Sex Differences in Salmonellosis Incidence Rates—An Eight-Country National Data-Pooled Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Sources of Data
2.2.1. Source of Data
2.2.2. Ethics
2.3. Statistical Analyses
2.3.1. Calculation of Incidence Rates
2.3.2. Meta-Analyses
3. Results
Descriptive Statistics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016, 14, e04634. [Google Scholar]
- Kurtz, J.R.; Goggins, J.A.; McLachlan, J.B. Salmonella infection: Interplay between the bacteria and host immune system. Immunol. Lett. 2017, 190, 42–50. [Google Scholar] [CrossRef]
- Gausman, J.; Langer, A. Sex and Gender Disparities in the COVID-19 Pandemic. J. Womens Health 2020, 29, 465–466. [Google Scholar] [CrossRef]
- Katiyo, S.; Muller-Pebody, B.; Minaji, M.; Powell, D.; Johnson, A.P.; de Pinna, E.; Day, M.; Harris, R.; Godbole, G. Epidemiology and Outcomes of Nontyphoidal Salmonella Bacteremias from England, 2004 to 2015. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelo, K.M.; Reynolds, J.; Karp, B.E.; Hoekstra, R.M.; Scheel, C.M.; Friedman, C. Antimicrobial Resistance Among Nontyphoidal Salmonella Isolated From Blood in the United States, 2003–2013. J. Infect. Dis. 2016, 214, 1565–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.L.; Lee, H.C.; Lee, N.Y.; WU, C.J.; Lin, S.H.; Shih, H.I.; Lee, C.C.; Ko, W.C.; Chang, C.M. Non-typhoidal Salmonella bacteraemia in elderly patients: An increased risk for endovascular infections, osteomyelitis and mortality. Epidemiol. Infect. 2012, 140, 2037–2044. [Google Scholar] [CrossRef]
- Kariuki, S.; Revathi, G.; Kariuki, N.; Kiiru, J.; Mwituria, J.; Hart, C.A. Characterisation of community acquired non-typhoidal Salmonella from bacteraemia and diarrhoeal infections in children admitted to hospital in Nairobi, Kenya. BMC Microbiol. 2006, 6, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reller, M.E.; Tauxe, R.V.; Kalish, L.A.; Mølbak, K. Excess salmonellosis in women in the United States: 1968–2000. Epidemiol. Infect 2008, 136, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Gu, Y.; Wang, X.; Zhang, Y.; Zhan, L.; Liu, J.; Yan, H.; Liu, Y.; Zhen, S.; Chen, X.; et al. Epidemiological and clinical differences between sexes and pathogens in a three-year surveillance of acute infectious gastroenteritis in Shanghai. Sci. Rep. 2019, 9, 9993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2017 Non-Typhoidal Salmonella Invasive Disease Collaborators. The global burden of non-typhoidal salmonella invasive disease: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
- National Notifiable Diseases Surveillance System (NNDSS), Department of Health. Available online: http://www9.health.gov.au/cda/source/rpt_5_sel.cfm (accessed on 1 April 2018).
- Public Health Agency of Canada. Available online: https://www.canada.ca/en/public-health.html (accessed on 1 June 2018).
- Institute of Health Information and Statistics. Available online: https://www.uzis.cz/en/catalogue/infectious-diseases (accessed on 1 March 2018).
- National Institute for Health and Welfare (THL). Available online: https://www.thl.fi/ttr/gen/rpt/tilastot.html (accessed on 1 May 2018).
- German Federal Health Monitoring System. Available online: http://www.gbe-bund.de/gbe10/pkg_isgbe5.prc_isgbe?p_uid=gast&p_aid=0&p_sprache=D (accessed on 1 February 2018).
- Environmental Science and Research (ESR) for the Ministry of Health. Available online: https://surv.esr.cri.nz/surveillance/annual_surveillance.php (accessed on 30 March 2018).
- National Institute of Public Health. Available online: http://wwwold.pzh.gov.pl/oldpage/epimeld/index_a.html (accessed on 1 December 2018).
