Development and Validation of a Post-Operative Non-Union Risk Score for Subtrochanteric Femur Fractures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Statistical Analysis
2.3. Statistical Power
3. Results
3.1. Descriptive Statistics
3.2. Univariate Analysis
3.3. Multivariate Analysis
3.4. Non-Union Risk Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiss, D.A.; Brien, W.W. Subtrochanteric fractures of the femur. Results of treatment by interlocking nailing. Clin. Orthop. Relat. Res. 1992, 283, 231–236. [Google Scholar] [CrossRef]
- Panteli, M.; Giannoudi, M.P.; Lodge, C.J.; West, R.M.; Pountos, I.; Giannoudis, P.V. Mortality and Medical Complications of Subtrochanteric Fracture Fixation. J. Clin. Med. 2021, 10, 540. [Google Scholar] [CrossRef]
- Matre, K.; Havelin, L.I.; Gjertsen, J.E.; Vinje, T.; Espehaug, B.; Fevang, J.M. Sliding hip screw versus IM nail in reverse oblique trochanteric and subtrochanteric fractures. A study of 2716 patients in the Norwegian Hip Fracture Register. Injury 2013, 44, 735–742. [Google Scholar] [CrossRef]
- Yoon, R.S.; Haidukewych, G.J. Subtrochanteric Femur Fractures. In Rockwood and Green’s Fractures in Adults; Tornetta, P., III, Ricci, W.M., Ostrum, R.F., McQueen, M.M., McKee, M.D., Court-Brown, C.M., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2019; Volume 1, pp. 2318–2339. [Google Scholar]
- Krappinger, D.; Wolf, B.; Dammerer, D.; Thaler, M.; Schwendinger, P.; Lindtner, R.A. Risk factors for nonunion after intramedullary nailing of subtrochanteric femoral fractures. Arch. Orthop. Trauma Surg. 2019, 139, 769–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C.; Tanios, M.; Ebraheim, N. Management of Subtrochanteric Proximal Femur Fractures: A Review of Recent Literature. Adv. Orthop. 2018, 2018, 1326701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, S.; Johnston, P.; Ahmad, M.A.; Wynn-Jones, H.; Patel, A.D.; Walton, N.P. Outcome of traumatic subtrochanteric femoral fractures fixed using cephalo-medullary nails. Injury 2007, 38, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Calori, G.M.; Phillips, M.; Jeetle, S.; Tagliabue, L.; Giannoudis, P.V. Classification of non-union: Need for a new scoring system? Injury 2008, 39 (Suppl. 2), S59–S63. [Google Scholar] [CrossRef]
- Calori, G.M.; Albisetti, W.; Agus, A.; Iori, S.; Tagliabue, L. Risk factors contributing to fracture non-unions. Injury 2007, 38 (Suppl. 2), S11–S18. [Google Scholar] [CrossRef]
- Velasco, R.U.; Comfort, T.H. Analysis of treatment problems in subtraochanteric fractures of the femur. J. Trauma 1978, 18, 513–523. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Hearn, T.C.; Powell, J.N.; Mahomed, N. Fixation of segmental subtrochanteric fractures. A biomechanical study. Clin. Orthop. Relat. Res. 1996, 332, 71–79. [Google Scholar] [CrossRef]
- Giannoudis, P.V.; Ahmad, M.A.; Mineo, G.V.; Tosounidis, T.I.; Calori, G.M.; Kanakaris, N.K. Subtrochanteric fracture non-unions with implant failure managed with the “Diamond” concept. Injury 2013, 44 (Suppl. 1), S76–S81. [Google Scholar] [CrossRef]
- Baumgaertner, M.R.; Curtin, S.L.; Lindskog, D.M.; Keggi, J.M. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J. Bone Jt. Surg. Am. 1995, 77, 1058–1064. [Google Scholar] [CrossRef]
- Johnson, K.D.; Tencer, A.F.; Sherman, M.C. Biomechanical factors affecting fracture stability and femoral bursting in closed intramedullary nailing of femoral shaft fractures, with illustrative case presentations. J. Orthop. Trauma 1987, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tencer, A.F.; Sherman, M.C.; Johnson, K.D. Biomechanical factors affecting fracture stability and femoral bursting in closed intramedullary rod fixation of femur fractures. J. Biomech. Eng. 1985, 107, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Crookshank, M.C.; Edwards, M.R.; Sellan, M.; Whyne, C.M.; Schemitsch, E.H. Can Fluoroscopy-based Computer Navigation Improve Entry Point Selection for Intramedullary Nailing of Femur Fractures? Clin. Orthop. Relat. Res. 2014, 472, 2720–2727. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Burkart, B.; Damson, E.; Shrive, N.; Bray, R.C. The effect of the entry hole for an intramedullary nail on the strength of the proximal femur. J. Bone Jt. Surg. Br. 1993, 75, 202–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imerci, A.; Aydogan, N.H.; Tosun, K. Evaluation of inter- and intra-observer reliability of current classification systems for subtrochanteric femoral fractures. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.E.; Nazarian, S.; Koch, P.; Schatzker, J. The Comprehensive Classification of Fractures of Long Bones; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Al-Ashqar, M.; Panteli, M.; Chakrabarty, G.; Giannoudis, P.V. Atypical fractures: An issue of concern or a myth? Injury 2018, 49, 649–655. [Google Scholar] [CrossRef]
- Bishop, J.A.; Palanca, A.A.; Bellino, M.J.; Lowenberg, D.W. Assessment of compromised fracture healing. J. Am. Acad Orthop Surg 2012, 20, 273–282. [Google Scholar] [CrossRef]
- Panteli, M.; Vun, J.S.H.; West, R.M.; Howard, A.; Pountos, I.; Giannoudis, P.V. Surgical Site Infection Following Intramedullary Nailing of Subtrochanteric Femoral Fractures. J. Clin. Med. 2021, 10, 3331. [Google Scholar] [CrossRef]
- R Foundation for Statistical Computing V, Austria R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 22 October 2021).
