Seizures and Sepsis: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Pathophysiology
4. Clinical Presentation
5. Electroencephalography
6. Seizures and Long-Term Complications
7. Treatment
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Czempik, P.F.; Pluta, M.P.; Krzych, Ł.J. Sepsis-Associated Brain Dysfunction: A Review of Current Literature. Int. J. Environ. Res. Public Health 2020, 17, 5852. [Google Scholar] [CrossRef] [PubMed]
- Molnár, L.; Fülesdi, B.; Németh, N.; Molnár, C. Sepsis-associated encephalopathy: A review of literature. Neurol. India 2018, 66, 352–361. [Google Scholar] [PubMed] [Green Version]
- Sweis, R.; Ortiz, J.; Biller, J. Neurology of Sepsis. Curr. Neurol. Neurosci. Rep. 2016, 16, 21. [Google Scholar] [CrossRef]
- Eidelman, L.A.; Putterman, D.; Putterman, C.; Sprung, C.L. The spectrum of septic encephalopathy: Definitions, etiologies, and mortalities. JAMA 1996, 275, 470–473. [Google Scholar] [CrossRef]
- Reznik, M.E.; Merkler, A.E.; Mahta, A.; Murthy, S.B.; Claassen, J.; Kamel, H. Long-term risk of seizures in adult survivors of sepsis. Neurology 2017, 89, 1476–1482. [Google Scholar] [CrossRef]
- Gofton, T.E.; Young, G.B. Sepsis-associated encephalopathy. Nat. Rev. Neurol. 2012, 8, 557–566. [Google Scholar] [CrossRef]
- Vezzani, A.; Moneta, D.; Richichi, C.; Perego, C.; De Simoni, M.G. Functional role of proinflammatory and anti-inflammatory cytokines in seizures. Adv. Exp. Med. Biol. 2004, 548, 123–133. [Google Scholar]
- Sewal, R.K.; Modi, M.; Saikia, U.N.; Chakrabarti, A.; Medhi, B. Increase in seizure susceptibility in sepsis like condition explained by spiking cytokines and altered adhesion molecules level with impaired blood brain barrier integrity in experimental model of rats treated with lipopolysaccharides. Epilepsy Res. 2017, 135, 176–186. [Google Scholar] [CrossRef]
- Viviani, B.; Bartesaghi, S.; Gardoni, F.; Vezzani, A.; Behrens, M.M.; Bartfai, T.; Binaglia, M.; Corsini, E.; Di Luca, M.; Galli, C.L.; et al. Interleukin- 1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 2003, 23, 8692–8700. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, Q.; Malik, S.; Yang, J. Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A) receptor current in cultured hippocampal neurons. J. Pharmacol. Exp. Ther. 2000, 292, 497–504. [Google Scholar]
- Tian, G.F.; Azmi, H.; Takano, T.; Xu, Q.; Peng, W.; Lin, J.; Oberheim, N.; Lou, N.; Wang, X.; Zielke, H.R.; et al. An astrocytic basis of epilepsy. Nat. Med. 2005, 11, 973–981. [Google Scholar] [CrossRef] [Green Version]
- Oby, E.; Janigro, D. The blood-brain barrier and epilepsy. Epilepsia 2006, 47, 1761–1774. [Google Scholar] [CrossRef]
- Marchi, N.; Angelov, L.; Masaryk, T.; Fazio, V.; Granata, T.; Hernandez, N.; Hallene, K.; Diglaw, T.; Franic, L.; Najm, I.; et al. Seizure-Promoting Effect of Blood–Brain Barrier Disruption. Epilepsia 2007, 48, 732–742. [Google Scholar] [CrossRef] [Green Version]
- Friedman, D.; Claassen, J.; Hirsch, L.J. Continuous electroencephalogram monitoring in the intensive care unit. Anesth. Analg. 2009, 109, 506–523. [Google Scholar] [CrossRef] [PubMed]
- Treiman, D.M.; De Giorgio, C.; Salisbury, S.; Wickboldt, C. Subtle generalized convulsive status epilepticus. Epilepsia 1984, 25, 653. [Google Scholar]
