Time Is Brain: Acute Control of Repetitive Seizures and Status Epilepticus Using Alternative Routes of Administration of Benzodiazepines
Abstract
:1. Introduction
2. Benzodiazepine Routes of Administration and Pharmacotherapeutic Considerations
3. Pharmacokinetic and Pharmacodynamic Properties
4. Administration Route Comparisons
5. Evidence for Routes of Administration
6. Benzodiazepine Routes and Adverse Events
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Towne, A.R.; Pellock, J.M.; Ko, D.; DeLorenzo, R.J. Determinants of mortality in status epilepticus. Epilepsia 1994, 35, 27–34. [Google Scholar] [CrossRef]
- Logsdail, S.J.; Toone, B.K. Post-ictal psychoses. A clinical and phenomenological description. Br. J. Psychiatry J. Ment. Sci. 1988, 152, 246–252. [Google Scholar] [CrossRef]
- Haut, S.R.; Shinnar, S.; Moshé, S.L. Seizure clustering: Risks and outcomes. Epilepsia 2005, 46, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Haut, S.R.; Shinnar, S.; Moshé, S.L.; O’Dell, C.; Legatt, A.D. The association between seizure clustering and convulsive status epilepticus in patients with intractable complex partial seizures. Epilepsia 1999, 40, 1832–1834. [Google Scholar] [CrossRef] [PubMed]
- Sutter, R.; Dittrich, T.; Semmlack, S.; Rüegg, S.; Marsch, S.; Kaplan, P.W. Acute systemic complications of convulsive status epilepticus—A systematic review. Crit. Care Med. 2018, 46, 138–145. [Google Scholar] [CrossRef]
- Sillanpää, M.; Schmidt, D. Seizure clustering during drug treatment affects seizure outcome and mortality of childhood-onset epilepsy. Brain J. Neurol. 2008, 131, 938–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alldredge, B.K.; Gelb, A.M.; Isaacs, S.M.; Corry, M.D.; Allen, F.; Ulrich, S.; Gottwald, M.D.; O’Neil, N.; Neuhaus, J.M.; Segal, M.R.; et al. A comparison of lorazepam, diazepam, and placebo for the treatment of out-of-hospital status epilepticus. N. Engl. J. Med. 2001, 345, 631–637. [Google Scholar] [CrossRef]
- Silbergleit, R.; Lowenstein, D.; Durkalski, V.; Conwit, R. Lessons from the RAMPART study—And which is the best route of administration of benzodiazepines in status epilepticus. Epilepsia 2013, 54, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Brophy, G.M.; Bell, R.; Claassen, J.; Alldredge, B.; Bleck, T.P.; Glauser, T.; Laroche, S.M.; Riviello, J.J.; Shutter, L.; Sperling, M.R.; et al. Neurocritical care society status epilepticus guideline writing committee. Guidelines for the evaluation and management of status epilepticus. Neurocrit. Care 2012, 17, 3–23. [Google Scholar] [CrossRef]
- Glauser, T.; Shinnar, S.; Gloss, D.; Alldredge, B.; Arya, R.; Bainbridge, J.; Bare, M.; Bleck, T.; Dodson, W.E.; Garrity, L.; et al. Evidence-based guideline: Treatment of convulsive status epilepticus in children and adults: Report of the guideline committee of the American epilepsy society. Epilepsy Curr. 2016, 16, 48–61. [Google Scholar] [CrossRef] [Green Version]
- García-López, B.; Gómez-Menéndez, A.I.; Vázquez-Sánchez, F.; Pérez-Cabo, E.; Isidro-Mesas, F.; Zabalegui-Pérez, A.; Muñoz-Siscart, I.; Lloria-Gil, M.C.; Soto-Cámara, R.; González-Bernal, J.J.; et al. Electroconvulsive therapy in super refractory status epilepticus: Case series with a defined protocol. Int. J. Environ. Res. Public Health 2020, 17, 4023. [Google Scholar] [CrossRef] [PubMed]
- Silbergleit, R.; Durkalski, V.; Lowenstein, D.; Conwit, R.; Pancioli, A.; Palesch, Y.; Barsan, W. Intramuscular versus intravenous therapy for prehospital status epilepticus. N. Engl. J. Med. 2012, 366, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Riva, A.; Iapadre, G.; Grasso, E.A.; Balagura, G.; Striano, P.; Verrotti, A. Intramuscular midazolam for treatment of status epilepticus. Expert Opin. Pharmacother. 2021, 22, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Leppik, I.E.; Patel, S.I. Intramuscular and rectal therapies of acute seizures. Epilepsy Behav. 2015, 49, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Nunley, S.; Glynn, P.; Rust, S.; Vidaurre, J.; Albert, D.V.F.; Patel, A.D. A hospital-based study on caregiver preferences on acute seizure rescue medications in pediatric patients with epilepsy: Intranasal midazolam versus rectal diazepam. Epilepsy Behav. 2019, 92, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Holsti, M.; Dudley, N.; Schunk, J.; Adelgais, K.; Greenberg, R.; Olsen, C.; Healy, A.; Firth, S.; Filloux, F. Intranasal midazolam vs. rectal diazepam for the home treatment of acute seizures in pediatric patients with epilepsy. Arch. Pediatr. Adolesc. Med. 2010, 164, 747–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, R.; Cardozo, A.; Homer, J.J. The assessment of topical nasal drug distribution. Clin. Otolaryngol. Allied Sci. 2004, 29, 201–205. [Google Scholar] [CrossRef]
- Verrotti, A.; Ambrosi, M.; Pavone, P.; Striano, P. Pediatric status epilepticus: Improved management with new drug therapies? Expert Opin. Pharmacother. 2017, 18, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Ativan Lorazepam Injection. Available online: https://webcache.googleusercontent.com/search?q=cache:OLkMdcRKnCMJ:https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/018140s028lbl.pdf+&cd=2&hl=en&ct=clnk&gl=us (accessed on 6 January 2021).