- Venturini, S. Cross-Validation for Predictive Analytics Using R. 2016. Available online: http://www.milanor.net/blog/cross-validation-for-predictive-analytics-using-r/ (accessed on 22 October 2021).
- Hoskins, W.; Bingham, R.; Joseph, S.; Liew, D.; Love, D.; Bucknill, A.; Oppy, A.; Griffin, X. Subtrochanteric fracture: The effect of cerclage wire on fracture reduction and outcome. Injury 2015, 46, 1992–1995. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.C.; Moon, N.H.; Jang, J.H.; Lee, H.J.; Suh, K.T. Comparative study between biologic plating and intramedullary nailing for the treatment of subtrochanteric fractures: Is biologic plating using LCP-DF superior to intramedullary nailing? Injury 2017, 48, 2207–2213. [Google Scholar] [CrossRef] [PubMed]
- Afsari, A.; Liporace, F.; Lindvall, E.; Infante, A., Jr.; Sagi, H.C.; Haidukewych, G.J. Clamp-assisted reduction of high subtrochanteric fractures of the femur: Surgical technique. J. Bone Jt. Surg Am. 2010, 92 Pt 2 (Suppl. 1), 217–225. [Google Scholar] [CrossRef] [PubMed]
- Mills, L.; Tsang, J.; Hopper, G.; Keenan, G.; Simpson, A.H. The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection. Bone Jt. Res. 2016, 5, 512–519. [Google Scholar] [CrossRef]
- Elmrini, A. Intramedullary nailing for open fractures of the femoral shaft: Evaluation of contributing factors on deep infection and non-union using multivariate analysis [Injury 2005;36:1085–93]. Injury 2006, 37, 922, author reply 922–923. [Google Scholar] [CrossRef]
- Mehrpour, S.; Kamrani, R.S.; Abrishami, A. Evaluating the Risk Factors of Nonunion in Long Bone Fractures of Patients Referred to Dr Shariati Hospital’s Orthopedic Clinic During 2007–2013. J. Orthop. Spine Trauma 2015, 1, 1. [Google Scholar]
- Panteli, M.; Giannoudis, P.V. Osteomyelitis and other orthopaedic infections. In Rockwood and Green’s Fractures in Adults; Tornetta, P., III, Ricci, W.M., Ostrum, R.F., McQueen, M.M., McKee, M.D., Court-Brown, C.M., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2019; Volume 1, pp. 798–834. [Google Scholar]
- Johnson, N.A.; Uzoigwe, C.; Venkatesan, M.; Burgula, V.; Kulkarni, A.; Davison, J.N.; Ashford, R.U. Risk factors for intramedullary nail breakage in proximal femoral fractures: A 10-year retrospective review. Ann. R. Coll. Surg. Engl. 2017, 99, 145–150. [Google Scholar] [CrossRef]
- Bojan, A.J.; Beimel, C.; Speitling, A.; Taglang, G.; Ekholm, C.; Jönsson, A. 3066 consecutive Gamma Nails. 12 years experience at a single centre. BMC Musculoskelet. Disord. 2010, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Akkus, O.P.-A.A.; Adar, F.; Schaffler, M.B. Aging of microstructural compartments in human compact bone. J. Bone Mineral. Res. 2003, 18, 1012–1019. [Google Scholar] [CrossRef]
- Mashiba, T.T.C.; Hirano, T.; Forwood, M.R.; Johnston, C.C.; Burr, D.B. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone 2001, 28, 524–531. [Google Scholar] [CrossRef]