- Meador, K.J.; Moser, E. Negative seizures. J. Int. Neuropsychol. Soc. 2000, 6, 731–733. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, R.J.; Kirmani, B.; Deshpande, L.S.; Jakkampudi, V.; Towne, A.R.; Waterhouse, E.; Garnett, L.; Ramakrishnan, V. Comparisons of the mortality and clinical presentations of status epilepticus in private practice community and university hospital settings in Richmond, Virginia. Seizure 2009, 18, 405–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litt, B.; Wityk, R.J.; Hertz, S.H.; Mullen, P.D.; Weiss, H.; Ryan, D.D.; Henry, T.R. Nonconvulsive status epilepticus in the critically ill elderly. Epilepsia 1998, 39, 1194–1202. [Google Scholar] [CrossRef]
- Balamurugan, E.; Aggarwal, M.; Lamba, A.; Dang, N.; Tripathi, M. Perceived trigger factors of seizures in persons with epilepsy. Seizure 2013, 22, 743–747. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.J. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 2005, 76 (Suppl. 2), ii2–ii7. [Google Scholar] [CrossRef] [Green Version]
- Claassen, J.; Taccone, F.S.; Horn, P.; Holtkamp, M.; Stocchetti, N.; Oddo, M. Neurointensive Care Section of the European Society of Intensive Care Medicine. Recommendations on the use of EEG monitoring in critically ill patients: Consensus statement from the neurointensive care section of the ESICM. Intensive Care Med. 2013, 39, 1337–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azabou, E.; Fischer, C.; Guerit, J.M.; Annane, D.; Mauguiere, F.; Lofaso, F.; Sharshar, T. Neurophysiological assessment of brain dysfunction in critically ill patients: An update. Neurol. Sci. 2017, 38, 715–726. [Google Scholar] [CrossRef]
- Michel, C.M.; Brunet, D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front. Neurol. 2019, 10, 325. [Google Scholar] [CrossRef] [Green Version]
- Wanleenuwat, P.; Suntharampillai, N.; Iwanowski, P. Antibiotic-induced epileptic seizures: Mechanisms of action and clinical considerations. Seizure 2020, 81, 167–174. [Google Scholar] [CrossRef]
- Hosokawa, K.; Gaspard, N.; Su, F.; Oddo, M.; Vincent, J.L.; Taccone, F.S. Clinical neurophysiological assessment of sepsis-associated brain dysfunction: A systematic review. Crit. Care 2014, 18, 674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esen, F.; Orhun, G.; Özcan, P.E.; Brenes Bastos, A.R.; Tüzün, E. Diagnosing acute brain dysfunction due to sepsis. Neurol. Sci. 2020, 41, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, L.J.; Fong, M.W.K.; Leitinger, M.; La Roche, S.M.; Beniczky, S.; Abend, N.S.; Lee, J.W.; Wusthoff, C.J.; Hahn, C.D.; Westover, M.B. American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2021 Version. J. Clin. Neurophysiol. 2021, 38, 1–29. [Google Scholar] [CrossRef]
- Sutter, R.; Stevens, R.D.; Kaplan, P.W. Clinical and imaging correlates of EEG patterns in hospitalized patients with encephalopathy. J. Neurol. 2013, 260, 1087–1098. [Google Scholar] [CrossRef]
- Young, G.B.; Bolton, C.F.; Archibald, Y.M.; Austin, T.W.; Wells, G.A. The electroencephalogram in sepsis-associated encephalopathy. J. Clin. Neurophysiol. 1992, 9, 145–152. [Google Scholar] [CrossRef]
- Oddo, M.; Carrera, E.; Claassen, J.; Mayer, S.A.; Hirsch, L.J. Continuous electroencephalography in the medical intensive care unit. Crit. Care Med. 2009, 37, 2051–2056. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, E.J.; Gaspard, N.; Choi, H.A.; Cohen, E.; Burkart, K.M.; Chong, D.H.; Claassen, J.; Hirsch, L.J. Acute brain failure in severe sepsis: A prospective study in the medical intensive care unit utilizing continuous EEG monitoring. Intensive Care Med. 2015, 41, 686–694. [Google Scholar] [CrossRef]
- Foreman, B.; Claassen, J.; Abou Khaled, K.; Jirsch, J.; Alschuler, D.M.; Wittman, J.; Emerson, R.G.; Hirsch, L.J. Generalized periodic discharges in the critically ill: A case-control study of 200 patients. Neurology 2012, 79, 1951–1956. [Google Scholar] [CrossRef] [Green Version]