- Lorazepam Sublingual. Available online: https://webcache.googleusercontent.com/search?q=cache:WtnjCzWC-UMJ:https://pdf.hres.ca/dpd_pm/00043297.PDF+&cd=1&hl=en&ct=clnk&gl=us (accessed on 6 January 2021).
- Diazepam Injection. Available online: https://webcache.googleusercontent.com/search?q=cache:GOD94rHmAFQJ:https://dailymed.nlm.nih.gov/dailymed/getFile.cfm%3Fsetid%3D7e7dd743-a87b-4ab3-b6aef116cd0c8b0f%26type%3Dpdf+&cd=1&hl=en&ct=clnk&gl=us (accessed on 6 January 2021).
- Diazepam Autoinjector. Available online: https://webcache.googleusercontent.com/search?q=cache:FqjhdOrTluIJ:https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020124s032lbl.pdf+&cd=2&hl=en&ct=clnk&gl=us (accessed on 6 January 2021).
- Diazepam Spray. Available online: https://webcache.googleusercontent.com/search?q=cache:miXzrZfiKT0J:https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211635s000lbl.pdf+&cd=1&hl=en&ct=clnk&gl=us (accessed on 6 January 2021).
- Diazepam Rectal Gel. Available online: https://webcache.googleusercontent.com/search?q=cache:tIv2r_q-h-cJ:https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020648s014lbl.pdf+&cd=1&hl=en&ct=clnk&gl=us (accessed on 6 January 2021).
- Midazolam Buccal. Available online: https://www.medicines.org.uk/emc/product/2768/smpc (accessed on 21 December 2020).
- Midazolam Injection. Available online: https://webcache.googleusercontent.com/search?q=cache:z54yylc3GggJ:https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208878Orig1s000lbl.pdf+&cd=1&hl=en&ct=clnk&gl=us (accessed on 6 January 2021).
- Midazolam Spray. Available online: https://webcache.googleusercontent.com/search?q=cache:euZ4ObhBXBUJ:https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211321s000lbl.pdf+&cd=3&hl=en&ct=clnk&gl=us (accessed on 6 January 2021).
- Lorazepam Oral Concentrate. Available online: https://webcache.googleusercontent.com/search?q=cache:cHA5Mir_I-AJ:https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/079244lbl.pdf+&cd=4&hl=en&ct=clnk&gl=us (accessed on 8 February 2021).
- Lorazepam (ATIVAN®), Oral and Sublingual Tablets. Available online: https://webcache.googleusercontent.com/search?q=cache:zFODuferX1QJ:https://www.pfizer.ca/sites/default/files/201902/ATIVAN_PM_E_221513_31Jan2019.pdf+&cd=15&hl=en&ct=clnk&gl=us (accessed on 8 February 2021).
- Clobazam Oral Film. Available online: https://webcache.googleusercontent.com/search?q=cache:xLHiPiznBtQJ:https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210833s000lbl.pdf+&cd=1&hl=en&ct=clnk&gl=us (accessed on 12 April 2021).
- Clobazam Oral Suspension_Onfi®. Available online: https://webcache.googleusercontent.com/search?q=cache:CGEpOsU2kbcJ:https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/202067s004lbl.pdf+&cd=1&hl=en&ct=clnk&gl=us (accessed on 12 April 2021).
- Scott, R.C.; Besag, F.M.; Boyd, S.G.; Berry, D.; Neville, B.G. Buccal absorption of midazolam: Pharmacokinetics and EEG pharmacodynamics. Epilepsia 1998, 39, 290–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muchohi, S.N.; Kokwaro, G.O.; Ogutu, B.R.; Edwards, G.; Ward, S.A.; Newton, C.R.J.C. Pharmacokinetics and clinical efficacy of midazolam in children with severe malaria and convulsions. Br. J. Clin. Pharmacol. 2008, 66, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Schwagmeier, R.; Alincic, S.; Striebel, H.W. Midazolam pharmacokinetics following intravenous and buccal administration. Br. J. Clin. Pharmacol. 1998, 46, 203–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aquestive Therapeutics. ClinicalTrials.gov. Safety and Tolerability Study of Chronic Intermittent Use of Diazepam Buccal Soluble Film (DBSF) in Pediatric, Adolescent and Adult Subjects with Epilepsy; National Library of Medicine: Bethesda, MD, USA, 2020.