- Lim, H.S.; Kim, C.K.; Park, Y.S.; Moon, Y.W.; Lim, S.J.; Kim, S.M. Factors Associated with Increased Healing Time in Complete Femoral Fractures After Long-Term Bisphosphonate Therapy. J. Bone Jt. Surg. Am. 2016, 98, 1978–1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.J.; Yoo, J.J.; Oh, K.J.; Yoo, J.H.; Rhyu, K.H.; Nam, K.W.; Suh, D.H. Surgical outcome of intramedullary nailing in patients with complete atypical femoral fracture: A multicenter retrospective study. Injury 2017, 48, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.P.; Hinshaw, W.B.; Su, C.; Solow, P. Atypical femur fractures: 81 individual personal histories. J. Clin. Endocrinol. Metab. 2012, 97, 4324–4328. [Google Scholar] [CrossRef] [Green Version]
- Teo, B.J.; Koh, J.S.; Goh, S.K.; Png, M.A.; Chua, D.T.; Howe, T.S. Post-operative outcomes of atypical femoral subtrochanteric fracture in patients on bisphosphonate therapy. Bone Jt. J. 2014, 96-B, 658–664. [Google Scholar] [CrossRef]
- Kates, S.L.A.-B.C. How do Bisphosphonates Affect Fracture Healing? Injury 2016, 47, S65–S68. [Google Scholar] [CrossRef] [Green Version]
- Edwards, B.J.; Bunta, A.D.; Lane, J.; Odvina, C.; Rao, D.S.; Raisch, D.W.; McKoy, J.M.; Omar, I.; Belknap, S.M.; Garg, V.; et al. Bisphosphonates and nonhealing femoral fractures: Analysis of the FDA Adverse Event Reporting System (FAERS) and international safety efforts: A systematic review from the Research on Adverse Drug Events and Reports (RADAR) project. J. Bone Jt. Surg. Am. 2013, 95, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Weil, Y.A.; Rivkin, G.; Safran, O.; Liebergall, M.; Foldes, A.J. The outcome of surgically treated femur fractures associated with long-term bisphosphonate use. J. Trauma 2011, 71, 186–190. [Google Scholar] [CrossRef]
- Bogdan, Y. Atypical femur fractures. In Rockwood and Green’s Fractures in Adults; Tornetta, P., III, Ricci, W.M., Ostrum, R.F., McQueen, M.M., McKee, M.D., Court-Brown, C.M., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2019; Volume 1, pp. 2341–2355. [Google Scholar]
- Maes, M.; Deboer, Y.; Brabants, K. Failure of the titanium trochanteric gamma nail in ununited metastatic fractures. Acta Orthop. Belg. 2012, 78, 552–557. [Google Scholar] [PubMed]
- Riehl, J.T.; Koval, K.J.; Langford, J.R.; Munro, M.W.; Kupiszewski, S.J.; Haidukewych, G.J. Intramedullary nailing of subtrochanteric fractures—Does malreduction matter? Bull. Hosp. Jt. Dis. 2014, 72, 159–163. [Google Scholar]
- Jiao, H.; Xiao, E.; Graves, D.T. Diabetes and Its Effect on Bone and Fracture Healing. Curr. Osteoporos. Rep. 2015, 13, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Marin, C.; Luyten, F.P.; Van der Schueren, B.; Kerckhofs, G.; Vandamme, K. The Impact of Type 2 Diabetes on Bone Fracture Healing. Front. Endocrinol. (Lausanne) 2018, 9, 6. [Google Scholar] [CrossRef]
- Hill, P.A.; Tumber, A.; Meikle, M.C. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology 1997, 138, 3849–3858. [Google Scholar] [CrossRef]
- Watford, M.; Mapes, R.E. Hormonal and acid-base regulation of phosphoenolpyruvate carboxykinase mRNA levels in rat kidney. Arch. Biochem. Biophys. 1990, 282, 399–403. [Google Scholar] [CrossRef]
