Custom-Made 3D-Printed Implants as Novel Approach to Reconstructive Surgery after Oncologic Resection in Pediatric Patients
Abstract
1. Introduction
2. Experimental Section
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Longhi, A.; Errani, C.; De Paolis, M.; Mercuri, M.; Bacci, G. Primary bone osteosarcoma in the pediatric age: State of the art. Cancer Treat. Rev. 2006, 32, 423–436. [Google Scholar] [CrossRef]
- Salter, R.B.; Harris, W.R. Injuries involving the epiphyseal plate. J. Bone Jt. Surg 2001, 83, 1753. [Google Scholar] [CrossRef]
- Groundland, J.S.; Binitie, O. Reconstruction After Tumor Resection in the Growing Child. Orthop. Clin. N. Am. 2016, 47, 265–281. [Google Scholar] [CrossRef]
- Yoshida, Y.; Osaka, S.; Tokuhashi, Y. Experience with extendable prostheses for malignant bone tumors in children. J. Formos. Med. Assoc. 2011, 110, 711–715. [Google Scholar] [CrossRef]
- Krepler, P.; Dominkus, M.; Toma, C.D.; Kotz, R. Endoprosthesis management of the extremities of children after resection of primary malignant bone tumors. Orthopade 2003, 32, 1013–1019. [Google Scholar] [CrossRef]
- Ruggieri, P.; Mavrogenis, A.F.; Pala, E.; Romantini, M.; Manfrini, M.; Mercuri, M. Outcome of expandable prostheses in children. J. Pediatr. Orthop. 2013, 33, 244–253. [Google Scholar] [CrossRef]
- Scoccianti, G.; Campanacci, D.A.; Beltrami, G.; Caldora, P.; Capanna, R. The use of osteo-articular allografts for reconstruction after resection of the distal radius for tumour. J. Bone Jt. Surg. Br. 2010, 92, 1690–1694. [Google Scholar] [CrossRef]
- Oryan, A.; Alidadi, S.; Moshiri, A.; Maffulli, N. Bone regenerative medicine: Classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014, 9, 18. [Google Scholar] [CrossRef]
- Schuh, R.; Panotopoulos, J.; Puchner, S.E.; Willegger, M.; Hobusch, G.M.; Windhager, R.; Funovics, P.T. Vascularised or non-vascularised autologous fibular grafting for the reconstruction of a diaphyseal bone defect after resection of a musculoskeletal tumour. Bone Jt. J. 2014, 1258–1263. [Google Scholar] [CrossRef]
- Kim, J.D.; Lee, G.W.; Chung, S.H. A reconstruction with extracorporeal irradiated autograft in osteosarcoma around the knee. J. Surg. Oncol. 2011, 104, 187–191. [Google Scholar] [CrossRef]
- Muller, D.A.; Beltrami, G.; Scoccianti, G.; Cuomo, P.; Capanna, R. Allograft-prosthetic composite versus megaprosthesis in the proximal tibia-What works best? Injury 2016, 47 (Suppl. 4), S124–S130. [Google Scholar] [CrossRef]
- Fan, H.; Fu, J.; Li, X.; Pei, Y.; Li, X.; Pei, G.; Guo, Z. Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: A case series and review of the literature. World J. Surg. Oncol. 2015, 13, 308. [Google Scholar] [CrossRef] [PubMed]
- Rengier, F.; Mehndiratta, A.; von Tengg-Kobligk, H.; Zechmann, C.M.; Unterhinninghofen, R.; Kauczor, H.U.; Giesel, F.L. 3D printing based on imaging data: Review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 2010, 5, 335–341. [Google Scholar] [CrossRef]
- Hermanek, P.; Wittekind, C. Residual tumor (R) classification and prognosis. Semin. Surg. Oncol. 1994, 10, 12–20. [Google Scholar] [CrossRef]
- Henderson, E.R.; O’Connor, M.I.; Ruggieri, P.; Windhager, R.; Funovics, P.T.; Gibbons, C.L.; Guo, W.; Hornicek, F.J.; Temple, H.T.; Letson, G.D. Classification of failure of limb salvage after reconstructive surgery for bone tumours: A modified system Including biological and expandable reconstructions. Bone Jt. J. 2014, 96-B, 1436–1440. [Google Scholar] [CrossRef]
- Min, L.; Tang, F.; Duan, H.; Zhou, Y.; Zhang, W.L.; Shi, R.; Tu, C.Q. Cemented allograft-prosthesis composite reconstruction for the proximal femur tumor. OncoTargets Ther. 2015, 8, 2261–2269. [Google Scholar]
- Enneking, W.F.; Dunham, W.; Gebhardt, M.C.; Malawar, M.; Pritchard, D.J. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin. Orthop. Relat. Res. 1993, 286, 241–246. [Google Scholar] [CrossRef]
- Beltrami, G.; Ristori, G.; Scoccianti, G.; Tamburini, A.; Capanna, R.; Campanacci, D.; Innocenti, M. Latissimus dorsi rotational flap combined with a custom-made scapular prosthesis after oncological surgical resection: A report of two patients. BMC Cancer 2018, 18, 1003. [Google Scholar] [CrossRef]
- Beltrami, G. Custom 3D-printed finger proximal phalanx as salvage of limb function after aggressive recurrence of giant cell tumour. BMJ Case Rep. 2018, 2018. [Google Scholar] [CrossRef]
- Regauer, M.; Lange, M.; Soldan, K.; Peyerl, S.; Baumbach, S.; Bocker, W.; Polzer, H. Development of an internally braced prosthesis for total talus replacement. World J. Orthop. 2017, 8, 221–228. [Google Scholar] [CrossRef]
