Sonodynamic Therapy for the Treatment of Intracranial Gliomas
Abstract
:1. Conventional Therapies for Intracranial Gliomas
2. Sonodynamic Therapy: A New Asset for Non-Invasive Glioma Treatment
2.1. Cavitation Effect
2.2. Generation of Reactive Oxygen Species (ROS)
2.3. Induction of Apoptosis in Cancer Cells
2.4. Improvement of Anti-Tumor Immunity
2.5. Restraining of Angiogenesis
2.6. Induction of Hyperthermia
3. Sonosensitizers for Brain Tumors
3.1. 5-Aminolevulinic Acid
3.2. Fluorescein
3.3. Other Sonosensitizers
3.3.1. Hematoporphyrin Monomethyl Ether (HMME)
3.3.2. Photofrin
3.3.3. Photolon
3.3.4. Syno-porphyrin
3.3.5. Bengal Rose
4. Final Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro Oncol. 2020, 22, iv1–iv96. [Google Scholar] [CrossRef]
- Brown, T.J.; Brennan, M.C.; Li, M.; Church, E.W.; Brandmeir, N.J.; Rakszawski, K.L.; Patel, A.S.; Rizk, E.B.; Suki, D.; Sawaya, R.; et al. Association of the Extent of Resection With Survival in Glioblastoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2016, 2, 1460–1469. [Google Scholar] [CrossRef] [Green Version]
- Weller, M.; van den Bent, M.; Tonn, J.C.; Stupp, R.; Preusser, M.; Cohen-Jonathan-Moyal, E.; Henriksson, R.; Rhun, E.; Le Balana, C.; Chinot, O.; et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017, 18, e315–e329. [Google Scholar] [CrossRef] [Green Version]
- Sanai, N.; Polley, M.-Y.; McDermott, M.W.; Parsa, A.T.; Berger, M.S. An extent of resection threshold for newly diagnosed glioblastomas. J. Neurosurg. 2011, 115, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Omuro, A.; DeAngelis, L.M. Glioblastoma and other malignant gliomas: A clinical review. JAMA J. Am. Med. Assoc. 2013, 310, 1842–1850. [Google Scholar] [CrossRef]
- Delgado-López, P.D.; Corrales-García, E.M. Survival in glioblastoma: A review on the impact of treatment modalities. Clin. Transl. Oncol. Off. Publ. Fed. Spanish Oncol. Soc. Natl. Cancer Inst. Mex. 2016, 18, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.A.; Auffinger, B.M.; Murphy, J.P.; Muroski, M.E.; Qiao, J.; Gorind, Y.; Lesniak, M.S. Hitting a Moving Target: Glioma Stem Cells Demand New Approaches in Glioblastoma Therapy. Curr. Cancer Drug Targets 2017, 17, 236–254. [Google Scholar] [CrossRef]
- Auffinger, B.; Spencer, D.; Pytel, P.; Ahmed, A.U.; Lesniak, M.S. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev. Neurother. 2015, 15, 741–752. [Google Scholar] [CrossRef] [Green Version]
- van Tellingen, O.; Yetkin-Arik, B.; de Gooijer, M.C.; Wesseling, P.; Wurdinger, T.; de Vries, H.E. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat. Rev. Comment. Antimicrob. Anticancer Chemother. 2015, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.K.-H.; Taylor, J.T.; Pathmanaban, O.N.; Youshani, A.S.; Beyit, D.; Dutko-Gwozdz, J.; Benson, R.; Griffiths, G.; Peers, I.; Cueppens, P.; et al. High content screening of patient-derived cell lines highlights the potential of non-standard chemotherapeutic agents for the treatment of glioblastoma. PLoS ONE 2018, 13, e0193694. [Google Scholar] [CrossRef] [PubMed]
- Shriki, J. Ultrasound Physics. Crit. Care Clin. 2014, 30, 1–24. [Google Scholar] [CrossRef]
- O’Brien, W.J. Ultrasound–biophysics mechanisms☆. Prog. Biophys. Mol. Biol. 2007, 93, 212–255. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.K.W.; Sehgal, C.M. A Review of Low-Intensity Ultrasound for Cancer Therapy. Ultrasound Med. Biol. 2015, 41, 905–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilmin, K.; Kujawska, T.; Grieb, P. Sonodynamic Therapy for Gliomas. Perspectives and Prospects of Selective Sonosensitization of Glioma Cells. Cells 2019, 8, 1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McHale, A.P.; Callan, J.F.; Nomikou, N.; Fowley, C.; Callan, B. Sonodynamic therapy: Concept, mechanism and application to cancer treatment. Adv. Exp. Med. Biol. 2016, 880, 429–450. [Google Scholar]