- Goh, S.Y.; Cooper, M.E. Clinical review: The role of advanced glycation end products in progression and complications of diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 1143–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gortler, H.; Rusyn, J.; Godbout, C.; Chahal, J.; Schemitsch, E.H.; Nauth, A. Diabetes and Healing Outcomes in Lower Extremity Fractures: A Systematic Review. Injury 2018, 49, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Merlotti, D.; Gennari, L.; Dotta, F.; Lauro, D.; Nuti, R. Mechanisms of impaired bone strength in type 1 and 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, N.; Humphers, J.M.; Fluhman, B.L.; Jupiter, D.C. Factors associated with nonunion, delayed union, and malunion in foot and ankle surgery in diabetic patients. J. Foot Ankle Surg. 2013, 52, 207–211. [Google Scholar] [CrossRef]
- Kline, A.J.; Gruen, G.S.; Pape, H.C.; Tarkin, I.S.; Irrgang, J.J.; Wukich, D.K. Early complications following the operative treatment of pilon fractures with and without diabetes. Foot Ankle Int. 2009, 30, 1042–1047. [Google Scholar] [CrossRef]
Demographics | All Patients | Union | Non-Union | |
N | 316 | 232 (73.4%) | 84 (24.6%) | |
Age (y.o.) | 69.13 ± 20.01 | 69.48 ± 20.81 | 68.18 ± 17.70 | |
Gender | Male | 126 (39.9%) | 92 (39.7%) | 34 (40.5%) |
Female | 190 (60.1%) | 140 (60.3%) | 50 (59.5%) | |
Injury Characteristics | All Patients | Union | Non-Union | |
Mechanism of Injury | Low energy | 237 (75.0%) | 178 (76.7%) | 59 (70.2%) |
High energy | 65 (20.6%) | 47 (20.3%) | 18 (21.4%) | |
Pathological | 14 (0.4%) | 7 (3.0%) | 7 (8.3%) | |
Isolated | 264 (83.5%) | 191 (82.3%) | 73 (86.9%) | |
ISS > 16 | 25 (7.9%) | 17 (7.3%) | 8 (9.5%) | |
Side | Left | 161 (50.9%) | 116 (50.0%) | 45 (53.6%) |
Right | 155 (49.1%) | 116 (50.0%) | 39 (46.4%) | |
Open fracture | 7 (2.2%) | 4 (1.7%) | 3 (3.6%) | |
Medical Comorbidities | All Patients | Union | Non-Union | |
ASA | 1 | 40 (12.7%) | 35 (15.1%) | 5 (6.0%) |
2 | 92 (29.1%) | 64 (27.6%) | 28 (33.3%) | |
3 | 149 (47.2%) | 107 (46.1%) | 42 (50.0%) | |
4 | 35 (11.0%) | 26 (11.2%) | 9 (10.7%) | |
Charlson Comorbidity Score | 4.614 ± 3.04 | 4.56 ± 3.03 | 4.76 ± 3.06 | |
Diabetes | 42 (13.3%) | 25 (10.8%) | 17 (20.2%) | |
Steroids | 14 (4.4%) | 10 (4.3%) | 4 (4.8%) | |
Malignancy | 69 (21.8%) | 48 (20.7%) | 21 (25.0%) | |
Dementia | 39 (12.3%) | 34 (14.7%) | 5 (6.0%) | |
Osteoporosis | All Patients | Union | Non-Union | |
Bisphosphonates pre-admission | 60 (19.0%) | 40 (17.2%) | 20 (23.8%) | |
Bisphosphonates on discharge | 86 (27.4%) | 63 (27.2%) | 23 (28.0%) | |
Calcium/Vitamin D pre-admission | 83 (26.3%) | 58 (25.0%) | 25 (29.8%) | |
Calcium/Vitamin D on discharge | 142 (45.2%) | 103 (44.4%) | 39 (47.6%) | |
Vitamin D loading on admission | 42 (13.4%) | 34 (14.7%) | 8 (9.8%) | |
Fragility Fractures Before | 56 (17.8%) | 40 (17.2%) | 16 (19.3%) | |
Fragility Fractures After | 62 (19.9%) | 44 (19.0%) | 18 (21.7%) | |
DEXA Result | Normal | 5 (12.5%) | 3 (10.3%) | 2 (18.2%) |
Osteopenia | 13 (32.5%) | 7 (24.1%) | 6 (54.5%) | |
Osteoporosis | 22 (55.0%) | 19 (65.5%) | 3 (27.3%) | |
Singh Index | 1 | 24 (8.4%) | 18 (8.5%) | 6 (8.2%) |
2 | 61 (21.4%) | 48 (22.6%) | 13 (17.8%) | |
3 | 56 (19.6%) | 41 (19.3%) | 15 (20.5%) | |