- Arendt, R.M.; Greenblatt, D.J.; De Jong, R.H.; Bonin, J.D.; Abernethy, D.R.; Ehrenberg, B.L.; Giles, H.G.; Sellers, E.M.; Shader, R.I. In vitro correlates of benzodiazepine cerebrospinal fluid uptake, pharmacodynamic action and peripheral distribution. J. Pharmacol. Exp. Ther. 1983, 227, 98–106. [Google Scholar] [PubMed]
- Greenblatt, D.J.; Arendt, R.M.; Abernethy, D.R.; Giles, H.G.; Sellers, E.M.; Shader, R.I. In vitro quantitation of benzodiazepine lipophilicity: Relation to in vivo distribution. Br. J. Anaesth. 1983, 55, 985–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaltonen, L.; Kanto, J.; Salo, M. Cerebrospinal fluid concentrations and serum protein binding of lorazepam and its conjugate. Acta Pharmacol. Toxicol. 1980, 46, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab. 2008, 9, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Hogan, R.E.; Gidal, B.E.; Koplowitz, B.; Koplowitz, L.P.; Lowenthal, R.E.; Carrazana, E. Bioavailability and safety of diazepam intranasal solution compared to oral and rectal diazepam in healthy volunteers. Epilepsia 2020, 61, 455–464. [Google Scholar] [CrossRef]
- Chiaretti, A.; Barone, G.; Rigante, D.; Ruggiero, A.; Pierri, F.; Barbi, E.; Barone, G.; Riccardi, R. Intranasal lidocaine and midazolam for procedural sedation in children. Arch. Dis. Child. 2011, 96, 160–163. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Shader, R.I.; Franke, K.; MacLaughlin, D.S.; Harmatz, J.S.; Allen, M.D.; Werner, A.; Woo, E. Pharmacokinetics and bioavailability of intravenous, intramuscular, and oral lorazepam in humans. J. Pharm. Sci. 1979, 68, 57–63. [Google Scholar] [CrossRef]
- Wermeling, D.P.; Miller, J.L.; Archer, S.M.; Manaligod, J.M.; Rudy, A.C. Bioavailability and pharmacokinetics of lorazepam after intranasal, intravenous, and intramuscular administration. J. Clin. Pharmacol. 2001, 41, 1225–1231. [Google Scholar] [CrossRef] [Green Version]
- Lamson, M.J.; Sitki-Green, D.; Wannarka, G.L.; Mesa, M.; Andrews, P.; Pellock, J. Pharmacokinetics of diazepam administered intramuscularly by autoinjector versus rectal gel in healthy subjects: A phase I, randomized, open-label, single-dose, crossover, single-centre study. Clin. Drug Investig. 2011, 31, 585–597. [Google Scholar] [CrossRef]
- Gizurarson, S.; Gudbrandsson, F.K.; Jónsson, H.; Bechgaard, E. Intranasal administration of diazepam aiming at the treatment of acute seizures: Clinical trials in healthy volunteers. Biol. Pharm. Bull. 1999, 22, 425–427. [Google Scholar] [CrossRef] [Green Version]
- Björkman, S.; Rigemar, G.; Idvall, J. Pharmacokinetics of midazolam given as an intranasal spray to adult surgical patients. Br. J. Anaesth. 1997, 79, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Veldhorst-Janssen, N.M.L.; Fiddelers, A.A.A.; van der Kuy, P.-H.M.; Neef, C.; Marcus, M.A.E. A review of the clinical pharmacokinetics of opioids, benzodiazepines, and antimigraine drugs delivered intranasally. Clin. Ther. 2009, 31, 2954–2987. [Google Scholar] [CrossRef]
- Allonen, H.; Ziegler, G.; Klotz, U. Midazolam kinetics. Clin. Pharmacol. Ther. 1981, 30, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Horn, E.; Nesbit, S.A. Pharmacology and pharmacokinetics of sedatives and analgesics. Gastrointest. Endosc. Clin. N. Am. 2004, 14, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Von Blomberg, A.; Kay, L.; Knake, S.; Fuest, S.; Zöllner, J.P.; Reif, P.S.; Herrmann, E.; Balaban, Ü.; Schubert-Bast, S.; Rosenow, F.; et al. Efficacy, tolerability, and safety of concentrated intranasal midazolam spray as emergency medication in epilepsy patients during video-EEG monitoring. CNS Drugs 2020, 34, 545–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, Y.; Collins, S.D. Clobazam. Neurotherapeutics 2007, 4, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T.; Tamai, H.; Hanaoka, K. Serum and cerebrospinal fluid concentrations of midazolam after epidural administration in dogs. Anesth. Analg. 2003, 96, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Kanto, J.; Kangas, L.; Siirtola, T. Cerebrospinal-fluid concentrations of diazepam and its metabolites in man. Acta Pharmacol. Toxicol. 1975, 36, 328–334. [Google Scholar] [CrossRef]
- Arroliga, A.C.; Shehab, N.; McCarthy, K.; Gonzales, J.P. Relationship of continuous infusion lorazepam to serum propylene glycol concentrations in critically ill adults. Crit. Care Med. 2004, 32, 1709–1714. [Google Scholar] [CrossRef]
- Jain, K.K. Drug delivery systems—An overview. In Drug Delivery Systems; Methods in Molecular BiologyTM; Jain, K.K., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 1–50. [Google Scholar] [CrossRef]