- Instituto de Salud Carlos III. Available online: https://eng.isciii.es/eng.isciii.es/Paginas/Inicio.html (accessed on 1 March 2018).
- ABS. Stat (Australian Bureau of Statistics). Available online: http://stat.data.abs.gov.au/Index.aspx?DatasetCode=ABS_ERP_ASGS2016 (accessed on 15 May 2018).
- Statistics, Canada, CANSIM Database. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/cv.action?pid=1710010201 (accessed on 1 June 2018).
- Czech Statistical Office. Available online: https://www.czso.cz/csu/czso/population (accessed on 1 March 2018).
- Statistics Finland’s PX-Web databases. Available online: https://pxnet2.stat.fi/PXWeb/pxweb/en/StatFin/ (accessed on 15 April 2018).
- German Federal Health Monitoring System. Available online: http://www.gbe-bund.de/gbe10/abrechnung.prc_abr_test_logon?p_uid=gast&p_aid=46300054&p_knoten=VR&p_sprache=E&p_suchstring=population (accessed on 1 February 2018).
- Stats NZ, Infoshare. Available online: http://archive.stats.govt.nz/infoshare/SelectVariables.aspx?pxID=b854d8a2-3fdf-402c-af69-604112e80baa (accessed on 15 May 2018).
- Statistics Poland. Available online: https://stat.gov.pl/en/basic-data/ (accessed on 1 December 2018).
- Demographic Statistics Database (United Nations Statistics: Division). Available online: http://data.un.org/Data.aspx?d=POP&f=tableCode%3A22 (accessed on 1 April 2018).
- Peer, V.; Schwartz, N.; Green, M.S. A multi-country, multi-year, meta-analytic evaluation of the sex differences in age-specific pertussis incidence rates. PLoS ONE 2020, 15, e0s231570. [Google Scholar] [CrossRef]
- Bean, N.H.; Goulding, J.S.; Lao, C.; Angulo, F.J. Surveillance for foodborne-disease outbreaks—United States, 1988–1992. MMWR CDC Surveill. Summ. 1996, 45, 1–66. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Serdula, M.; Bland, S.; Mokdad, A.; Bowman, B.; Nelson, D. Trends in fruit and vegetable consumption among adults in 16 US states: Behavioral Risk Factor Surveillance System, 1990–1996. Am. J. Public Health 2000, 90, 777–781. [Google Scholar]
- Sivapalasingam, S.; Barrett, E.; Kimura, A.; van Duyne, S.; de Witt, W.; Ying, M.; Frisch, A.; Phan, Q.; Gould, E.; Shillam, P.; et al. A Multistate Outbreak of Salmonella enterica Serotype Newport Infection Linked to Mango Consumption: Impact of Water-Dip Disinfestation Technology. Clin. Infect. Dis. 2003, 37, 1585–1590. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Outbreaks of Salmonella infections associated with eating Roma tomatoes—United States and Canada, 2004. MMWR Morb. Mortal. Wkly. Rep. 2005, 54, 325–328. [Google Scholar]