4 | 66 (23.2%) | 48 (22.6%) | 18 (24.7%) | |
5 | 33 (11.6%) | 22 (10.4%) | 11 (15.1%) | |
6 | 45 (15.8%) | 35 (16.5%) | 10 (13.7%) | |
Social History | All Patients | Union | Non-Union | |
Smoking | 68 (21.5%) | 49 (21.1%) | 19 (22.6%) | |
Alcohol > 10 units/week | 67 (21.2%) | 44 (19.0%) | 23 (27.4%) | |
Pre-operative Mobility | ||||
Independent | 174 (55.1%) | 129 (55.6%) | 45 (53.6%) | |
Stick(s)/Crutch(es) | 94 (29.7%) | 62 (26.7%) | 32 (38.1%) | |
Frame | 35 (11.1%) | 30 (12.9%) | 5 (6.0%) | |
Wheelchair/Hoisted | 13 (4.1%) | 11 (4.7%) | 2 (2.4%) | |
Frequent falls | 80 (25.3%) | 61 (26.3%) | 19 (22.6%) | |
Operation Characteristics | All Patients | Union | Non-Union | |
Operation in less than 48 h | 247 (78.2%) | 182 (78.4%) | 65 (77.4%) | |
Simultaneous procedures | 27 (8.5%) | 22 (9.5%) | 5 (6.0%) | |
Type of Nail | Long Affixus Nail | 160 (50.6%) | 124 (53.4%) | 36 (42.9%) |
Long Gamma Nail | 128 (40.5%) | 90 (38.8%) | 38 (45.2%) | |
Others | 28 (8.9%) | 18 (7.8%) | 10 (11.9%) | |
Nail Diameter | 9 | 18 (5.8%) | 9 (3.9%) | 9 (10.8%) |
(mm) | 10 | 7 (2.1%) | 4 (1.7%) | 3 (3.6%) |
11 | 203 (64.9%) | 154 (67.0%) | 49 (59.0%) | |
13 | 85 (27.2%) | 63 (27.4%) | 22 (26.5%) | |
Open reduction | 151 (47.8%) | 104 (44.8%) | 47 (56.0%) | |
Use of cerclage wires | 39 (12.3%) | 33 (14.2%) | 6 (7.1%) | |
Post-op Mobilisation | FWB | 148 (46.9%) | 113 (48.7%) | 35 (41.7%) |
(first 6 weeks) | PWB | 80 (25.3%) | 58 (25.0%) | 22 (26.2%) |
TTWB | 51 (16.1%) | 41 (17.7%) | 10 (11.9%) | |
NWB | 37 (11.7%) | 20 (8.6%) | 17 (20.2%) | |
Surgical time (min) | 113.11 ± 45.56 | 111.32 ± 45.50 | 118.2 ± 45.62 | |
Anaesthetic Time (min) | 47.66 ± 22.82 | 47.22 ± 22.76 | 48.91 ± 23.08 | |
Time from induction to recovery (min) | 179.94 ± 50.26 | 177.57 ± 49.40 | 186.63 ± 52.34 | |
Level of First Surgeon | ||||
Registrar | 193 (61.5%) | 142 (61.2%) | 51 (62.2%) | |
Consultant | 121 (38.5%) | 90 (38.8%) | 31 (37.8%) | |
Level of Senior Surgeon Present | ||||
Registrar | 178 (56.7%) | 131 (56.5%) | 47 (57.3%) | |
Consultant | 136 (43.3%) | 101 (43.5%) | 35 (42.7%) | |
Complications | All Patients | Union | Non-Union | |
Nail complications | 78 (24.7%) | 34 (14.7%) | 44 (52.4%) | |
Failure at lag screw junction | 24 (7.6%) | 1 (0.4%) | 23 (27.4%) | |
Self-dynamisation | 20 (6.3%) | 5 (2.2%) | 15 (17.9%) | |
Cut-out | 6 (1.9%) | 1 (0.4%) | 5 (6.0%) | |
Nail infection | 5 (1.6%) | 3 (1.3%) | 2 (2.4%) | |
Peri-implant fracture | 8 (2.5%) | 7 (3.0%) | 1 (1.2%) | |
HAP/CAP | 46 (14.6%) | 35 (15.1%) | 11 (13.1%) | |
UTI | 45 (14.2%) | 35 (15.1%) | 10 (11.9%) | |
Wound infection | Superficial | 11 (3.5%) | 5 (2.2%) | 6 (7.1%) |
Deep | 10 (3.2%) | 1 (0.4%) | 9 (10.7%) | |
Washout/Revision for Infection | 6 (8.2%) | 2 (10.5%) | 4 (7.4%) | |
CKD Stage pre-operatively | ||||
Mild | 220 (71.2%) | 169 (74.4%) | 51 (62.2%) | |
Moderate/Severe | 89 (28.8%) | 58 (25.6%) | 31 (37.8%) | |
CKD Stage post-operatively | ||||
Mild | 227 (74.4%) | 170 (76.2%) | 57 (69.5%) | |
Moderate/Severe | 78 (25.6%) | 53 (23.8%) | 25 (30.5%) | |
Pre-operative Transfusion | 25 (7.9%) | 21 (9.1%) | 4 (4.8%) | |
