Development and Validation of a Post-Operative Non-Union Risk Score for Subtrochanteric Femur Fractures
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Statistical Analysis
2.3. Statistical Power
3. Results
3.1. Descriptive Statistics
3.2. Univariate Analysis
3.3. Multivariate Analysis
3.4. Non-Union Risk Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiss, D.A.; Brien, W.W. Subtrochanteric fractures of the femur. Results of treatment by interlocking nailing. Clin. Orthop. Relat. Res. 1992, 283, 231–236. [Google Scholar] [CrossRef]
- Panteli, M.; Giannoudi, M.P.; Lodge, C.J.; West, R.M.; Pountos, I.; Giannoudis, P.V. Mortality and Medical Complications of Subtrochanteric Fracture Fixation. J. Clin. Med. 2021, 10, 540. [Google Scholar] [CrossRef]
- Matre, K.; Havelin, L.I.; Gjertsen, J.E.; Vinje, T.; Espehaug, B.; Fevang, J.M. Sliding hip screw versus IM nail in reverse oblique trochanteric and subtrochanteric fractures. A study of 2716 patients in the Norwegian Hip Fracture Register. Injury 2013, 44, 735–742. [Google Scholar] [CrossRef]
- Yoon, R.S.; Haidukewych, G.J. Subtrochanteric Femur Fractures. In Rockwood and Green’s Fractures in Adults; Tornetta, P., III, Ricci, W.M., Ostrum, R.F., McQueen, M.M., McKee, M.D., Court-Brown, C.M., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2019; Volume 1, pp. 2318–2339. [Google Scholar]
- Krappinger, D.; Wolf, B.; Dammerer, D.; Thaler, M.; Schwendinger, P.; Lindtner, R.A. Risk factors for nonunion after intramedullary nailing of subtrochanteric femoral fractures. Arch. Orthop. Trauma Surg. 2019, 139, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.; Tanios, M.; Ebraheim, N. Management of Subtrochanteric Proximal Femur Fractures: A Review of Recent Literature. Adv. Orthop. 2018, 2018, 1326701. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Johnston, P.; Ahmad, M.A.; Wynn-Jones, H.; Patel, A.D.; Walton, N.P. Outcome of traumatic subtrochanteric femoral fractures fixed using cephalo-medullary nails. Injury 2007, 38, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Calori, G.M.; Phillips, M.; Jeetle, S.; Tagliabue, L.; Giannoudis, P.V. Classification of non-union: Need for a new scoring system? Injury 2008, 39 (Suppl. 2), S59–S63. [Google Scholar] [CrossRef]
- Calori, G.M.; Albisetti, W.; Agus, A.; Iori, S.; Tagliabue, L. Risk factors contributing to fracture non-unions. Injury 2007, 38 (Suppl. 2), S11–S18. [Google Scholar] [CrossRef]
- Velasco, R.U.; Comfort, T.H. Analysis of treatment problems in subtraochanteric fractures of the femur. J. Trauma 1978, 18, 513–523. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Hearn, T.C.; Powell, J.N.; Mahomed, N. Fixation of segmental subtrochanteric fractures. A biomechanical study. Clin. Orthop. Relat. Res. 1996, 332, 71–79. [Google Scholar] [CrossRef]
- Giannoudis, P.V.; Ahmad, M.A.; Mineo, G.V.; Tosounidis, T.I.; Calori, G.M.; Kanakaris, N.K. Subtrochanteric fracture non-unions with implant failure managed with the “Diamond” concept. Injury 2013, 44 (Suppl. 1), S76–S81. [Google Scholar] [CrossRef]
- Baumgaertner, M.R.; Curtin, S.L.; Lindskog, D.M.; Keggi, J.M. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J. Bone Jt. Surg. Am. 1995, 77, 1058–1064. [Google Scholar] [CrossRef]