- Roy, P.; Dhillon, A.S.; Lauerman, L.H.; Schaberg, D.M.; Bandli, D.; Johnson, S. Results of salmonella isolation from poultry products, poultry, poultry environment, and other characteristics. Avian Dis. 2002, 46, 17–24. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Sankaran-Walters, S.; Macal, M.; Grishina, I.; Nagy, L.; Goulart, L.; Coolidge, K.; Li, J.; Fenton, A.; Williams, T.; Miller, M.K.; et al. Sex differences matter in the gut: Effect on mucosal immune activation and inflammation. Biol. Sex Differ. 2013, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Mariscal, C.H.; Rangel-Zúñiga, O.A.; Alcalá-Díaz, J.F.; Gómez-Delgado, F.; Pérez-Martinez, P.; Delgado-Lista, J.; Quintana-Navarro, G.M.; Landa, B.B.; Navas-Cortés, J.A.; Tena-Sempere, M.; et al. Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PLoS ONE 2016, 11, e0154090. [Google Scholar]
- Vemuri, R.; Sylvia, K.E.; Klein, S.L.; Forster, S.C.; Plebanski, M.; Eri, R.; Flanagan, K.L. The microgenderome revealed: Sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. Semin. Immunopathol. 2019, 41, 265–275. [Google Scholar] [CrossRef]
- Marus, J.R.; Magee, M.J.; Manikonda, K.; Nichols, M.C. Outbreaks of Salmonella enterica infections linked to animal contact: Demographic and outbreak characteristics and comparison to foodborne outbreaks-United States, 2009–2014. Zoonoses Public Health 2019, 66, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Jaillon, S.; Berthenet, K.; Garlanda, C. Sexual Dimorphism in Innate Immunity. Clin. Rev. Allergy Immunol. 2019, 56, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Copeland, K.C.; Chernausek, S. Mini-Puberty and Growth. Pediatrics 2016, 138, e20161301. [Google Scholar] [CrossRef] [Green Version]
- Frederiksen, H.; Johannsen, T.H.; Andersen, S.E.; Albrethsen, J.; Landersoe, S.K.; Petersen, J.H.; Andersen, A.N.; Vestergaard, E.; Schorring, M.E.; Linneberg, A.; et al. Sex-specific estrogen levels and reference intervals from infancy to late adulthood determined by LC-MS/MS. J. Clin. Endocrinol. Metab. 2020, 105, 754–768. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Takada, H.; Nomura, A.; Jin, C.-H.; Hattori, H.; Ihara, K.; Aoki, T.; Eguchi, K.; Hara, T. Th1 and Th1-inducing cytokines in Salmonella infection. Clin. Exp. Immunol. 2003, 131, 111–117. [Google Scholar] [CrossRef]
- Stoycheva, M.; Murdjeva, M. Serum levels of interferon-gamma, interleukin-12, tumour necrosis factor-alpha, and interleukin-10, and bacterial clearance in patients with gastroenteric Salmonella infection. Scand. J. Infect. Dis. 2005, 37, 11–14. [Google Scholar] [CrossRef]