- Rengeng, L.; Qianyu, Z.; Yuehong, L.; Zhongzhong, P.; Libo, L. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photod. Photodyn. Ther. 2017, 19, 159–166. [Google Scholar] [CrossRef]
- Rabkin, B.A.; Zderic, V.; Vaezy, S. Hyperecho in ultrasound images of HIFU therapy: Involvement of cavitation. Ultrasound Med. Biol. 2005, 31, 947–956. [Google Scholar] [CrossRef]
- Haar, G.; Ter Coussios, C. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperth. 2007, 23, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Riesz, P.; Kondo, T. Free radical formation induced by ultrasound and its biological implications. Free Radic. Biol. Med. 1992, 13, 247–270. [Google Scholar] [CrossRef]
- Arvanitis, C.D.; Vykhodtseva, N.; Jolesz, F.; Livingstone, M.; McDannold, N. Cavitation-enhanced nonthermal ablation in deep brain targets: Feasibility in a large animal model. J. Neurosurg. 2016, 124, 1450–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umemura, S.; Yumita, N.; Nishigaki, R.; Umemura, K. Mechanism of Cell Damage by Ultrasound in Combination with Hematoporphyrin. Jpn. J. Cancer Res. 1990, 81, 962–966. [Google Scholar] [CrossRef] [PubMed]
- Costley, D.; Mc Ewan, C.; Fowley, C.; McHale, A.P.; Atchison, J.; Nomikou, N.; Callan, J.F. Treating cancer with sonodynamic therapy: A review. Int. J. Hyperth. 2015, 31, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Kremkau, F.W.; Walker, M.M.; Kaufmann, J.S.; Spurr, C.L. Ultrasonic enhancement of cytotoxic effects of nitrogen mustard in mouse leukemia. J. Acoust. Soc. Am. 1974, 55, S7-S7. [Google Scholar] [CrossRef]
- Misik, V.; Riesz, P. Free Radical Intermediates in Sonodynamic Therapy. Ann. N. Y. Acad. Sci. 2006, 899, 335–348. [Google Scholar] [CrossRef]
- Rosenthal, I.; Sostaric, J.Z.; Riesz, P. Sonodynamic therapy: A review of the synergistic effects of drugs and ultrasound. Ultrason. Sonochem. 2004, 11, 349–363. [Google Scholar] [CrossRef]
- Brenner, M.P.; Hilgenfeldt, S.; Lohse, D. Single-bubble sonoluminescence. Rev. Mod. Phys. 2002, 74, 425–484. [Google Scholar] [CrossRef] [Green Version]
- Matula, T.J.; Crum, L.A. Evidence for Gas Exchange in Single-Bubble Sonoluminescence. Phys. Rev. Lett. 1998, 80, 865–868. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, D.J. Introduction to Electrodynamics, 4th ed.; Cambridge University Press: Cambridge, CA, USA.
- Brenner, M.P.; Hilgenfeldt, S.; Lohse, D. Why air bubbles in water glow so easily. In Nonlinear Physics of Complex Systems; Springer: Berlin/Heidelberg, Germany, 1996; pp. 79–97. [Google Scholar]
- Lohse, D.; Hilgenfeldt, S. Inert gas accumulation in sonoluminescing bubbles. J. Chem. Phys. 1997, 107, 6986–6997. [Google Scholar] [CrossRef] [Green Version]
- Lipatov, E.I.; Genin, D.E.; Grigor’ev, D.V.; Tarasenko, V.F. Recombination Radiation in the Diamond. In Luminescence-An Outlook on the Phenomena and their Applications; InTech: London, UK, 2016. [Google Scholar]
- Byun, K.-T.T.; Kim, K.Y.; Kwak, H.-Y.Y. Sonoluminescence characteristics from micron and submicron bubbles. J. Korean Phys. Soc. 2005, 47, 1010–1022. [Google Scholar]
- Kinoshita, M.; Hynynen, K. Mechanism of porphyrin-induced sonodynamic effect: Possible role of hyperthermia. Radiat. Res. 2006, 165, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Cao, S.; Sun, X.; Pan, B.; Cao, J.; Che, D.; Jin, S.; Cao, Y.; Tian, Y.; Yu, Y. Sinoporphyrin Sodium-Mediated Sonodynamic Therapy Inhibits RIP3 Expression and Induces Apoptosis in the H446 Small Cell Lung Cancer Cell Line. Cell. Physiol. Biochem. 2018, 51, 2938–2954. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, S.; Ohnishi, T.; Yamashita, D.; Kohno, S.; Inoue, A.; Nishikawa, M.; Ohue, S.; Tanaka, J.; Kunieda, T. Enhancement of antitumor activity by using 5-ALA–mediated sonodynamic therapy to induce apoptosis in malignant gliomas: Significance of high-intensity focused ultrasound on 5-ALA-SDT in a mouse glioma model. J. Neurosurg. 2018, 129, 1416–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, W.K.; Yang, S.L.; Shen, E.; Zhang, J.Z.; Shen, Z.Y.; Hu, B. Treatment of PC-3 cells with ultrasound combined with microbubbles induces distinct alterations in the expression of Bcl-2 and Bax. Chinese Sci. Bull. 2013, 58, 3535–3540. [Google Scholar] [CrossRef] [Green Version]