- Johnson, K.D.; Tencer, A.F.; Sherman, M.C. Biomechanical factors affecting fracture stability and femoral bursting in closed intramedullary nailing of femoral shaft fractures, with illustrative case presentations. J. Orthop. Trauma 1987, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tencer, A.F.; Sherman, M.C.; Johnson, K.D. Biomechanical factors affecting fracture stability and femoral bursting in closed intramedullary rod fixation of femur fractures. J. Biomech. Eng. 1985, 107, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Crookshank, M.C.; Edwards, M.R.; Sellan, M.; Whyne, C.M.; Schemitsch, E.H. Can Fluoroscopy-based Computer Navigation Improve Entry Point Selection for Intramedullary Nailing of Femur Fractures? Clin. Orthop. Relat. Res. 2014, 472, 2720–2727. [Google Scholar] [CrossRef][Green Version]
- Miller, S.D.; Burkart, B.; Damson, E.; Shrive, N.; Bray, R.C. The effect of the entry hole for an intramedullary nail on the strength of the proximal femur. J. Bone Jt. Surg. Br. 1993, 75, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Imerci, A.; Aydogan, N.H.; Tosun, K. Evaluation of inter- and intra-observer reliability of current classification systems for subtrochanteric femoral fractures. Eur. J. Orthop. Surg. Traumatol. 2018, 28, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.E.; Nazarian, S.; Koch, P.; Schatzker, J. The Comprehensive Classification of Fractures of Long Bones; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Al-Ashqar, M.; Panteli, M.; Chakrabarty, G.; Giannoudis, P.V. Atypical fractures: An issue of concern or a myth? Injury 2018, 49, 649–655. [Google Scholar] [CrossRef]
- Bishop, J.A.; Palanca, A.A.; Bellino, M.J.; Lowenberg, D.W. Assessment of compromised fracture healing. J. Am. Acad Orthop Surg 2012, 20, 273–282. [Google Scholar] [CrossRef]
- Panteli, M.; Vun, J.S.H.; West, R.M.; Howard, A.; Pountos, I.; Giannoudis, P.V. Surgical Site Infection Following Intramedullary Nailing of Subtrochanteric Femoral Fractures. J. Clin. Med. 2021, 10, 3331. [Google Scholar] [CrossRef]
- R Foundation for Statistical Computing V, Austria R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 22 October 2021).
- Venturini, S. Cross-Validation for Predictive Analytics Using R. 2016. Available online: http://www.milanor.net/blog/cross-validation-for-predictive-analytics-using-r/ (accessed on 22 October 2021).
- Hoskins, W.; Bingham, R.; Joseph, S.; Liew, D.; Love, D.; Bucknill, A.; Oppy, A.; Griffin, X. Subtrochanteric fracture: The effect of cerclage wire on fracture reduction and outcome. Injury 2015, 46, 1992–1995. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.C.; Moon, N.H.; Jang, J.H.; Lee, H.J.; Suh, K.T. Comparative study between biologic plating and intramedullary nailing for the treatment of subtrochanteric fractures: Is biologic plating using LCP-DF superior to intramedullary nailing? Injury 2017, 48, 2207–2213. [Google Scholar] [CrossRef] [PubMed]
- Afsari, A.; Liporace, F.; Lindvall, E.; Infante, A., Jr.; Sagi, H.C.; Haidukewych, G.J. Clamp-assisted reduction of high subtrochanteric fractures of the femur: Surgical technique. J. Bone Jt. Surg Am. 2010, 92 Pt 2 (Suppl. 1), 217–225. [Google Scholar] [CrossRef] [PubMed]
- Mills, L.; Tsang, J.; Hopper, G.; Keenan, G.; Simpson, A.H. The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection. Bone Jt. Res. 2016, 5, 512–519. [Google Scholar] [CrossRef]
- Elmrini, A. Intramedullary nailing for open fractures of the femoral shaft: Evaluation of contributing factors on deep infection and non-union using multivariate analysis [Injury 2005;36:1085–93]. Injury 2006, 37, 922, author reply 922–923. [Google Scholar] [CrossRef]
- Mehrpour, S.; Kamrani, R.S.; Abrishami, A. Evaluating the Risk Factors of Nonunion in Long Bone Fractures of Patients Referred to Dr Shariati Hospital’s Orthopedic Clinic During 2007–2013. J. Orthop. Spine Trauma 2015, 1, 1. [Google Scholar]