- Westover, M.B.; Shafi, M.M.; Bianchi, M.T.; Moura, L.M.; O’Rourke, D.; Rosenthal, E.S.; Chu, C.J.; Donovan, S.; Hoch, D.B.; Kilbride, R.D.; et al. The probability of seizures during EEG monitoring in critically ill adults. Clin. Neurophysiol. 2015, 126, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azabou, E.; Magalhaes, E.; Braconnier, A.; Yahiaoui, L.; Moneger, G.; Heming, N.; Annane, D.; Mantz, J.; Chrétien, F.; Durand, M.C.; et al. Groupe d’Explorations Neurologiques en Réanimation (GENER). Early Standard Electroencephalogram Abnormalities Predict Mortality in Septic Intensive Care Unit Patients. PLoS ONE 2015, 10, e0139969. [Google Scholar] [CrossRef] [PubMed]
- Scozzafava, J.; Hussain, M.S.; Brindley, P.G.; Jacka, M.J.; Gross, D.W. The role of the standard 20 min EEG recording in the comatose patient. J. Clin. Neurosci. 2010, 17, 64–68. [Google Scholar] [CrossRef]
- Claassen, J.; Mayer, S.A.; Kowalski, R.G.; Emerson, R.G.; Hirsch, L.J. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology 2004, 62, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Fogang, Y.; Legros, B.; Depondt, C.; Mavroudakis, N.; Gaspard, N. Yield of repeated intermittent EEG for seizure detection in critically ill adults. Neurophysiol. Clin. 2017, 47, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Caricato, A.; Melchionda, I.; Antonelli, M. Continuous Electroencephalography Monitoring in Adults in the Intensive Care Unit. Crit. Care 2018, 22, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwashyna, T.J.; Ely, E.; Smith, D.M.; Langa, K.M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 2010, 304, 1787–1794. [Google Scholar] [CrossRef] [Green Version]
- Kao, L.T.; Sheu, J.J.; Lin, H.C.; Tsai, M.C.; Chung, S.D. Association between sepsis and dementia. J. Clin. Neurosci. 2015, 22, 1430–1433. [Google Scholar] [CrossRef] [PubMed]
- Pandharipande, P.P.; Girard, T.D.; Ely, E.W. Long-term cognitive impairment after critical illness. N. Engl. J. Med. 2014, 370, 185–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semmler, A.; Hermann, S.; Mormann, F.; Weberpals, M.; Paxian, S.A.; Okulla, T.; Schäfers, M.; Kummer, M.P.; Klockgether, T.; Heneka, M.T. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J. Neuroinflammation 2008, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- d’Avila, J.d.C.P.; Santiago, A.P.S.A.; Amâncio, R.T.; Galina, A.; Oliveira, M.F.; Bozza, F.A. Sepsis induces brain mitochondrial dysfunction. Crit. Care Med. 2008, 36, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Rosengarten, B.; Wolff, S.; Klatt, S.; Schermuly, R.T. Effects of inducible nitric oxide synthase inhibition or norepinephrine on the neurovascular coupling in an endotoxic rat shock model. Crit. Care 2009, 13, R139. [Google Scholar] [CrossRef] [Green Version]
- Bermeo-Ovalle, A. Who Will Develop Epilepsy Following Hospital Discharge? Think Again. Epilepsy Curr. 2018, 18, 153–155. [Google Scholar] [CrossRef] [Green Version]
- Crawshaw, A.A.; Cock, H.R. Medical management of status epilepticus: Emergency room to intensive care unit. Seizure 2020, 75, 145–152. [Google Scholar] [CrossRef]