- Ju, D.; Yamaguchi, F.; Zhan, G.; Higuchi, T.; Asakura, T.; Morita, A.; Orimo, H.; Hu, S. Hyperthermotherapy enhances antitumor effect of 5-aminolevulinic acid-mediated sonodynamic therapy with activation of caspase-dependent apoptotic pathway in human glioma. Tumor Biol. 2016, 37, 10415–10426. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Q.; Hu, Z.; Yang, B.; Li, Q.; Wang, J.; Zheng, J.; Cao, W. 5-Aminolevulinic Acid-Based Sonodynamic Therapy Induces the Apoptosis of Osteosarcoma in Mice. PLoS ONE 2015, 10, e0132074. [Google Scholar] [CrossRef] [Green Version]
- Hao, D.; Song, Y.; Che, Z.; Liu, Q. Calcium Overload and in vitro Apoptosis of the C6 Glioma Cells Mediated by Sonodynamic Therapy (Hematoporphyrin monomethyl ether and ultrasound). Cell Biochem. Biophys. 2014, 70, 1445–1452. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Xu, C.; Tian, Y.; Cheng, W.; Li, B. In vitro stimulation of calcium overload and apoptosis by sonodynamic therapy combined with hematoporphyrin monomethyl ether in C6 glioma cells. Oncol. Lett. 2014, 8, 1675–1681. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Z.; Wang, X.; Gu, C.; Gao, Z.; Cao, W.; Zheng, J. 5-Aminolevulinic Acid–mediated Sonodynamic Therapy Reverses Macrophage and Dendritic Cell Passivity in Murine Melanoma Xenografts. Ultrasound Med. Biol. 2014, 40, 2125–2133. [Google Scholar] [CrossRef]
- Lan, J.; Sun, L.; Xu, F.; Liu, L.; Hu, F.; Song, D.; Hou, Z.; Wu, W.; Luo, X.; Wang, J.; et al. M2 Macrophage-Derived Exosomes Promote Cell Migration and Invasion in Colon Cancer. Cancer Res. 2019, 79, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef]
- Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef]
- Wei, J.; Gabrusiewicz, K.; Heimberger, A. The Controversial Role of Microglia in Malignant Gliomas. Clin. Dev. Immunol. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- Asadzadeh, Z.; Safarzadeh, E.; Safaei, S.; Baradaran, A.; Mohammadi, A.; Hajiasgharzadeh, K.; Derakhshani, A.; Argentiero, A.; Silvestris, N.; Baradaran, B. Current Approaches for Combination Therapy of Cancer: The Role of Immunogenic Cell Death. Cancers 2020, 12, 1047. [Google Scholar] [CrossRef] [Green Version]
- Groblewska, M.; Litman-Zawadzka, A.; Mroczko, B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int. J. Mol. Sci. 2020, 21, 3704. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zheng, J.; Yang, B.; Wang, Z.; Fan, H.; Lv, Y.; Li, H.; Jia, L.; Cao, W. Sonodynamic therapy inhibits angiogenesis and tumor growth in a xenograft mouse model. Cancer Lett. 2013, 335, 93–99. [Google Scholar] [CrossRef]
- Kujawska, T.; Secomski, W.; Bilmin, K.; Nowicki, A.; Grieb, P. Impact of thermal effects induced by ultrasound on viability of rat C6 glioma cells. Ultrasonics 2014, 54, 1366–1372. [Google Scholar] [CrossRef] [PubMed]
- Kuroki, M.; Hachimine, K.; Abe, H.; Shibaguchi, H.; Kuroki, M.; Maekawa, S.I.; Yanagisawa, J.; Kinugasa, T.; Tanaka, T.; Yamashita, Y. Sonodynamic therapy of cancer using novel sonosensitizers. Anticancer Res. 2007, 27, 3673–3677. [Google Scholar] [PubMed]
- Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S. Hematoporphyrin as a Sensitizer of Cell-damaging Effect of Ultrasound. Jpn. J. Cancer Res. 1989, 80, 219–222. [Google Scholar] [CrossRef]
- Umemura, S.; Yumita, N.; Nishigaki, R. Enhancement of Ultrasonically Induced Cell Damage by a Gallium-Porphyrin Complex, ATX. Jpn. J. Cancer Res. 1993, 84, 582–588. [Google Scholar] [CrossRef]