- Thiennimitr, P.; Winter, S.E.; Baumler, A.J. Salmonella, the host and its microbiota. Curr. Opin. Microbiol. 2012, 15, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.; Makino, H.; Yavuz, A.C.; Ben-Amor, K.; Roelofs, M.; Ishikawa, E.; Kubota, H.; Swinkels, S.; Sakai, T.; Oishi, K.; et al. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota. PLoS ONE 2016, 11, e0158498. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017, 103, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.L.; Madak-Erdogan, Z. Estrogen and Microbiota Crosstalk: Should We Pay Attention? Trends Endocrinol. Metab. 2016, 27, 752–755. [Google Scholar] [CrossRef]
Males | Females | |||||
---|---|---|---|---|---|---|
Age Group | Country | Years | n/N | IR Males | n/N | IR Females |
<1 | Canada | 1994–2015 | 3196/4,066,314 | 78.6 | 2895/3,861,381 | 75 |
Czech Republic | 2008–2013 | 1463/349,195 | 419 | 1358/332,712 | 408.2 | |
Germany | 2001–2016 | 7653/5,740,478 | 133.3 | 7179/5,448,550 | 131.8 | |
New Zealand | 1997–2015 | 840/576,900 | 145.6 | 758/548,520 | 138.2 | |
Poland | 2006–2016 | 4602/2,177,523 | 211.3 | 4092/2,055,764 | 199.1 | |
Spain | 2005–2015 | 2769/2,679,186 | 103.4 | 2423/2,514,548 | 96.4 | |
1–4 | Canada | 1994–2015 | 9099/16,718,349 | 54.4 | 8210/15,900,004 | 51.6 |
Czech Republic | 2008–2013 | 8536/1,410,748 | 605.1 | 7966/1,343,670 | 592.9 | |
Germany | 2001–2016 | 55,616/23,509,315 | 236.6 | 52,459/22,311,030 | 235.1 | |
New Zealand | 1997–2015 | 2727/2,308,880 | 118.1 | 2486/2,191,980 | 113.4 | |
Poland | 2006–2016 | 18,051/8,763,810 | 206 | 16,528/8,294,052 | 199.3 | |
Spain | 2005–2015 | 9130/10,880,587 | 83.9 | 8516/10,233,932 | 83.2 | |
5–9 | Australia | 2001–2016 | 6517/11,398,585 | 57.2 | 5877/10,814,642 | 54.3 |
Canada | 1994–2015 | 5868/21,678,340 | 27.1 | 5045/20,622,712 | 24.5 | |
Czech Republic | 2008–2013 | 4685/1,532,669 | 305.7 | 4067/1,450,621 | 280.4 | |
Finland | 1995–2016 | 1035/3,440,956 | 30.1 | 956/3,297,629 | 29.0 | |
Germany | 2001–2016 | 39,375/30,760,941 | 128 | 35,115/29,187,252 | 120.3 | |
New Zealand | 1997–2015 | 1115/2,899,540 | 38.5 | 925/2,752,910 | 33.6 | |
Poland | 2006–2016 | 7721/10,753,278 | 71.8 | 7268/10,206,501 | 71.2 | |
Spain | 2005–2015 | 4725/13,017,097 | 36.3 | 4019/12,287,011 | 32.7 | |
10–14 | Australia | 2001–2016 | 4433/11,377,822 | 39 | 3315/10,797,396 | 30.7 |
Canada | 1994–2015 | 4066/22,713,799 | 17.9 | 2891/21,572,803 | 13.4 | |
Czech Republic | 2008–2013 | 1813/1,416,001 | 128 | 1483/1,339,518 | 110.7 | |
Finland | 1995–2016 | 1115/3,522,497 | 31.7 | 841/3,375,446 | 24.9 | |
Germany | 2001–2016 | 24,832/33,455,166 | 74.2 | 19,955/31,724,889 | 62.9 | |
New Zealand | 1997–2015 | 790/2,919,850 | 27.1 | 466/2,776,650 | 16.8 | |
Poland | 2006–2016 | 2805/11,130,177 | 25.2 | 2384/10,591,951 | 22.5 | |
Spain | 2005–2015 | 1750/12,301,238 | 14.2 | 1109/11,627,137 | 9.5 | |
15–44 | Australia | 2001–2016 | 27,906/73,591,102 | 37.9 | 31,662/72,741,755 | 43.5 |
Canada | 1994–2015 | 22,168/126,619,246 | 17.5 | 22,933/123,505,034 | 18.6 | |