- Polania Gutierrez, J.J.; Munakomi, S. Intramuscular Injection; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Soliman, E.; Ranjan, S.; Xu, T.; Gee, C.; Harker, A.; Barrera, A.; Geddes, J. A narrative review of the success of intramuscular gluteal injections and its impact in psychiatry. Bio Des. Manuf. 2018, 1, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. 2018, 143, 155–170. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Thorne, R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012, 64, 614–628. [Google Scholar] [CrossRef]
- Chinna Reddy, P.; Chaitanya, K.S.C.; Madhusudan Rao, Y. A review on bioadhesive buccal drug delivery systems: Current status of formulation and evaluation methods. DARU J. Pharm. Sci. 2011, 19, 385–403. [Google Scholar]
- Pather, S.I.; Rathbone, M.J.; Senel, S. Current status and the future of buccal drug delivery systems. Expert Opin. Drug Deliv. 2008, 5, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.K. An overview of drug delivery systems. In Drug Delivery Systems; Methods in Molecular Biology; Jain, K.K., Ed.; Springer: New York, NY, USA, 2020; pp. 1–54. [Google Scholar] [CrossRef]
- Löscher, W.; Rundfeldt, C.; Hönack, D.; Ebert, U. Long-term studies on anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. I. Comparison of diazepam, clonazepam, clobazam and abecarnil. J. Pharmacol. Exp. Ther. 1996, 279, 561–572. [Google Scholar]
- Rundfeldt, C.; Wlaź, P.; Hönack, D.; Löscher, W. Anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. Comparison of diazepam, bretazenil and abecarnil. J. Pharmacol. Exp. Ther. 1995, 275, 693–702. [Google Scholar] [PubMed]
- Chan, V.O.; Colville, J.; Persaud, T.; Buckley, O.; Hamilton, S.; Torreggiani, W.C. Intramuscular injections into the buttocks: Are they truly intramuscular? Eur. J. Radiol. 2006, 58, 480–484. [Google Scholar] [CrossRef]
- Inokuchi, R.; Ohashi-Fukuda, N.; Nakamura, K.; Wada, T.; Gunshin, M.; Kitsuta, Y.; Nakajima, S.; Yahagi, N. Comparison of intranasal and intravenous diazepam on status epilepticus in stroke patients: A retrospective cohort study. Medicine 2015, 94, e555. [Google Scholar] [CrossRef]
- Jain, P.; Sharma, S.; Dua, T.; Barbui, C.; Das, R.R.; Aneja, S. Efficacy and safety of anti-epileptic drugs in patients with active convulsive seizures when no IV access is available: Systematic review and meta-analysis. Epilepsy Res. 2016, 122, 47–55. [Google Scholar] [CrossRef]
- Tonekaboni, S.-H.; Shamsabadi, F.M.; Anvari, S.-S.; Mazrooei, A.; Ghofrani, M. A comparison of buccal midazolam and intravenous diazepam for the acute treatment of seizures in children. Iran. J. Pediatr. 2012, 22, 303–308. [Google Scholar]
- Talukdar, B.; Chakrabarty, B. Efficacy of buccal midazolam compared to intravenous diazepam in controlling convulsions in children: A randomized controlled trial. Brain Dev. 2009, 31, 744–749. [Google Scholar] [CrossRef]
- Rogawski, M.A.; Heller, A.H.; Farrow, S.; Jung, C.; Klein, P.; Boudreault, S.; Slatko, G. Pharmacokinetics of diazepam buccal film in adult patients with epilepsy: Comparison with diazepam rectal gel (4437). Neurology 2020, 94, 4437. [Google Scholar]
- Rogawski, M.A.; Heller, A.H. Diazepam buccal film for the treatment of acute seizures. Epilepsy Behav. 2019, 101, 106537. [Google Scholar] [CrossRef] [Green Version]
- Troester, M.M.; Hastriter, E.V.; Ng, Y.-T. Dissolving oral clonazepam wafers in the acute treatment of prolonged seizures. J. Child Neurol. 2010. [Google Scholar] [CrossRef]
- Malu, C.K.K.; Kahamba, D.M.; Walker, T.D.; Mukampunga, C.; Musalu, E.M.; Kokolomani, J.; Mayamba, R.M.K.; Wilmshurst, J.M.; Dubru, J.-M.; Misson, J.-P. Efficacy of sublingual lorazepam versus intrarectal diazepam for prolonged convulsions in Sub-Saharan Africa. J. Child Neurol. 2014, 29, 895–902. [Google Scholar] [CrossRef]
- Haan, G.-J.D.; Geest, P.V.D.; Doelman, G.; Bertram, E.; Edelbroek, P. A comparison of midazolam nasal spray and diazepam rectal solution for the residential treatment of seizure exacerbations. Epilepsia 2010, 51, 478–482. [Google Scholar] [CrossRef]
- Momen, A.A.; Azizi Malamiri, R.; Nikkhah, A.; Jafari, M.; Fayezi, A.; Riahi, K.; Maraghi, E. Efficacy and safety of intramuscular midazolam versus rectal diazepam in controlling status epilepticus in children. Eur. J. Paediatr. Neurol. 2015, 19, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Nakken, K.O.; Lossius, M.I. Buccal midazolam or rectal diazepam for treatment of residential adult patients with serial seizures or status epilepticus. Acta Neurol. Scand. 2011, 124, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Conry, J.A.; Ng, Y.-T.; Paolicchi, J.M.; Kernitsky, L.; Mitchell, W.G.; Ritter, F.J.; Collins, S.D.; Tracy, K.; Kormany, W.N.; Abdulnabi, R.; et al. Clobazam in the treatment of lennox-gastaut syndrome. Epilepsia 2009, 50, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Feely, M.; Calvert, R.; Gibson, J. Clobazam in catamenial epilepsy. A model for evaluating anticonvulsants. Lancet 1982, 2, 71–73. [Google Scholar] [CrossRef]