- Yumita, N.; Umemura, S. Sonodynamic therapy with photofrin II on AH130 solid tumor. Cancer Chemother. Pharmacol. 2003, 51, 174–178. [Google Scholar] [CrossRef]
- Acerbi, F.; Broggi, M.; Schebesch, K.-M.; Höhne, J.; Cavallo, C.; De Laurentis, C.; Eoli, M.; Anghileri, E.; Servida, M.; Boffano, C.; et al. Fluorescein-Guided Surgery for Resection of High-Grade Gliomas: A Multicentric Prospective Phase II Study (FLUOGLIO). Clin. Cancer Res. 2018, 24, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.-J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Ohmura, T.; Fukushima, T.; Hirotomo, S.; Yoshizawa, S.; Inoue, T.; Kuroki, M.; Sasaki, K.; Umemura, S.-I. Sonodynamic therapy with 5-aminolevulinic acid and focused ultrasound for deep-seated intracranial glioma in rat. Anticancer Res. 2011, 31, 2527–2533. [Google Scholar] [PubMed]
- Jeong, E.-J.; Seo, S.-J.; Ahn, Y.-J.; Choi, K.-H.; Kim, K.-H.; Kim, J.-K. Sonodynamically Induced Antitumor Effects of 5-Aminolevulinic Acid and Fractionated Ultrasound Irradiation in an Orthotopic Rat Glioma Model. Ultrasound Med. Biol. 2012, 38, 2143–2150. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Kudo, N.; Yamaguchi, S.; Sumiyoshi, K.; Motegi, H.; Kobayashi, H.; Terasaka, S.; Houkin, K. Porphyrin Derivatives-Mediated Sonodynamic Therapy for Malignant Gliomas In Vitro. Ultrasound Med. Biol. 2015, 41, 2458–2465. [Google Scholar] [CrossRef] [Green Version]
- Bilmin, K.; Kujawska, T.; Secomski, W.; Nowicki, A.; Grieb, P. 5-Aminolevulinic acid-mediated sonosensitization of rat RG2 glioma cells in vitro. Folia Neuropathol. 2016, 3, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-K.; Santos, M.A.; Marcus, S.L.; Hynynen, K. MR-guided Focused Ultrasound Facilitates Sonodynamic Therapy with 5-Aminolevulinic Acid in a Rat Glioma Model. Sci. Rep. 2019, 9, 10465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, M.; Kobayashi, H.; Terasaka, S.; Endo, S.; Yamaguchi, S.; Motegi, H.; Itay, R.; Suzuki, S.; Brokman, O.; Shapira, Y.; et al. Sonodynamic Therapy for Malignant Glioma Using 220-kHz Transcranial Magnetic Resonance Imaging-Guided Focused Ultrasound and 5-Aminolevulinic acid. Ultrasound Med. Biol. 2019, 45, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, F.; Asakura, T.; Takahashi, H.; Kitamura, T.; Teramoto, A. Low Frequency Ultrasonication Induced Antitumor Effect in 5-Aminolevulinic Acid Treated Malignant Glioma. J. Cancer Ther. 2013, 04, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Prada, F.; Sheybani, N.; Franzini, A.; Moore, D.; Cordeiro, D.; Sheehan, J.; Timbie, K.; Xu, Z. Fluorescein-mediated sonodynamic therapy in a rat glioma model. J. Neurooncol. 2020, 148, 445–454. [Google Scholar] [CrossRef]
- Nonaka, M.; Yamamoto, M.; Yoshino, S.; Umemura, S.I.; Sasaki, K.; Fukushima, T. Sonodynamic therapy consisting of focused ultrasound and a photosensitizer causes a selective antitumor effect in a rat intracranial glioma model. Anticancer Res. 2009, 29, 943–950. [Google Scholar] [PubMed]
- Song, D.; Yue, W.; Li, Z.; Li, J.; Zhao, J.; Zhang, N. Study of the mechanism of sonodynamic therapy in a rat glioma model. Onco. Targets. Ther. 2014, 1801. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-H.; Chen, Z.-Q.; Huang, Z.; Zhan, Q.; Ren, F.-B.; Liu, J.-Y.; Yue, W.; Wang, Z. In vitro study of low intensity ultrasound combined with different doses of PDT: Effects on C6 glioma cells. Oncol. Lett. 2013, 5, 702–706. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Song, D.; Xu, Y.; Huang, Z.; Yue, W. In vitro study of haematoporphyrin monomethyl ether-mediated sonodynamic effects on C6 glioma cells. Neurol. Sci. 2008, 29, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-H.; Yue, W.; Huang, Z.; Chen, Z.-Q.; Zhan, Q.; Ren, F.-B.; Liu, J.-Y.; Fu, S.