Post-operative Transfusion (48 h) | 153 (48.6%) | 111 (47.8%) | 42 (50.6%) | |
Post-operative Transfusion (total) | 192 (61.0%) | 138 (59.5%) | 54 (65.1%) | |
Hb Drop (g/L) | 44.29 ± 18.24 | 44.13 ± 18.30 | 44.72 ± 18.20 | |
Biochemistry | All Patients | Union | Non-Union | |
Adjusted Calcium | Normal | 181 (74.8%) | 141 (79.7%) | 40 (61.5%) |
Low | 61 (25.2%) | 36 (20.3%) | 25 (38.5%) | |
Albumin | Normal | 106 (38.4%) | 79 (38.7%) | 27 (37.5%) |
Low | 170 (61.6%) | 125 (61.3%) | 45 (62.5%) | |
Alkaline Phosphatase High | 55 (20.1%) | 40 (19.9%) | 15 (20.8%) | |
Normal | 201 (73.7%) | 149 (74.1%) | 52 (72.2%) | |
Low | 17 (6.2%) | 12 (6.0%) | 5 (6.9%) | |
Phosphate Normal/High | 201 (82.4%) | 148 (83.1%) | 53 (80.3%) | |
Low | 43 (17.6%) | 30 (16.9%) | 13 (19.7%) | |
TSH | High | 13 (9.2%) | 9 (8.5%) | 4 (11.4%) |
Normal | 126 (89.4%) | 95 (89.6%) | 31 (88.6%) | |
Low | 2 (1.4%) | 2 (1.9%) | 0 (0.0%) | |
Free T4 | High | 20 (14.4%) | 17 (16.2%) | 3 (8.8%) |
Normal | 116 (83.5%) | 85 (81.0%) | 31 (91.2%) | |
Low | 3 (2.1%) | 3 (2.9%) | 0 (0.0%) | |
PTH | High | 62 (48.8%) | 47 (53.4%) | 15 (38.5%) |
Normal | 65 (51.2%) | 41 (46.6%) | 24 (61.5%) | |
Total 25OH Vitamin D Normal | 17 (12.1%) | 13 (12.7%) | 4 (10.3%) | |
Low | 124 (87.9%) | 89 (87.3%) | 35 (89.7%) | |
Radiographic Measurements | All Patients | Union | Non-Union | |
Femoral Neck Shaft Angle | ||||
Normal | 209 (67.4%) | 150 (65.8%) | 59 (72.0%) | |
Coxa Valga | 89 (28.7%) | 70 (30.7%) | 19 (23.2%) | |
Coxa Vara | 12 (3.9%) | 8 (3.5%) | 4 (4.9%) | |
Number of fragments | Simple | 88 (28.0%) | 58 (25.0%) | 30 (36.6%) |
(Comminution) | Moderate | 153 (48.8%) | 131 (56.5%) | 22 (26.8%) |
Severe | 73 (23.2%) | 43 (18.5%) | 30 (36.6%) | |
Isolated Subtrochanteric Extension | 49 (15.6%) | 33 (14.2%) | 16 (19.5%) | |
Atypical | 20 (6.4%) | 7 (3.0%) | 13 (15.9%) | |
Pathological | 11 (3.5%) | 7 (3.0%) | 4 (4.9%) | |
Distal Extension | 123 (39.2%) | 91 (39.2%) | 32 (39.0%) | |
Lesser Trochanter Fracture | 203 (64.6%) | 154 (66.4%) | 49 (59.8%) | |
Medial Calcar Comminution | 21 (6.7%) | 16 (6.9%) | 5 (6.1%) | |
Lateral Cortex Gap Size | ≤4 | 191 (60.4%) | 159 (68.5%) | 32 (38.1%) |
(mm) | 5–9 | 85 (26.9%) | 48 (20.7%) | 37 (44.0%) |
≥10 | 40 (12.7%) | 25 (10.8%) | 15 (17.9%) | |
Medial Cortex Gap Size | ≤4 | 210 (66.5%) | 166 (71.6%) | 44 (52.4%) |
(mm) | 5–9 | 72 (22.8%) | 43 (18.5%) | 29 (34.5%) |
≥10 | 34 (10.7%) | 23 (9.9%) | 11 (13.1%) | |
Anterior Cortex Gap Size | ≤4 | 201 (63.6%) | 156 (67.2%) | 45 (53.6%) |
(mm) | 5–9 | 68 (21.5%) | 48 (20.7%) | 20 (23.8%) |
≥10 | 47 (14.9%) | 28 (12.1%) | 19 (22.6%) | |
Posterior Cortex Gap Size | ≤4 | 231 (73.1%) | 185 (79.7%) | 46 (54.8%) |
(mm) | 5–9 | 64 (20.2%) | 34 (14.7%) | 30 (35.7%) |
≥10 | 21 (6.7%) | 13 (5.6%) | 8 (9.5%) | |
Reduction Angle Grouped | ||||
(degrees) | Valgus 5–Varus 5 | 233 (73.7%) | 188 (81.0%) | 45 (53.6%) |
Valgus >5 | 17 (5.4%) | 10 (4.3%) | 7 (8.3%) | |
Varus 5–10 | 52 (16.5%) | 29 (12.5%) | 23 (27.4%) | |
Varus >10 | 14 (4.4%) | 5 (2.2%) | 9 (10.7%) | |
Anti-rotation Screw | 110 (35.6%) | 84 (37.0%) | 26 (31.7%) | |
TAD | <25 | 259 (84.6%) | 193 (86.2%) | 66 (80.5%) |