- Strein, M.; Holton-Burke, J.P.; Smith, L.R.; Brophy, G.M. Prevention, Treatment, and Monitoring of Seizures in the Intensive Care Unit. J. Clin. Med. 2019, 8, 1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alldredge, B.K.; Gelb, A.M.; Isaacs, S.M.; Corry, M.D.; Allen, F.; Ulrich, S.; Gottwald, M.D.; O’Neil, N.; Neuhaus, J.M.; Segal, M.R.; et al. A comparison of lorazepam, diazepam, and placebo for the treatment of out-of-hospital status epilepticus. N. Engl. J. Med. 2001, 345, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.; Krishnan, P.R.; Sequeira, R.; Al-Roomi, K. Anticonvulsant therapy for status epilepticus. Cochrane. Database Syst. Rev. 2014, 9, CD003723. [Google Scholar] [CrossRef]
- Farrokh, S.; Tahsili-Fahadan, P.; Ritzl, E.K.; Lewin, J.J., 3rd; Mirski, M.A. Antiepileptic drugs in critically ill patients. Crit. Care 2018, 22, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hönack, D.; Löscher, W. Intravenous valproate: Onset and duration of anticonvulsant activity against a series of electroconvulsions in comparison with diazepam and phenytoin. Epilepsy Res. 1992, 13, 215–221. [Google Scholar] [CrossRef]
- Löscher, W.; Gillard, M.; Sands, Z.A.; Kaminski, R.M.; Klitgaard, H. Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs 2016, 30, 1055–1077. [Google Scholar] [CrossRef] [Green Version]
- Satake, S.; Saitow, F.; Rusakov, D.; Konishi, S. AMPA receptor-mediated presynaptic inhibition at cerebellar GABAergic synapses: A characterization of molecular mechanisms. Eur. J. Neurosci. 2004, 19, 2464–2474. [Google Scholar] [CrossRef]
- Sutter, R.; Marsch, S.; Rüegg, S. Safety and efficacy of intravenous lacosamide for adjunctive treatment of refractory status epilepticus: A comparative cohort study. CNS Drugs 2013, 27, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Husain, A.M.; Lee, J.W.; Kolls, B.J.; Hirsch, L.J.; Halford, J.J.; Gupta, P.K.; Minazad, Y.; Jones, J.M.; La Roche, S.M.; Herman, S.T. Critical Care EEG Monitoring Research Consortium. Randomized trial of lacosamide versus fosphenytoin for nonconvulsive seizures. Ann. Neurol. 2018, 83, 1174–1185. [Google Scholar] [CrossRef]
- Ohmori, H.; Sato, Y.; Namiki, A. The anticonvulsant action of propofol on epileptiform activity in rat hippocampal slices. Anesth Analg 2004, 99, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Kamdar, H.A.; Hamed, M.; Smetana, K.S.; Shanmugam, K.; Peters, E.; Yasin, R.; Thakur, G.; Gopal, M.; Sawalha, K.; Greene-Chandos, D.; et al. Lorazepam timing for acute convulsive seizure control (LoTASC). Seizure 2020, 83, 41–47. [Google Scholar] [CrossRef]
- Hocker, S.E.; Britton, J.W.; Mandrekar, J.N.; Wijdicks, E.F.M.; Rabinstein, A.A. Predictors of outcome in refractory status epilepticus. JAMA Neurol. 2013, 70, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Claassen, J.; Hirsch, L.J.; Emerson, R.G.; Mayer, S.A. Treatment of refractory status epilepticus with pentobarbital, propofol, or midazolam: A systematic review. Epilepsia 2002, 43, 146–153. [Google Scholar] [CrossRef]
- Park, K.M.; Kim, S.E.; Lee, B.I. Antiepileptic Drug Therapy in Patients with Drug-Resistant Epilepsy. J. Epilepsy Res. 2019, 9, 14–26. [Google Scholar] [CrossRef]
- Pisani, F.; Oteri, G.; Costa, C.; Di Raimondo, G.; Di Perri, R. Effects of psychotropic drugs on seizure threshold. Drug Saf. 2002, 25, 91–110. [Google Scholar] [CrossRef]
- LaRoche, S.M. Seizures and encephalopathy. Semin. Neurol. 2011, 31, 194–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruhatiya, R.S.; Adukia, S.A.; Manjunath, R.B.; Maheshwarappa, H.M. Current Status and Recommendations in Multimodal Neuromonitoring. Indian J. Crit. Care Med. 2020, 24, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Claassen, J.; Vespa, P. Participants in the international multi-disciplinary consensus conference on multimodality monitoring. Electrophysiologic monitoring in acute brain injury. Neurocrit Care 2014, 21 (Suppl. 2), S129–S147. [Google Scholar] [CrossRef]