-B. Calcium overload induces C6 rat glioma cell apoptosis in sonodynamic therapy. Int. J. Radiat. Biol. 2011, 87, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Hu, S.; Wu, C. Apoptotic effect of sonodynamic therapy mediated by hematoporphyrin monomethyl ether on C6 glioma cells in vitro. Acta Neurochir. (Wien). 2009, 151, 1655–1661. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, M.; Sheng, Z.; Chen, Y.; Yeh, C.-K.; Chen, W.; Liu, J.; Liu, X.; Yan, F.; Zheng, H. Theranostic nanosensitizers for highly efficient MR/fluorescence imaging-guided sonodynamic therapy of gliomas. J. Cell. Mol. Med. 2018, 22, 5394–5405. [Google Scholar] [CrossRef] [PubMed]
- Pi, Z.; Huang, Y.; Shen, Y.; Zeng, X.; Hu, Y.; Chen, T.; Li, C.; Yu, H.; Chen, S.; Chen, X. Sonodynamic Therapy on Intracranial Glioblastoma Xenografts Using Sinoporphyrin Sodium Delivered by Ultrasound with Microbubbles. Ann. Biomed. Eng. 2019, 47, 549–562. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, H.; Wang, P.; Zhang, K.; Geng, X.; Liu, Q.; Wang, X. Tumor targeting DVDMS-nanoliposomes for an enhanced sonodynamic therapy of gliomas. Biomater. Sci. 2019, 7, 985–994. [Google Scholar] [CrossRef] [PubMed]
- An, Y.-W.; Liu, H.-Q.; Zhou, Z.-Q.; Wang, J.-C.; Jiang, G.-Y.; Li, Z.-W.; Wang, F.; Jin, H.-T. Sinoporphyrin sodium is a promising sensitizer for photodynamic and sonodynamic therapy in glioma. Oncol. Rep. 2020, 44, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-Y.; Li, X.-Q.; Chen, S.; Cheng, Y.; Deng, J.-M.; Wang, Z.-G. Glioma Stem-like Cells are Less Susceptible than Glioma Cells to Sonodynamic Therapy with Photofrin. Technol. Cancer Res. Treat. 2012, 11, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.-Y.; Wang, K.; Li, X.-Q.; Chen, S.; Deng, J.-M.; Cheng, Y.; Wang, Z.-G. The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells. Ultrasonics 2013, 53, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Tserkovsky, D.A.; Alexandrova, E.N.; Chalau, V.N.; Istomin, Y.P. Effects of combined sonodynamic and photodynamic therapies with photolon on a glioma C6 tumor model. Exp. Oncol. 2012, 34, 332–335. [Google Scholar] [PubMed]
- Tserkovsky, D.A.; Alexandrova, E.N.; Istomin, Y.P. Photolon enhancement of ultrasound cytotoxicity. Exp. Oncol. 2011, 33, 107–109. [Google Scholar] [PubMed]
- Wan, Q.; Zou, C.; Hu, D.; Zhou, J.; Chen, M.; Tie, C.; Qiao, Y.; Yan, F.; Cheng, C.; Sheng, Z.; et al. Imaging-guided focused ultrasound-induced thermal and sonodynamic effects of nanosonosensitizers for synergistic enhancement of glioblastoma therapy. Biomater Sci. 2019, 7, 3007–3015. [Google Scholar] [CrossRef]
- Kim, J.E.; Cho, H.R.; Xu, W.J.; Kim, J.Y.; Kim, S.K.; Kim, S.K.; Park, S.H.; Kim, H.; Lee, S.-H.H.; Choi, S.H.; et al. Mechanism for enhanced 5-aminolevulinic acid fluorescence in isocitrate dehydrogenase 1 mutant malignant gliomas. Oncotarget 2015, 6, 20266–20277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, L.; Nakada, M.; Zhao, S.G.; Endo, Y.; Furuyama, N.; Nambu, E.; Pyko, I.V.; Hayashi, Y.; Hamada, J.I. Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br. J. Cancer 2011, 104, 798–807. [Google Scholar] [CrossRef] [Green Version]
- Schimanski, A.; Ebbert, L.; Sabel, M.C.; Finocchiaro, G.; Lamszus, K.; Ewelt, C.; Etminan, N.; Fischer, J.C.; Sorg, R.V. Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment. J. Photochem. Photobiol. B Biol. 2016, 163, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Folaron, M.; Strawbridge, R.; Samkoe, K.S.; Filan, C.; Roberts, D.W.; Davis, S.C. Elucidating the kinetics of sodium fluorescein for fluorescence-guided surgery of glioma. J. Neurosurg. 2019, 131, 724–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevenslik, T.V. The cavitation induced Becquerel effect and the hot spot theory of sonoluminescence. Ultrasonics 2003, 41, 313–317. [Google Scholar] [CrossRef]