- Welch, R.D.; Nicholas, K.; Durkalski-Mauldin, V.L.; Lowenstein, D.H.; Conwit, R.; Mahajan, P.V.; Lewandowski, C.; Silbergleit, R. Neurological emergencies treatment trials (NETT) network investigators. Intramuscular midazolam versus intravenous lorazepam for the prehospital treatment of status epilepticus in the pediatric population. Epilepsia 2015, 56, 254–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portela, J.L.; Garcia, P.C.R.; Piva, J.P.; Barcelos, A.; Bruno, F.; Branco, R.; Tasker, R.C. Intramuscular midazolam versus intravenous diazepam for treatment of seizures in the pediatric emergency department: A randomized clinical trial. Med. Intensiva 2015, 39, 160–166. [Google Scholar] [CrossRef]
- Naylor, D.E.; Liu, H.; Wasterlain, C.G. Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J. Neurosci. 2005, 25, 7724–7733. [Google Scholar] [CrossRef]
- Goodkin, H.P.; Yeh, J.-L.; Kapur, J. Status epilepticus increases the intracellular accumulation of GABAA receptors. J. Neurosci. 2005, 25, 5511–5520. [Google Scholar] [CrossRef] [Green Version]
- Gaínza-Lein, M.; Sánchez Fernández, I.; Jackson, M.; Abend, N.S.; Arya, R.; Brenton, J.N.; Carpenter, J.L.; Chapman, K.E.; Gaillard, W.D.; Glauser, T.A.; et al. Pediatric status epilepticus research group. Association of time to treatment with short-term outcomes for pediatric patients with refractory convulsive status epilepticus. JAMA Neurol. 2018, 75, 410–418. [Google Scholar] [CrossRef]
- Wheless, J.W.; Meng, T.-C.; van Ess, P.J.; Detyniecki, K.; Sequeira, D.J.; Pullman, W.E. Safety and efficacy of midazolam nasal spray in the outpatient treatment of patients with seizure clusters: An open-label extension trial. Epilepsia 2019, 60, 1809–1819. [Google Scholar] [CrossRef]
- Treiman, D.M.; Meyers, P.D.; Walton, N.Y.; Collins, J.F.; Colling, C.; Rowan, A.J.; Handforth, A.; Faught, E.; Calabrese, V.P.; Uthman, B.M.; et al. A comparison of four treatments for generalized convulsive status epilepticus. Veterans affairs status epilepticus cooperative study group. N. Engl. J. Med. 1998, 339, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Leppik, I.E.; Derivan, A.T.; Homan, R.W.; Walker, J.; Ramsay, R.E.; Patrick, B. Double-blind study of lorazepam and diazepam in status epilepticus. JAMA 1983, 249, 1452–1454. [Google Scholar] [CrossRef]
- Sreenath, T.G.; Gupta, P.; Sharma, K.K.; Krishnamurthy, S. Lorazepam versus diazepam-phenytoin combination in the treatment of convulsive status epilepticus in children: A randomized controlled trial. Eur. J. Paediatr. Neurol. 2010, 14, 162–168. [Google Scholar] [CrossRef]
- Appleton, R.; Sweeney, A.; Choonara, I.; Robson, J.; Molyneux, E. Lorazepam versus diazepam in the acute treatment of epileptic seizures and status epilepticus. Dev. Med. Child Neurol. 1995, 37, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Baysun, S.; Aydin, O.F.; Atmaca, E.; Gürer, Y.K.Y. A comparison of buccal midazolam and rectal diazepam for the acute treatment of seizures. Clin. Pediatr. 2005, 44, 771–776. [Google Scholar] [CrossRef]
- McIntyre, J.; Robertson, S.; Norris, E.; Appleton, R.; Whitehouse, W.P.; Phillips, B.; Martland, T.; Berry, K.; Collier, J.; Smith, S.; et al. Safety and efficacy of buccal midazolam versus rectal diazepam for emergency treatment of seizures in children: A randomised controlled trial. Lancet Lond. Engl. 2005, 366, 205–210. [Google Scholar] [CrossRef]
- Mpimbaza, A.; Ndeezi, G.; Staedke, S.; Rosenthal, P.J.; Byarugaba, J. Comparison of buccal midazolam with rectal diazepam in the treatment of prolonged seizures in Ugandan children: A randomized clinical trial. Pediatrics 2008, 121, e58–e64. [Google Scholar] [CrossRef] [PubMed]
- Cereghino, J.J.; Mitchell, W.G.; Murphy, J.; Kriel, R.L.; Rosenfeld, W.E.; Trevathan, E. Treating repetitive seizures with a rectal diazepam formulation: A randomized study. The North American diastat study group. Neurology 1998, 51, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Dreifuss, F.E.; Rosman, N.P.; Cloyd, J.C.; Pellock, J.M.; Kuzniecky, R.I.; Lo, W.D.; Matsuo, F.; Sharp, G.B.; Conry, J.A.; Bergen, D.C.; et al. A comparison of rectal diazepam gel and placebo for acute repetitive seizures. N. Engl. J. Med. 1998, 338, 1869–1875. [Google Scholar] [CrossRef] [Green Version]