Czech Republic | 2008–2013 | 6462/13,725,818 | 47.1 | 7878/12,978,912 | 60.7 | |
Finland | 1995–2016 | 10,300/18,898,064 | 54.5 | 12,418/18,050,351 | 68.8 | |
Germany | 2001–2016 | 94,718/257,895,408 | 36.7 | 97,495/247,590,330 | 39.4 | |
New Zealand | 1997–2015 | 4270/13,546,700 | 31.5 | 4093/13,976,900 | 29.3 | |
Poland | 2006–2016 | 9128/92,802,239 | 9.8 | 10380/90,097,352 | 11.5 | |
Spain | 2005–2015 | 4401/110,542,308 | 4 | 4200/105,413,400 | 4 | |
45–64 | Australia | 2001–2016 | 12,790/41,988,401 | 30.5 | 14,697/42,573,071 | 34.5 |
Canada | 1994–2015 | 13,462/100,585,696 | 13.4 | 15,213/99,821,361 | 15.2 | |
Czech Republic | 2008–2013 | 3233/8,403,729 | 38.5 | 4905/8,624,880 | 56.9 | |
Finland | 1995–2016 | 8577/16,513,241 | 51.9 | 11,169/16,307,550 | 68.5 | |
Germany | 2001–2016 | 51,368/181,698,132 | 28.3 | 57,083/181,849,520 | 31.4 | |
New Zealand | 1997–2015 | 2572/10,201,030 | 25.2 | 2525/10,685,350 | 23.6 | |
Poland | 2006–2016 | 5532/55,127,862 | 10 | 7126/59,180,678 | 12 | |
Spain | 2005–2015 | 3449/63,103,755 | 5.5 | 3031/64,340,310 | 4.7 | |
65+ | Australia | 2001–2016 | 8088/21,417,772 | 37.8 | 10,239/25,538,457 | 40.1 |
Canada | 1994–2015 | 9190/58,764,646 | 15.6 | 11,888/70,995,360 | 16.7 | |
Czech Republic | 2008–2013 | 2212/4,087,584 | 54.1 | 3914/5,999,018 | 65.2 | |
Finland | 1995–2016 | 2572/11,159,619 | 23 | 3161/15,066,114 | 21 | |
Germany | 2001–2016 | 39,020/108,019,284 | 36.1 | 53,965/149,862,231 | 36 | |
New Zealand | 1997–2015 | 1410/6,302,700 | 22.4 | 1524/7,386,000 | 20.6 | |
Poland | 2006–2016 | 4110/23,115,840 | 17.8 | 6148/37,363,573 | 16.5 | |
Spain | 2005–2015 | 3834/37,127,234 | 10.3 | 3795/49,879,431 | 7.6 |
Age Group | |||||||
---|---|---|---|---|---|---|---|
Country Removed | Infants RR (CI) | Early Childhood RR (CI) | Late Childhood RR (CI) | Puberty RR (CI) | Young Adulthood RR (CI) | Middle Adulthood RR (CI) | Senior Adulthood RR (CI) |
Australia | - | - | 1.08 (1.04–1.11) | 1.29 (1.19–1.39) | 0.9 (0.85–0.96) | 0.88 (0.81–0.97) | 1.04 (0.96–1.14) |
Canada | 1.04 (1.01–1.07) | 1.02 (1–1.03) | 1.07 (1.04–1.09) | 1.28 (1.19–1.37) | 0.89 (0.84–0.95) | 0.88 (0.81–0.97) | 1.05 (0.96–1.14) |
Czech Republic | 1.04 (1.02–1.07) | 1.03 (1.01- 1.05) | 1.07 (1.04–1.1) | 1.3 (1.21–1.4) | 0.92 (0.87–0.97) | 0.91 (0.85–0.98) | 1.06 (0.98–1.15) |
Finland | - | - | 1.07 (1.05–1.1) | 1.29 (1.2–1.38) | 0.92 (0.87–0.96) | 0.9 (0.84–0.97) | 1.02 (0.94–1.11) |
Germany | 1.06 (1.03–1.08) | 1.03 (1.02–1.05) | 1.07 (1.04–1.11) | 1.3 (1.2–1.41) | 0.9 (0.84–0.96) | 0.88 (0.79–0.97) | 1.03 (0.93–1.15) |
New Zealand | 1.04 (1.02–1.07) | 1.02 (1.01–1.04) | 1.07 (1.04–1.09) | 1.25 (1.18–1.33) | 0.88 (0.83–0.93) | 0.86 (0.8–0.93) | 1.02 (0.94–1.11) |