- Zou, M.; Zhang, L.; Wang, J.; Wang, Q.; Gao, J.; Fan, P. Investigation on interaction and sonodynamic damage of fluorescein derivants to bovine serum albumin (BSA) under ultrasonic irradiation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 110, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; LU, M.; Ding, X.; Chen, F.; He, X.; Xu, C.; Zhou, H.; Wang, Q.; Hao, L.; Zou, J. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy. Sci. Rep. 2016, 6, 31833. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Xu, Q.; Liu, F.; Zhou, P.; Gu, Y.; Zeng, J.; An, J.; Dai, W.; Li, X. Hematoporphyrin monomethyl ether photodynamic damage on HeLa cells by means of reactive oxygen species production and cytosolic free calcium concentration elevation. Cancer Lett. 2004, 216, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Copley, L.; van der Watt, P.; Wirtz, K.W.; Parker, M.I.; Leaner, V.D. PhotolonTM, a chlorin e6 derivative, triggers ROS production and light-dependent cell death via necrosis. Int. J. Biochem. Cell Biol. 2008, 40, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Mai, B.; Wang, X.; Liu, Q.; Zhang, K.; Wang, P. The Application of DVDMS as a Sensitizing Agent for Sono-/Photo-Therapy. Front. Pharmacol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.; Lin, H.; Liu, H.; Wang, X.; Wang, J.; Zhang, P.; Gao, H.; Huang, C.; Zeng, Y.; Tan, Y.; et al. Tumor Microenvironment-Triggered Supramolecular System as an In Situ Nanotheranostic Generator for Cancer Phototherapy. Adv. Mater. 2017, 29, 1605928. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, P.; Hu, J.; Jia, Y.; Wu, L.; Chen, X.; Liu, Q.; Wang, X. A new sensitizer DVDMS combined with multiple focused ultrasound treatments: An effective antitumor strategy. Sci. Rep. 2015, 5, 17485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallner, K.E.; Galicich, J.H.; Krol, G.; Arbit, E.; Malkin, M.G. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int. J. Radiat. Oncol. 1989, 16, 1405–1409. [Google Scholar] [CrossRef]
- Jori, G.; Reddi, E. The role of lipoproteins in the delivery of tumour-targeting photosensitizers. Int. J. Biochem. 1993, 25, 1369–1375. [Google Scholar] [CrossRef]
- Musser, D.; Wagner, J.; Weber, F.; Datta-Gupta, N. The binding of tumor localizing porphyrins to a fibrin matrix and their effects following photoirradiation. Res. Commun. Chem. Pathol. Pharmacol. 1980, 28, 505–525. [Google Scholar] [PubMed]
- Nakonechny, F.; Nisnevitch, M.; Nitzan, Y.; Nisnevitch, M. Sonodynamic Excitation of Rose Bengal for Eradication of Gram-Positive and Gram-Negative Bacteria. Biomed. Res. Int. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Costley, D.; Nesbitt, H.; Ternan, N.; Dooley, J.; Huang, Y.-Y.; Hamblin, M.R.; McHale, A.P.; Callan, J.F. Sonodynamic inactivation of Gram-positive and Gram-negative bacteria using a Rose Bengal–antimicrobial peptide conjugate. Int. J. Antimicrob. Agents 2017, 49, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, S.; Fukushima, T.; Hayashi, S.; Nonaka, M.; Ogawa, K.; Sasaki, K.; Umemura, S. Effects of Focused Ultrasound Sonodynamic Treatment on the Rat Blood-Brain Barrier. Anticancer Res. 2009, 29, 889–895. [Google Scholar] [PubMed]
- Koshy, M.; Villano, J.L.; Dolecek, T.A.; Howard, A.; Mahmood, U.; Chmura, S.J.; Weichselbaum, R.R.; McCarthy, B.J. Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J. Neurooncol. 2012, 107, 207–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamimi, A.F.; Juweid, M. Epidemiology and Outcome of Glioblastoma. In Glioblastoma; Codon Publications: Singapore, 2017; pp. 143–153. ISBN 9780994438126. [Google Scholar]