- Kutlu, N.O.; Dogrul, M.; Yakinci, C.; Soylu, H. Buccal midazolam for treatment of prolonged seizures in children. Brain Dev. 2003, 25, 275–278. [Google Scholar] [CrossRef]
Agent | Routes of Administration | FDA Indications | Other Considerations | Cost (AWP) |
---|---|---|---|---|
Lorazepam | (IV, IM, IN, SL, Oral solution) | IV approved for status epilepticus Other routes used off-label for acute active seizure | IV solution contains propylene glycol IM onset of action is variable [14] SL not available in the US | Ativan®—IV/IM: USD 2.28/2 mg vial Lorazepam—IV/IM: USD 0.60–4/2 mg vial Ativan Intensol®—Oral solution: USD 1.60/2 mg |
Diazepam | (IV, IM, PR, IN) | IV approved for status epilepticus IV and rectal approved for acute seizure activity IN approved for acute repetitive seizures IM autoinjector approved for the US military use; however, not commercially available | IV solution contains propylene glycol IM onset of action variable [14] | Diazepam—IV/IM: USD 11–16/5 mg Diastat®—PR: USD 421/10 mg Valtoco®—IN: USD 336/5 mg |
Midazolam | (IV, IM, buccal, IN) | IN approved for acute repetitive seizures Other routes used off-label for status epilepticus or other seizure types | Buccal not commercially available in the US | Midazolam—IV/IM: USD 3.43/5 mg Nayzilam®—IN: USD 330/5 mg |
Clobazam | (Oral: tablet, film, susp.) | Approved for Lennox-Gastaut as an adjunctive therapy Other indications used off-label for catamenial epilepsy, refractory seizures, and recurrent seizures | All oral forms are available in the US | Sympazan®—oral film: USD 17.22/5 mg Onfi®—oral suspension: USD 12.67/2.5 mg |
Agent | Dose (maximum) | Route | Onset (min) | Duration of Action | Bioavailability (%) | Volume of Distribution (L/kg) | Metabolism | Excretion | T1/2 (h) |
---|---|---|---|---|---|---|---|---|---|
Lorazepam (Ativan® Injection) | 0.1 mg/kg (4 mg) | IV | 1.6 | 4–6 h | 100 | 1.3 | Liver to inactive metabolites | Hepatic metabolism to inactive metabolites | 12 |
- | IM | 12–19 | 83–100 | ||||||
Lorazepam (Ativan Intensol®) | 0.1 mg/kg (4 mg) | SL | Readily | - | 90 | ||||
Lorazepam (Ativan® Sublingual tablets) * | 0.1 mg/kg (4 mg) | SL | 15–17 | - | >90 | ||||
Midazolam (Versed®) | 0.2 mg/kg (10 mg) | IV | 1.5–2.5 | 30–80 min | 100 | 1–3 | CYP3A4 to active metabolite | Renal | 3–4 |
Midazolam (Versed®) | 0.2 mg/kg (10 mg) | IM | 5–15 | 2–6 h | >90 | 3–5 | |||
Midazolam (Nayzilam®) | 0.2 mg/kg (15 mg) | IN | 3–10 | 23 min | 44 | 2–6 | |||
Midazolam | 0.2 mg/kg (15 mg) | IV injection given IN | 6–14 | - | 44–83 | 2–4 | |||
Midazolam (Buccolam®, Epistatus®) * | 0.5 mg/kg (30 mg) | Buccal | 5–15 | - | 75–87 | 3–4 | |||
Midazolam (Versed®) | 0.5 mg/kg (30 mg) | IV injection given Buccal | ~15 | - | 75 | - | |||
Diazepam (Valium®) | 0.15 mg/kg (10 mg) | IV | 1–3 | 15–30 min | 100 | 0.8–1.2 | CYP2C19 and CYP3A4 to active metabolites | Renal | 33–45 |
Diazepam (Valium®) | - | IM | ~15 | - | >90 | 60–72 | |||
Diazepam (Valtoco®) | 0.2 mg/kg (20 mg) | IN | 2–10 | 15–30 min | 97 | ~49 | |||
Diazepam | 0.2 mg/kg (20 mg) | IV injection given IN | 1–10 | - | Up to 74 | 17–33 | |||
Diazepam (Diastat®) | 0.2 mg/kg (20 mg) | PR | 2–10 | 15–30 min | 90 | ~46 | |||
Clobazam (Onfi®) | 0.2 mg/kg (40 mg) | Oral Susp | 19–30 | - | 87 | 100 | CYP2C19 and CYP3A4 to active metabolites | Renal | 16–82 |
Clobazam (Sympazan®) | 0.2 mg/kg (40 mg) | Oral Film |
CNS Characteristics | Lorazepam | Diazepam | Midazolam | Clobazam |
---|---|---|---|---|
Lipophilicity | Low | High | High | Low |
CNS half-life | Long | Short | Short | Long |
CNS penetration | Slow | Fast | Fast | Slow |
CNS concentration | 5–15% of serum | 3–12% of serum | 3–14% of serum | 30–34% of serum |
Onset of EEG slow-wave, minutes | 3.8 ± 3.1 | 0.89 ± 3.1 | 0.29 ± 0.04 | 0.44 ± 0.16 |
Duration of EEG slow-wave, minutes | 28.3 ± 10.1 | 7.5 ± 1.4 | 6.3 ± 1.9 | 62.7 ± 13.9 |
Route | Advantages | Disadvantages |
---|---|---|
Intravenous |
|
|
Intramuscular |
|
|
Intranasal |
|
|
Buccal and Sublingual |
|
|
Rectal |
|
|
Intranasal and Rectal Formulation Trials | |||||
Author/Year | Design (Type of Seizure) | Setting | Sample | Interventions | Results |
Jain et al. 2016 [65] | Systematic review and meta-analysis (no specific type of seizure) | Emergency department | Adult and pediatric; two randomized open-label trials (N = 91) | IN midazolam (0.2 mg/kg) Rectal diazepam (0.3–0.5 mg/kg) | IN midazolam is superior to rectal diazepam in terminating seizures within 10 min (RR 1.14; 95% CI, 1.05–1.25) |