Poland | 1.03 (1.01–1.06) | 1.02 (1.003–1.04) | 1.08 (1.06–1.1) | 1.31 (1.22–1.41) | 0.91 (0.85–0.96) | 0.89 (0.82–0.97) | 1.02 (0.94–1.11) |
Spain | 1.03 (1.01–1.06) | 1.03 (1.01–1.05) | 1.07 (1.04–1.09) | 1.26 (1.18–1.33) | 0.89 (0.84–0.94) | 0.85 (0.79–0.91) | 0.99 (0.94–1.04) |
Age Group | |||||||
---|---|---|---|---|---|---|---|
Years Removed | Infants RR (CI) | Early Childhood RR (CI) | Late Childhood RR (CI) | Puberty RR (CI) | Young Adulthood RR (CI) | Middle Adulthood RR (CI) | Senior Adulthood RR (CI) |
1994/1995–1996 | 1.04 (1.01–1.07) | 1.02 (1.01–1.03) | 1.07 (1.05–1.08) | 1.22 (1.17–1.27) | 0.91 (0.9–0.91) | 0.88 (0.86–0.9) | 1.01 (0.96–1.05) |
1997–2000 | 1.03 (1.01–1.05) | 1.02 (1.01–1.03) | 1.07 (1.05–1.08) | 1.23 (1.18–1.28) | 0.91 (0.9–0.92) | 0.88 (0.86–0.9) | 1.01 (0.97–1.05) |
2001–2002 | 1.04 (1.02–1.07) | 1.02 (1.003–1.03) | 1.06 (1.05–1.08) | 1.24 (1.19–1.29) | 0.91 (0.9–0.92) | 0.88 (0.86–0.9) | 1.01 (0.97–1.05) |
2003–2005 | 1.04 (1.01–1.07) | 1.02 (1.01–1.03) | 1.07 (1.05–1.08) | 1.23 (1.18–1.29) | 0.91 (0.9–0.92) | 0.88 (0.86–0.9) | 1.01 (0.97–1.05) |
2005/2006–2007 | 1.03 (1.004–1.06) | 1.02 (1.01–1.03) | 1.07 (1.06–1.08) | 1.23 (1.18–1.28) | 0.91 (0.9–0.92) | 0.88 (0.85–0.9) | 1.01 (0.96–1.05) |
2008–2010 | 1.03 (1.003–1.06) | 1.02 (1.01–1.03) | 1.06 (1.05–1.08) | 1.23 (1.17–1.28) | 0.9 (0.9–0.91) | 0.88 (0.85–0.9) | 0.997 (0.95–1.04) |
2011–2013 | 1.04 (1.01–1.07) | 1.02 (1.01–1.03) | 1.06 (1.05–1.08) | 1.22 (1.17–1.27) | 0.9 (0.9–0.91) | 0.87 (0.85–0.89) | 0.99 (0.95–1.04) |
2014–2015 | 1.04 (1.01–1.07) | 1.02 (1.006–1.03) | 1.07 (1.05–1.08) | 1.21 (1.17–1.24) | 0.91 (0.9–0.92) | 0.87 (0.85–0.89) | 0.99 (0.95–1.03) |
2016 | 1.04 (1.01–1.07) | 1.02 (1.01–1.03) | 1.07 (1.06–1.08) | 1.23 (1.19–1.28) | 0.91 (0.9–0.92) | 0.87 (0.85–0.9) | 0.99 (0.95–1.04) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peer, V.; Schwartz, N.; Green, M.S. Sex Differences in Salmonellosis Incidence Rates—An Eight-Country National Data-Pooled Analysis. J. Clin. Med. 2021, 10, 5767. https://doi.org/10.3390/jcm10245767
Peer V, Schwartz N, Green MS. Sex Differences in Salmonellosis Incidence Rates—An Eight-Country National Data-Pooled Analysis. Journal of Clinical Medicine. 2021; 10(24):5767. https://doi.org/10.3390/jcm10245767
Chicago/Turabian StylePeer, Victoria, Naama Schwartz, and Manfred S. Green. 2021. "Sex Differences in Salmonellosis Incidence Rates—An Eight-Country National Data-Pooled Analysis" Journal of Clinical Medicine 10, no. 24: 5767. https://doi.org/10.3390/jcm10245767
APA StylePeer, V., Schwartz, N., & Green, M. S. (2021). Sex Differences in Salmonellosis Incidence Rates—An Eight-Country National Data-Pooled Analysis. Journal of Clinical Medicine, 10(24), 5767. https://doi.org/10.3390/jcm10245767