- Sukovich, J.R.; Xu, Z.; Kim, Y.; Cao, H.; Nguyen, T.-S.; Pandey, A.S.; Hall, T.L.; Cain, C.A. Targeted Lesion Generation Through the Skull Without Aberration Correction Using Histotripsy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Sukovich, J.R.; Cain, C.A.; Pandey, A.S.; Chaudhary, N.; Camelo-Piragua, S.; Allen, S.P.; Hall, T.L.; Snell, J.; Xu, Z.; Cannata, J.M.; et al. In vivo histotripsy brain treatment. J. Neurosurg. 2019, 131, 1331–1338. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Vykhodtseva, N.I.; Hynynen, K. Creating Brain Lesions with Low-Intensity Focused Ultrasound with Microbubbles: A Rat Study at Half a Megahertz. Ultrasound Med. Biol. 2013, 39, 1420–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubry, J.-F.; Tanter, M. MR-Guided Transcranial Focused Ultrasound. In Therapeutic Ultrasound; Springer: Cham, Switzerland, 2016; pp. 97–111. [Google Scholar]
- Inui, T.; Makita, K.; Miura, H.; Matsuda, A.; Kuchiike, D.; Kubo, K.; Mette, M.; Uto, Y.; Nishikata, T.; Hori, H.; et al. Case report: A breast cancer patient treated with GcMAF, sonodynamic therapy and hormone therapy. Anticancer Res. 2014, 34, 4589–4593. [Google Scholar] [PubMed]
- Wang, X.; Zhang, W.; Xu, Z.; Luo, Y.; Mitchell, D.; Moss, R.W. Sonodynamic and Photodynamic Therapy in Advanced Breast Carcinoma: A Report of 3 Cases. Integr. Cancer Ther. 2009, 8, 283–287. [Google Scholar] [CrossRef]
- Kenyon, J.; Fulle, R.; Lewis, T. Activated Cancer Therapy Using Light and Ultrasound - A Case Series of Sonodynamic Photodynamic Therapy in 115 Patients Over a 4 Year Period. Curr. Drug Ther. 2009, 4, 179–193. [Google Scholar] [CrossRef] [Green Version]
Sonosensitizer | Title | Authors | Journal; Year |
---|---|---|---|
5-Aminolevulinic Acid | Sonodynamic therapy with 5-aminolevulinic acid and focused ultrasound for deep-seated intracranial glioma in rat | Ohmura et al. [57] | Anticancer Res. 2011 Jul;31(7):2527-33. |
5-Aminolevulinic Acid | Sono-dynamically induced antitumor effects of 5-aminolevulinic acid and fractionated ultrasound irradiation in an orthotopic rat glioma model | Jeong et al. [58] | Ultrasound Med Biol. 2012 Dec;38(12):2143-50. |
5-Aminolevulinic Acid | Porphyrin derivatives-mediated sonodynamic therapy for malignant gliomas in vitro | Endo et al. [59] | Ultrasound Med Biol. 2015 Sep;41(9):2458-65. |
5-Aminolevulinic Acid | 5-Aminolevulinic acid-mediated sono-sensitization of rat RG2 glioma cells in vitro | Bilmin et al. [60] | Folia Neuropathol. 2016;54(3):234-240. |
5-Aminolevulinic Acid | Hyper-thermotherapy enhances antitumor effect of 5-aminolevulinic acid-mediated sonodynamic therapy with activation of caspase-dependent apoptotic pathway in human glioma | Ju et al. [38] | Tumour Biol. 2016 Aug;37(8):10415-26. |
5-Aminolevulinic Acid | Enhancement of antitumor activity by using 5-ALA–mediated sonodynamic therapy (SDT) to induce apoptosis in malignant gliomas: significance of high-intensity focused ultrasound on 5-ALA-SDT in a mouse glioma model | Suehiro et al. [36] | J Neurosurg. 2018 Dec 1;129(6):1416-1428. |
5-Aminolevulinic Acid | MR-guided Focused Ultrasound Facilitates sonodynamic therapy with 5-Aminolevulinic Acid in a Rat Glioma Model | Wu et al. [61] | Sci Rep. 2019 Jul 18;9(1):10465. |
5-Aminolevulinic Acid | Sonodynamic therapy for malignant glioma using 220-khz transcranial magnetic resonance imaging-guided focused ultrasound and 5-aminolevulinic acid | Yoshida et al. [62] | Ultrasound Med Biol. 2019 Feb;45(2):526-538. |
5-Aminolevulinic Acid | Low Frequency Ultrasonication Induced Antitumor Effect in 5-Aminolevulinic Acid Treated Malignant Glioma | Yamaguchi et al. [63] | J Cancer Ther. 2013;04(01):170-175. |
Fluorescein | Fluorescein-mediated sonodynamic therapy in a rat glioma model | Prada et al. [64] | J Neurooncol. 2020 Jul;148(3):445-454. |
Rose Bengal | Sonodynamic Therapy Consisting of Focused Ultrasound and a Photosensitizer Causes a Selective Antitumor Effect in a Rat Intracranial Glioma Model | Nonaka et al. [65] | Anticancer Res. 2009 Mar;29(3):943-50. |
Hematoporphyrin Mono-Methil Ether | Study of the mechanism of sonodynamic therapy in a rat glioma model | Song et al. [66] | Onco Targets Ther. 2014 Sep 30;7:1801-10. |