- Laccheo, I.; Sonmezturk, H.; Bhatt, A.B.; Tomycz, L.; Shi, Y.; Ringel, M.; DiCarlo, G.; Harris, D.; Barwise, J.; Abou-Khalil, B.; et al. Non-convulsive status epilepticus and non-convulsive seizures in neurological ICU patients. Neurocrit. Care 2015, 22, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Szaflarski, J.P.; Rackley, A.Y.; Kleindorfer, D.O.; Khoury, J.; Woo, D.; Miller, R.; Alwell, K.; Broderick, J.P.; Kissela, B.M. Incidence of seizures in the acute phase of stroke: A population-based study. Epilepsia 2008, 49, 974–981. [Google Scholar] [CrossRef]
- Gavvala, J.; Abend, N.; La Roche, S.; Hahn, C.; Herman, S.T.; Claassen, J.; Macken, M.; Schuele, S.; Gerard, E. Critical Care EEG Monitoring Research Consortium (CCEMRC). Continuous EEG monitoring: A survey of neurophysiologists and neurointensivists. Epilepsia 2014, 55, 1864–1871. [Google Scholar] [CrossRef]
I.V. Dose | Onset Time Duration | Protein Binding Half Life | Metabolism and Elimination | Complications | |
---|---|---|---|---|---|
Lacosamide [55,56] | 100–200 mg/day | 1–4 h (time to peak) | <15% T1/2 = 13 h | Hepatic via CYP2C19, 40% unchanged drug 95% renal | dizziness, nausea, blurred vision, and imbalance, atrial flutter, PQ interval prolongation and AV-block) |
Levetiracetam [50] | 3000 mg or 60 mg/kg 2–5 mg/kg/min | 5–30 min | <10% T1/2 = 6–8 h | Non-hepatic hydrolysis ~66% renal as unchanged drug | Agitation, irritability, psychotic symptoms |
Lorazepam [48,49] | 0.1-mg/kg | 1–5 min 12–24 h | ~91% 12–18 h | Hepatic; rapidly conjugated to inactive metabolite ~88% renal as inactive metabolites | Respiratory depression, Hypotension |
Midazolam [48,49] | 0.02–0.3 mg/kg 0.05–0.1 mg/Kg/h | 2 min 1–6 h | ~97% T1/2 = 3 h | Extensively hepatic CYP3A4; 60% to 70%to active metabolite ~90% renal as metabolites | Respiratory depression, hypotension |
Phenytoin [51] | PE 20 mg/kg at 150 mg/kg/min PE 20 mg/kg at 50 mg/min | 10–30 min 24 h | 90–95% T1/2 = 7–42 h | Fos: Prodrug, rapidly hydrolyzed to phenytoin. Hepatic via CYP2C9, 2C19, 3A4 <5% renal as Phenytoin metabolites | Hypotension, phlebitis, cardiac arrhythmias. |
Propofol [57] | 1–2 mg/kg 20–80 mcg/kg/min | 15–30 s | 97–99% T1/2 = 40 min § | Hepatic to water-soluble sulfate and glucuronide conjugates ~90% renal as metabolites | Respiratory depression hypotension, PRIS |
Thiopental [54] | 3–5 mg/Kg 2–10 mg/Kg/h | 30–40 s 5–10 min | 80% T1/2 = 12 h | Hepatic metabolized to pentobarbital Renal | Respiratory depression |
Valproic Acid [52] | 20–40 mg/kg 3–6 mg/Kg/min | 30 s | 80–90% T1/2 = 9–19 h | Hepatic via glucuronide conjugation and mitochondrial beta-oxidation 50–80% renal | Hepatotoxicity, pancreatitis, thrombocytopenia, hyperammonemia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alessandri, F.; Badenes, R.; Bilotta, F. Seizures and Sepsis: A Narrative Review. J. Clin. Med. 2021, 10, 1041. https://doi.org/10.3390/jcm10051041
Alessandri F, Badenes R, Bilotta F. Seizures and Sepsis: A Narrative Review. Journal of Clinical Medicine. 2021; 10(5):1041. https://doi.org/10.3390/jcm10051041
Chicago/Turabian StyleAlessandri, Francesco, Rafael Badenes, and Federico Bilotta. 2021. "Seizures and Sepsis: A Narrative Review" Journal of Clinical Medicine 10, no. 5: 1041. https://doi.org/10.3390/jcm10051041
APA StyleAlessandri, F., Badenes, R., & Bilotta, F. (2021). Seizures and Sepsis: A Narrative Review. Journal of Clinical Medicine, 10(5), 1041. https://doi.org/10.3390/jcm10051041