(mm) | ≥25 | 47 (15.4%) | 31 (13.8%) | 16 (19.5%) |
Distal locking | 1 | 10 (3.2%) | 9 (3.9%) | 1 (1.2%) |
(Number of Screws) | 2 | 306 (96.8%) | 223 (96.1%) | 83 (98.8%) |
Method of locking | ||||
Static Locking | 204 (64.8%) | 153 (66.2%) | 51 (60.7%) | |
Secondary Dynamisation | 108 (34.3%) | 75 (32.5%) | 33 (39.3%) | |
Dynamic | 3 (0.9%) | 3 (1.3%) | 0 (0.0%) | |
Distance of tip of the nail from centre (AP) | ||||
(mm) | −4 to 4 | 200 (63.7%) | 153 (66.5%) | 47 (56.0%) |
Lateral ≥5 | 64 (20.4%) | 41 (17.8%) | 23 (27.4%) | |
Medial ≥5 | 50 (15.9%) | 36 (15.7%) | 14 (16.7%) | |
Distance of tip of the nail from centre (LAT) (mm) | ||||
−4 to 4 | 256 (81.5%) | 186 (80.9%) | 70 (83.3%) | |
Anterior ≥5 | 53 (16.9%) | 41 (17.8%) | 12 (14.3%) | |
Posterior ≥5 | 5 (1.6%) | 3 (1.3%) | 2 (2.4%) | |
Distance of tip of the nail from knee | ||||
(mm) | <10 | 2 (0.6%) | 2 (0.9%) | 0 (0.0%) |
10 to 19 | 24 (7.6%) | 13 (5.7%) | 11 (13.1%) | |
20–29 | 99 (31.5%) | 78 (33.9%) | 21 (25.0%) | |
≥30 | 189 (60.3%) | 137 (59.6%) | 52 (61.9%) | |
Nail/Canal Ratio | 0.82 ± 0.08 | 0.82 ± 0.08 | 0.83 ± 0.07 | |
Hospital Stay | All Patients | Union | Non-Union | |
HDU/ICU stay | 36 (11.4%) | 21 (9.1%) | 15 (17.9%) | |
Total length of hospital stay (days) | 21.26 ± 19.19 | 20.74 ± 18.00 | 22.69 ± 22.22 | |
Weekend admission | 105 (33.2%) | 76 (32.8%) | 29 (34.5%) |
Medical Comorbidities | Unadjusted OR (95% CI) | p-Value | |
Diabetes | 2.10 (1.07–4.13) | 0.031 | |
Operation Characteristics | Unadjusted OR (95% CI) | p-Value | |
Post-op Mobilisation | FWB | Ref | Ref |
(first 6 weeks) | PWB | 1.23 (0.66–2.28) | 0.522 |
TTWB | 0.79 (0.358–1.73) | 0.553 | |
NWB | 2.74 (1.30–5.81) | 0.008 | |
Complications | Unadjusted OR (95% CI) | p-Value | |
Nail complications | 6.41 (3.65–1.24) | <0.001 | |
Failure at lag screw junction | 87.10 (11.54–657.56) | <0.001 | |
Self-dynamisation | 9.87 (3.46–28.13) | <0.001 | |
Cut-out | 14.62 (1.68–127.05) | 0.015 | |
Wound infection | Superficial | 3.93 (1.16–13.27) | 0.028 |
Deep | 29.48 (3.67–236.74) | 0.001 | |
CKD Stage pre-operatively | |||
Mild | Ref | Ref | |
Moderate/Severe | 1.77 (1.04–3.03) | 0.037 | |
Biochemistry | Unadjusted OR (95% CI) | p-Value | |
Adjusted Calcium | Normal | Ref | Ref |
Low | 2.45 (1.32–4.55) | 0.005 | |
Radiographic Measurements | Unadjusted OR (95% CI) | p-Value | |
Number of fragments | |||
(Comminution) | Moderate | Ref | Ref |
Simple -Severe | 0.28 (0.16–0.49) | <0.001 | |
Atypical | 6.06 (2.32–15.78) | <0.001 | |
Lateral Cortex Gap Size | ≤4 | Ref | Ref |
(mm) | ≥5 | 3.54 (2.10–5.96) | <0.001 |
Medial Cortex Gap Size | ≤4 | Ref | Ref |
(mm) | 5–9 | 2.54 (1.43–4.53) | 0.001 |
≥10 | 1.80 (0.82–3.98) | 0.144 | |
Anterior Cortex Gap Size | ≤4 | Ref | Ref |
(mm) | 5–9 | 1.44 (0.78–2.68) | 0.244 |
≥10 | 2.35 (1.20–4.60) | 0.012 | |
Posterior Cortex Gap Size | ≤4 | Ref | Ref |
(mm) | 5–9 | 3.55 (1.97–6.39) | <0.001 |
≥10 | 2.48 (0.97–6.32) | 0.058 | |
Reduction Angle Grouped | |||
(degrees) | Varus <5 | Ref | Ref |
Varus 5–10 | 3.02 (1.61–5.65) | 0.001 | |
Varus >10 | 6.85 (2.20–21.33) | 0.001 | |
Hospital Stay | p-Value | ||