Hematoporphyrin Mono-Methil Ether | In vitro study of low intensity ultrasound combined with different doses of photodynamic therapy (PDT): Effects on C6 glioma cells | Li et al. [67] | Oncol Lett. 2013 Feb;5(2):702-706. |
Hematoporphyrin Mono-Methil Ether | In vitro study of hematoporphyrin monomethyl ether-mediated sonodynamic effects on C6 glioma cells | Li et al. [68] | Neurol Sci. 2008 Sep;29(4):229-35. |
Hematoporphyrin Mono-Methil Ether | In vitro stimulation of calcium overload and apoptosis by sonodynamic therapy combined with hematoporphyrin monomethyl ether in C6 glioma cells | Dai et al. [41] | Oncol Lett. 2014 Oct;8(4):1675-1681. |
Hema-toporphyrin Mono-Methil Ether | Calcium overload induces C6 rat glioma cell apoptosis in sonodynamic therapy | Li et al. [69] | Int J Radiat Biol. 2011 Oct;87(10):1061-6. |
Hematoporphyrin Mono-Methil Ether | Apoptotic effect of sonodynamic therapy mediated by hematoporphyrin monomethyl ether on C6 glioma cells in vitro | Dai et al. [70] | Acta Neurochir (Wien). 2009 Dec;151(12):1655-61. |
Hematoporphyrin Mono-Methil Ether | Calcium Overload and in vitro Apoptosis of the C6 Glioma Cells Mediated by Sonodynamic Therapy (Hematoporphyrin monomethyl ether and ultrasound) | Hao et al. [40] | Cell Biochem Biophys. 2014 Nov;70(2):1445-52. |
Sino-porphyrin | Theragnostic nano-sensitizers for highly efficient MR/fluorescence imaging-guided sonodynamic therapy of gliomas. | Liu et al. [71] | J Cell Mol Med. 2018 Nov;22(11):5394-5405 |
Sino-porphyrin | Sonodynamic Therapy on Intracranial Glioblastoma Xenografts Using Sino-porphyrin Sodium Delivered by Ultrasound with Microbubbles. | Pi et al. [72] | Ann Biomed Eng. 2019 Feb;47(2):549-562. |
Sino-porphyrin | Tumor targeting DVDMS-nanoliposomes for an enhanced sonodynamic therapy of gliomas. | Sun et al. [73] | Biomater Sci. 2019 Feb 26;7(3):985-994. |
Sino-porphyrin | Sino-porphyrin sodium is a promising sensitizer for photodynamic and sonodynamic therapy in glioma. | An et al. [74] | Oncol Rep. 2020 Oct;44(4):1596-1604. |
Photofrin | Glioma stem-like cells are less susceptible than glioma cells to sonodynamic therapy with photofrin | Xu et al. [75] | Technol Cancer Res Treat. 2012;11(6):615-623. |
Photofrin | The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with photofrin in glioma stem-like cells. Ultrasonics | Xu et al. [76] | Ultrasonics. 2013;53(1):232-238. |
Photolon | Effects of combined sonodynamic and photodynamic therapies with photolon on a glioma C6 tumor model | Tserkovsky et al. [77] | Exp Oncol. 2012;34(4):332-335. |
Photolon | Photolon enhancement of ultrasound cytotoxicity | Tserkovsky et al. [78] | Exp Oncol. 2011 Jun;33(2):107-9. |
Photolon | Imaging-guided focused ultrasound-induced thermal and sonodynamic effects of nano-sonosensitizers for synergistic enhancement of glioblastoma therapy | Wan et al. [79] | Biomater Sci. 2019 Jun 25;7(7):3007-3015. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Ammando, A.; Raspagliesi, L.; Gionso, M.; Franzini, A.; Porto, E.; Di Meco, F.; Durando, G.; Pellegatta, S.; Prada, F. Sonodynamic Therapy for the Treatment of Intracranial Gliomas. J. Clin. Med. 2021, 10, 1101. https://doi.org/10.3390/jcm10051101
D’Ammando A, Raspagliesi L, Gionso M, Franzini A, Porto E, Di Meco F, Durando G, Pellegatta S, Prada F. Sonodynamic Therapy for the Treatment of Intracranial Gliomas. Journal of Clinical Medicine. 2021; 10(5):1101. https://doi.org/10.3390/jcm10051101
Chicago/Turabian StyleD’Ammando, Antonio, Luca Raspagliesi, Matteo Gionso, Andrea Franzini, Edoardo Porto, Francesco Di Meco, Giovanni Durando, Serena Pellegatta, and Francesco Prada. 2021. "Sonodynamic Therapy for the Treatment of Intracranial Gliomas" Journal of Clinical Medicine 10, no. 5: 1101. https://doi.org/10.3390/jcm10051101