Holsti et al. 2010 [16] | Randomized single-blind trial (no specific type ofseizure) | Outpatient | Pediatrics (N = 92) | IN midazolam (0.2 mg/kg) Rectal diazepam (0.3–0.5 mg/kg) | Time to seizure cessation after drug administration was not significantly different between IN midazolam and rectal diazepam (3 vs. 4.3 min, p = 0.09) |
Haan et al. 2010 [66] | Cross-sectional (no specific type ofseizure) | Residential epilepsy center | Adults (N = 21) | IN midazolam (10 mg) Rectal diazepam (10 mg) | Both have similar success rate (82% vs. 89%, p = 0.57) and time to seizure termination (4.6 vs. 4.3 min, p = 0.6) |
Intramuscular and Rectal Formulation Trials | |||||
Author | Design (Type of Seizure) | Settings | Sample | Doses | Results |
Momen et al. 2015 [67] | Randomized open-label trial (status epilepticus) | Emergency department | Pediatrics (N = 100) | IM midazolam (0.3 mg/kg) Rectal diazepam (0.5 mg/kg) | Both have a similar success rate in seizure control, but midazolam is faster to achieve seizure cessation after drug administration (2.17 vs. 1.1 min, p < 0.001) |
Lamson et al. 2011 [39] | Pharmacokinetic study (healthy subjects) | - | Adults (N = 48) | - | Similar bioavailability, but rectal diazepam had a faster time to maximum concentration (0.17–1.00 h vs. 0.25–2.00 h) |
Buccal and Rectal Formulation Trials | |||||
Author | Design (Type of Seizure) | Settings | Sample | Doses | Results |
Jain et al. 2016 [65] | Systematic review and meta-analysis (no specific type of seizure) | Mostly in the emergency department | Pediatric and adult patients of 7 randomized clinical trials | Buccal midazolam (0.25–0.5 mg/kg) Rectal diazepam (0.5 mg/kg) | Buccal midazolam has a significantly higher rate of seizure cessation within 10 min compared to rectal diazepam (RR 1.14; 95% CI, 1.06–1.24; p = 0.0008) |
Nakken and Lossius, 2011 [68] | Quasi-randomized trial (status epilepticus) | Residential institution | Adults (N = 22) | Buccal midazolam (mean 15.5 mg) Rectal diazepam (mean 26 mg) | Buccal midazolam has a significantly shorter time to convulsive status epilepticus control (2.8 vs. 5 min, p = 0.012) |
Rogawski et al. 2020 [69] | Pharmacokinetic study (no specific type of seizure) | - | Adults (N = 28) | - | Buccal diazepam is less variable in reaching the maximum concentration compared to rectal diazepam (buccal geometric SD [GSD] 136.12–306.49 and rectal GSD 87.71–508.63), but the time buccal formulation takes to reach maximum concentration is longer than the rectal formulation (1.0 and 0.52 h, p < 0.05) |
Other Oral Formulations Trials | |||||
Author | Design (Type of Seizure) | Settings | Sample | Doses | Results |
Troester et al. 2010 [70] | Cross-sectional home response from caregivers (no specific type of seizure) | Outpatient | Pediatrics (N = 38) | Clonazepam oral disintegrating tablet (0.25–2 mg) | Clonazepam achieved seizure control within 10 min for all the patients (74% within 5 min), and 69% of the patients who used rectal diazepam previously felt oral clonazepam was as equal or more effective than rectal diazepam |
Conry et al. 2009 [71] | Randomized, double-blind multicenter trial (drop vs. nondrop seizures, repetitive seizures were recorded) | Outpatient | Adults and pediatrics (N = 68) | Clobazam oral tablet (0.25 mg/kg/day vs. 1 mg/kg/day) | Patients received daily doses of clobazam. In both drop and nondrop seizures, high-dose significantly reduced seizure frequency compared to low-dose (p = 0.0001 and p = 0.0222, respectively) |
Feely et al. 1982 [72] | Placebo-controlled cross-over (repetitive seizures and catamenial epilepsy) | Outpatient | Adolescent (N = 14) | Clonazepam, did not specify the dosage form (20–30 mg/day) | Patients received daily doses of clobazam for 10 days around menstruation time. Thirteen patients responded favorably to clobazam. Three of them have been successfully treated to be seizure free for 3–3.5 years. No evidence of tolerance was observed |
Malu et al. 2014 [73] | Randomized open-label multicenter trial (status epilepticus) | Emergency department | Pediatrics (N = 436) | Sublingual lorazepam (0.1 mg/kg) Rectal diazepam (0.5 mg/kg) | Sublingual lorazepam is less effective in stopping seizures within 10 min compared to rectal diazepam (56–79%, p < 0.001), and the treatment failure was higher in the lorazepam group (OR = 2.95, 95% CI = 1.91–4.55) |
Intravenous and Intramuscular Trials | |||||
Author | Design (Type of Seizure) | Settings | Sample | Doses | Results |
Welch et al. 2015 [74] | Randomized double-blind multicenter trial (status epilepticus) | Emergency department | Pediatrics (N = 120) | IM midazolam (0.5 mg/kg) IV lorazepam (0.1 mg/kg) | IM midazolam have similar efficacy to IV lorazepam in stopping seizure before emergency department arrival (68.3% in IM midazolam vs. 71.6% in lorazepam) and (risk difference = −3.3%; 99% CI −24.9% to 18.2%) |