HDU/ICU stay | 2.18 (1.07–4.47) | 0.033 |
A Model 1: Associations with progression to non-union, including self-dynamisation; OR: Odds Ratio | |||||
Model 1 | Score | β Coefficient | Standard Error | Adjusted OR (95% CI) | p-Value |
Diabetes | 5 | 0.79 | 0.45 | 2.20 (0.92–5.25) | 0.077 |
Self-dynamisation | 20 | 3.03 | 0.63 | 20.74 (6.09–70.68) | <0.001 |
Wound infection (Deep) | 29 | 4.35 | 1.14 | 77.80 (8.26–732.71) | <0.001 |
Degree of comminution (Simple or Severe) | 11 | 1.62 | 0.37 | 5.05 (2.44–10.46) | <0.001 |
Atypical | 11 | 1.59 | 0.58 | 4.92 (1.58–15.37) | 0.006 |
Lateral Cortex Gap Size (≥5 mm) | 10 | 1.44 | 0.36 | 4.24 (2.12–8.50) | <0.001 |
Reduction Angle (Varus 5–10 degrees) | 7 | 1.01 | 0.42 | 2.75 (1.21–6.23) | 0.016 |
Reduction Angle (Varus >10 degrees) | 15 | 2.34 | 0.71 | 10.33 (2.59–41.26) | 0.001 |
B Model 2: Associations witd progression to non-union, not including self-dynamisation; OR: Odds Ratio | |||||
Model 2 | Score | β Coefficient | Standard Error | Adjusted OR (95% CI) | p-Value |
Diabetes | 6 | 0.70 | 0.42 | 2.02 (0.88–4.63) | 0.096 |
Wound infection (Deep) | 35 | 3.97 | 1.12 | 53.05 (5.87–479.64) | <0.001 |
Degree of comminution (Simple or Severe) | 13 | 1.50 | 0.34 | 4.47 (2.29–8.74) | <0.001 |
Atypical | 14 | 1.53 | 0.55 | 4.63 (1.58–13.56) | 0.005 |
Lateral Cortex Gap Size (≥5 mm) | 11 | 1.21 | 0.32 | 3.37 (1.78–6.36) | <0.001 |
Reduction Angle (Varus 5–10 degrees) | 9 | 1.02 | 0.39 | 2.76 (1.30–5.88) | 0.008 |
Reduction Angle (Varus >10 degrees) | 20 | 2.27 | 0.70 | 9.71 (2.51–37.49) | 0.001 |
Non-Union Risk Score | Probability of Non-Union |
---|---|
0 | 4.0% |
6 | 7.6% |
9 | 10.3% |
13 | 15.2% |
14 | 16.7% |
15 | 18.3% |
19 | 26.0% |
20 | 28.2% |
22 | 33.0% |
23 | 35.5% |
26 | 43.5% |
27 | 46.3% |
28 | 49.1% |
33 | 62.8% |
35 | 67.9% |
36 | 70.3% |
39 | 76.8% |
41 | 80.6% |
42 | 82.3% |
44 | 85.3% |
47 | 89.0% |
48 | 90.1% |
54 | 94.7% |
63 | 98.0% |
100 * | 100.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panteli, M.; Vun, J.S.H.; West, R.M.; Howard, A.J.; Pountos, I.; Giannoudis, P.V. Development and Validation of a Post-Operative Non-Union Risk Score for Subtrochanteric Femur Fractures. J. Clin. Med. 2021, 10, 5632. https://doi.org/10.3390/jcm10235632
Panteli M, Vun JSH, West RM, Howard AJ, Pountos I, Giannoudis PV. Development and Validation of a Post-Operative Non-Union Risk Score for Subtrochanteric Femur Fractures. Journal of Clinical Medicine. 2021; 10(23):5632. https://doi.org/10.3390/jcm10235632
Chicago/Turabian StylePanteli, Michalis, James S. H. Vun, Robert M. West, Anthony J. Howard, Ippokratis Pountos, and Peter V. Giannoudis. 2021. "Development and Validation of a Post-Operative Non-Union Risk Score for Subtrochanteric Femur Fractures" Journal of Clinical Medicine 10, no. 23: 5632. https://doi.org/10.3390/jcm10235632
APA StylePanteli, M., Vun, J. S. H., West, R. M., Howard, A. J., Pountos, I., & Giannoudis, P. V. (2021). Development and Validation of a Post-Operative Non-Union Risk Score for Subtrochanteric Femur Fractures. Journal of Clinical Medicine, 10(23), 5632. https://doi.org/10.3390/jcm10235632