD (n, %) | 0, 0% | 8, 29% | <0.001 |
PDA (n, %) | 0, 0% | 10, 36% | <0.001 |
Height (m) | 1.73 (0.09) | 1.66 (0.07) | 0.01 |
Weight (kg) | 70.0 (9.6) | 71.1 (19.4) | 0.81 |
Body surface area (m2) | 1.83 (0.17) | 1.80 (0.25) | 0.65 |
Total physical activity (MET-mins./wk.) | 2510 (2225) | 4043 (5580) | 0.18 |
Term (N = 18) | Preterm (N = 28) | p-Values | |||||
---|---|---|---|---|---|---|---|
Normoxia | Hypoxia | Normoxia | Hypoxia | Birth Status | Gas | Interaction | |
HR (bpm) | 67 (13) | 72 (13) | 69 (11) | 81 (15) | 0.13 | <0.0001 | 0.09 |
LV EDVi (mL/m2) | 87 (16) | 84 (16) | 78 (10) | 73 (12) | 0.01 | <0.0001 | 0.08 |
LV ESVi (mL/m2) | 37 (9) | 33 (9) | 31 (6) | 25 (6) | 0.001 | <0.0001 | 0.11 |
LV SVi (mL/m2) | 50 (9) | 51 (10) | 47 (7) | 48 (9) | 0.25 | 0.49 | 0.59 |
LV EF (%) | 57 (5) | 61 (6) | 61 (5) | 66 (7) | 0.01 | <0.0001 | 0.28 |
CI (L/min/m2) | 3.29 (0.78) | 3.60 (0.61) | 3.24 (0.57) | 3.82 (0.78) | 0.65 | <0.001 | 0.23 |
SBP (mmHg) | 123 (11) | 126 (10) | 125 (17) | 124 (17) | 0.87 | 0.13 | 0.12 |
DBP (mmHg) | 71 (7) | 74 (7) | 74 (10) | 73 (10) | 0.64 | 0.21 | 0.12 |
RPP (mmHg/min) | 7980 (1680) | 9640 (1520) | 8460 (1810) | 10320 (1820) | 0.22 | <0.0001 | 0.30 |
Sp02 (%) | 98 (1) | 85 (8) | 98 (1) | 81 (9) | 0.56 | <0.0001 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrado, P.A.; Barton, G.P.; Razalan-Krause, F.C.; François, C.J.; Chesler, N.C.; Wieben, O.; Eldridge, M.; McMillan, A.B.; Goss, K.N. Dynamic FDG PET Imaging to Probe for Cardiac Metabolic Remodeling in Adults Born Premature. J. Clin. Med. 2021, 10, 1301. https://doi.org/10.3390/jcm10061301
Corrado PA, Barton GP, Razalan-Krause FC, François CJ, Chesler NC, Wieben O, Eldridge M, McMillan AB, Goss KN. Dynamic FDG PET Imaging to Probe for Cardiac Metabolic Remodeling in Adults Born Premature. Journal of Clinical Medicine. 2021; 10(6):1301. https://doi.org/10.3390/jcm10061301
Chicago/Turabian StyleCorrado, Philip A., Gregory P. Barton, Francheska C. Razalan-Krause, Christopher J. François, Naomi C. Chesler, Oliver Wieben, Marlowe Eldridge, Alan B. McMillan, and Kara N. Goss. 2021. "Dynamic FDG PET Imaging to Probe for Cardiac Metabolic Remodeling in Adults Born Premature" Journal of Clinical Medicine 10, no. 6: 1301. https://doi.org/10.3390/jcm10061301
APA StyleCorrado, P. A., Barton, G. P., Razalan-Krause, F. C., François, C. J., Chesler, N. C., Wieben, O., Eldridge, M., McMillan, A. B., & Goss, K. N. (2021). Dynamic FDG PET Imaging to Probe for Cardiac Metabolic Remodeling in Adults Born Premature. Journal of Clinical Medicine, 10(6), 1301. https://doi.org/10.3390/jcm10061301