- Wei, R.; Guo, W.; Ji, T.; Zhang, Y.; Liang, H. One-step reconstruction with a 3D-printed, custom-made prosthesis after total en bloc sacrectomy: A technical note. Eur. Spine J. 2017, 26, 1902–1909. [Google Scholar] [CrossRef] [PubMed]
- Pierce, T.D.; Tomaino, M.M. Use of the pedicled latissimus muscle flap for upper-extremity reconstruction. J. Am. Acad. Orthop. Surg. 2000, 8, 324–331. [Google Scholar] [CrossRef] [PubMed]
Patient | Sex | Age | Anatomical Site | Histology | Concomitant Therapy | Custom Implant | Quality of the Surgical Margin | Bone/Spacer | Soft Tissue |
---|---|---|---|---|---|---|---|---|---|
1 | M | 13 | Humerus | High grade Osteosarcoma | Neoadjuvant and adjuvant CHT | Proximal humerus prosthesis with integrated plate | R0 | Structural antibiotic cement | Latissimus dorsi rotational flap for deltoid region, vascularized and innervated |
2 | F | 13 | Scapula | Ewing sarcoma | Neoadjuvant and adjuvant CHT | Scapular prosthesis | R0 | None | Latissimus dorsi rotational flap vascularized and innervated for subscapularis recovery |
3 | M | 13 | Pelvis | Ewing sarcoma | Neoadjuvant and adjuvant CHT | Ileum prosthesis | R0 | Bone chips | Fascia lata rotational flap |
4 | F | 11 | Tibia | Ewing sarcoma | Neoadjuvant and adjuvant CHT | Anatomical Plate | R0 | Massive allograft + fibular vascularized flap | Medial gastrocnemius rotational flap after scar slough |
5 | M | 8 | Tibia | Low Grade Osteosarcoma | None | Anatomical Plate | R0 | Massive allograft + fibular vascularized flap | Medial gastrocnemius rotational flap after scar slough |
6 | F | 13 | Humerus | High grade Osteosarcoma | Neoadjuvant and adjuvant CHT | Subtotal humerus prosthesis | R0 | Bone chips + fibular vascularized flap | None |
7 | M | 13 | Femur | High grade Osteosarcoma | Neoadjuvant and adjuvant CHT | Distal femur prosthesis with integrated plate | R0 | Massive bone allograft | None |
8 | M | 9 | Calcaneus | Ewing sarcoma | Neoadjuvant and adjuvant CHT with RHT | Calcaneus prosthesis | R1 | Non vascularized fibular strut autograft | Antero-lateral fascio-cutaneous free flap |
9 | M | 13 | Hemipelvis | Ewing sarcoma | Neoadjuvant and adjuvant CHT | Ileum prosthesis | R0 | Antibiotic soluble pearls | Fascia lata rotational flap |
10 | F | 13 | Subtotal radius | Rhabdomyo sarcoma | Neoadjuvant and adjuvant CHT | Osteoarticular radius | R0 | Antibiotic soluble pearls | None |
11 | F | 2 | Subtotal femur | Ewing sarcoma | Neoadjuvant and adjuvant CHT | Anatomical Plate | R0 | Structural bone massive allograft | None |
Patient | MSTS | Postoperative Complications | Timing of Physical Recovery after Surgery |
---|---|---|---|
1 | 32% | Restricted range of motion | 3 months |
2 | 93% | None | 3 months |
3 | 85% | None | 5 months |
4 | 75% | Wound dehiscence | 6 months |
5 | 75% | Wound dehiscence | 6 months |
6 | 93% | Proximal wound dehiscence | 4 months |
7 | 85% | Stiff knee | 5 months |
8 | 32% | Postoperative venous thrombosis of the musculocutaneous free flap | 6 months |
9 | 75% | None | 5 months |
10 | 80% | None | 5 months |
11 | 90% | Stiff knee | 5 months |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltrami, G.; Ristori, G.; Nucci, A.M.; Galeotti, A.; Tamburini, A.; Scoccianti, G.; Campanacci, D.; Innocenti, M.; Capanna, R. Custom-Made 3D-Printed Implants as Novel Approach to Reconstructive Surgery after Oncologic Resection in Pediatric Patients. J. Clin. Med. 2021, 10, 1056. https://doi.org/10.3390/jcm10051056
Beltrami G, Ristori G, Nucci AM, Galeotti A, Tamburini A, Scoccianti G, Campanacci D, Innocenti M, Capanna R. Custom-Made 3D-Printed Implants as Novel Approach to Reconstructive Surgery after Oncologic Resection in Pediatric Patients. Journal of Clinical Medicine. 2021; 10(5):1056. https://doi.org/10.3390/jcm10051056
Chicago/Turabian StyleBeltrami, Giovanni, Gabriele Ristori, Anna Maria Nucci, Alberto Galeotti, Angela Tamburini, Guido Scoccianti, Domenico Campanacci, Marco Innocenti, and Rodolfo Capanna. 2021. "Custom-Made 3D-Printed Implants as Novel Approach to Reconstructive Surgery after Oncologic Resection in Pediatric Patients" Journal of Clinical Medicine 10, no. 5: 1056. https://doi.org/10.3390/jcm10051056
APA StyleBeltrami, G., Ristori, G., Nucci, A. M., Galeotti, A., Tamburini, A., Scoccianti, G., Campanacci, D., Innocenti, M., & Capanna, R. (2021). Custom-Made 3D-Printed Implants as Novel Approach to Reconstructive Surgery after Oncologic Resection in Pediatric Patients. Journal of Clinical Medicine, 10(5), 1056. https://doi.org/10.3390/jcm10051056