Portela et al. 2015 [75] | Randomized open-label trial (no specific type of seizure) | Emergency department | Pediatrics (N = 32) | IM midazolam (0.5 mg/kg) IV diazepam (0.5 mg/kg) | The time from admission to seizure termination was shorter in the IM midazolam group (7.3 vs. 10.6 min; p = 0.006), and IV placement was unsuccessful in 25% of patients in the IV group |
Silbergleit et al. (RAMPART) 2012 [12] | Randomized double-blind multicenter trial (status epilepticus) | Emergency department | Adults and pediatrics (N = 893) | IM midazolam (5–10 mg) IV lorazepam (2–4 mg) | IM midazolam was noninferior to IV lorazepam with regard to the rate of seizure control without the need for rescue therapy (73.4% vs. 63.4% [95% CI, 4.0–16.1; p < 0.001]), and the total time to seizure cessation from randomization was similar between both groups |
Intravenous and Intranasal Trials | |||||
Author | Design (Type of Seizure) | Settings | Sample | Doses | Results |
Inokuchi et al. 2015 [76] | Retrospective cohort study (status epilepticus) | Emergency department | Adults (N = 19) | IN diazepam (10 mg) IV diazepam (10 mg) | IN diazepam demonstrated a significantly shorter time to seizure termination than IV diazepam (3 vs. 9.5 min, p = 0.003) |
Jain et al. 2016 [65] | Systematic review and meta-analysis (no specific type of seizure) | Emergency department | Pediatric patients of 4 randomized clinical trials | IN midazolam (0.2 mg/kg) IV diazepam (0.2–0.3 mg/kg) | IN midazolam is similar to IV diazepam in seizure cessation within 10 min (RR 1.00; 95% CI, 0.93–1.06). However, the time to seizure control after the presentation to the emergency department was shorter in the IN midazolam group (mean difference −5.23 min; 95% CI, −9.55 to −0.90) |
Intravenous and Buccal Formulation Trials | |||||
Author | Design (Type of Seizure) | Settings | Sample | Doses | Results |
Tonekaboni et al. 2012 [77] | Randomized open-label trial (status epilepticus) | Emergency department | Pediatrics (N = 92) | Buccal midazolam (6–12 mo: 2.5 mg; 1–4 yrs: 5 mg; 5–9 yrs: 7.5 mg; ≥10 yrs: 10 mg) IV Diazepam (0.3 mg/kg) | Both medications have similar efficacy in seizure control within 10 min (68.8% vs. 70%, p = 0.09) |
Talukdar and Chakrabarty, 2009 [78] | Randomized open-label trial (no specific type of seizure) | Emergency department | Pediatrics (N = 120) | Buccal midazolam (0.2 mg/kg) IV diazepam (0.3 mg/kg) | Buccal midazolam and IV diazepam have similar efficacies in controlling any type of seizure within 5 min of drug administration (85% vs. 93.3%, p = 0.142). However, it took buccal midazolam a shorter time to control the seizure after the presentation to the emergency department compared to IV diazepam (p = 0.004) |
Adverse Event | Lorazepam | Midazolam | Diazepam | Clobazam | ||||
---|---|---|---|---|---|---|---|---|
IV * | IM | IN | Buccal | IV * | IN | PR | Oral | |
Respiratory complication | 4.4–17.6% | 10.8–14.6% | 8% | 1.2–4.6% | 5.6–16.8% | 1–6% | 1.2–6.4% | 13–14% |
Hypotension | 1.5–25.8% | 1.4% | <1–21.8% | <1% | 15–31.6% | 2% | 2–4.4% | <1% |
Cardiac arrhythmia | 7.2% | <1% | <1% | <1% | 1–2.1% | <1% | <1% | <1% |
Dizziness/ataxia | 7% | <1% | <1% | <1–4.6% | 3–6% | 6% | 4.4–11% | 10% |
Somnolence/drowsiness | 1.5% | <1% | 10–68% | 1–21% | 23% | 23–57% | 7–55% | 16–25% |
Local reaction | <1% | 1.1–5% | 17–29% | <1–21% | <1% | 14% | 7% | <1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almohaish, S.; Sandler, M.; Brophy, G.M. Time Is Brain: Acute Control of Repetitive Seizures and Status Epilepticus Using Alternative Routes of Administration of Benzodiazepines. J. Clin. Med. 2021, 10, 1754. https://doi.org/10.3390/jcm10081754
Almohaish S, Sandler M, Brophy GM. Time Is Brain: Acute Control of Repetitive Seizures and Status Epilepticus Using Alternative Routes of Administration of Benzodiazepines. Journal of Clinical Medicine. 2021; 10(8):1754. https://doi.org/10.3390/jcm10081754
Chicago/Turabian StyleAlmohaish, Sulaiman, Melissa Sandler, and Gretchen M. Brophy. 2021. "Time Is Brain: Acute Control of Repetitive Seizures and Status Epilepticus Using Alternative Routes of Administration of Benzodiazepines" Journal of Clinical Medicine 10, no. 8: 1754. https://doi.org/10.3390/jcm10081754
APA StyleAlmohaish, S., Sandler, M., & Brophy, G. M. (2021). Time Is Brain: Acute Control of Repetitive Seizures and Status Epilepticus Using Alternative Routes of Administration of Benzodiazepines. Journal of Clinical Medicine, 10(8), 1754. https://doi.org/10.3390/jcm10081754