- Panteli, M.; Giannoudis, P.V. Osteomyelitis and other orthopaedic infections. In Rockwood and Green’s Fractures in Adults; Tornetta, P., III, Ricci, W.M., Ostrum, R.F., McQueen, M.M., McKee, M.D., Court-Brown, C.M., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2019; Volume 1, pp. 798–834. [Google Scholar]
- Johnson, N.A.; Uzoigwe, C.; Venkatesan, M.; Burgula, V.; Kulkarni, A.; Davison, J.N.; Ashford, R.U. Risk factors for intramedullary nail breakage in proximal femoral fractures: A 10-year retrospective review. Ann. R. Coll. Surg. Engl. 2017, 99, 145–150. [Google Scholar] [CrossRef]
- Bojan, A.J.; Beimel, C.; Speitling, A.; Taglang, G.; Ekholm, C.; Jönsson, A. 3066 consecutive Gamma Nails. 12 years experience at a single centre. BMC Musculoskelet. Disord. 2010, 11, 133. [Google Scholar] [CrossRef]
- Akkus, O.P.-A.A.; Adar, F.; Schaffler, M.B. Aging of microstructural compartments in human compact bone. J. Bone Mineral. Res. 2003, 18, 1012–1019. [Google Scholar] [CrossRef]
- Mashiba, T.T.C.; Hirano, T.; Forwood, M.R.; Johnston, C.C.; Burr, D.B. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone 2001, 28, 524–531. [Google Scholar] [CrossRef]
- Lim, H.S.; Kim, C.K.; Park, Y.S.; Moon, Y.W.; Lim, S.J.; Kim, S.M. Factors Associated with Increased Healing Time in Complete Femoral Fractures After Long-Term Bisphosphonate Therapy. J. Bone Jt. Surg. Am. 2016, 98, 1978–1987. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Yoo, J.J.; Oh, K.J.; Yoo, J.H.; Rhyu, K.H.; Nam, K.W.; Suh, D.H. Surgical outcome of intramedullary nailing in patients with complete atypical femoral fracture: A multicenter retrospective study. Injury 2017, 48, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.P.; Hinshaw, W.B.; Su, C.; Solow, P. Atypical femur fractures: 81 individual personal histories. J. Clin. Endocrinol. Metab. 2012, 97, 4324–4328. [Google Scholar] [CrossRef]
- Teo, B.J.; Koh, J.S.; Goh, S.K.; Png, M.A.; Chua, D.T.; Howe, T.S. Post-operative outcomes of atypical femoral subtrochanteric fracture in patients on bisphosphonate therapy. Bone Jt. J. 2014, 96-B, 658–664. [Google Scholar] [CrossRef]
- Kates, S.L.A.-B.C. How do Bisphosphonates Affect Fracture Healing? Injury 2016, 47, S65–S68. [Google Scholar] [CrossRef]
- Edwards, B.J.; Bunta, A.D.; Lane, J.; Odvina, C.; Rao, D.S.; Raisch, D.W.; McKoy, J.M.; Omar, I.; Belknap, S.M.; Garg, V.; et al. Bisphosphonates and nonhealing femoral fractures: Analysis of the FDA Adverse Event Reporting System (FAERS) and international safety efforts: A systematic review from the Research on Adverse Drug Events and Reports (RADAR) project. J. Bone Jt. Surg. Am. 2013, 95, 297–307. [Google Scholar] [CrossRef]
- Weil, Y.A.; Rivkin, G.; Safran, O.; Liebergall, M.; Foldes, A.J. The outcome of surgically treated femur fractures associated with long-term bisphosphonate use. J. Trauma 2011, 71, 186–190. [Google Scholar] [CrossRef]
- Bogdan, Y. Atypical femur fractures. In Rockwood and Green’s Fractures in Adults; Tornetta, P., III, Ricci, W.M., Ostrum, R.F., McQueen, M.M., McKee, M.D., Court-Brown, C.M., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2019; Volume 1, pp. 2341–2355. [Google Scholar]
- Maes, M.; Deboer, Y.; Brabants, K. Failure of the titanium trochanteric gamma nail in ununited metastatic fractures. Acta Orthop. Belg. 2012, 78, 552–557. [Google Scholar] [PubMed]
- Riehl, J.T.; Koval, K.J.; Langford, J.R.; Munro, M.W.; Kupiszewski, S.J.; Haidukewych, G.J. Intramedullary nailing of subtrochanteric fractures—Does malreduction matter? Bull. Hosp. Jt. Dis. 2014, 72, 159–163. [Google Scholar]
- Jiao, H.; Xiao, E.; Graves, D.T. Diabetes and Its Effect on Bone and Fracture Healing. Curr. Osteoporos. Rep. 2015, 13, 327–335. [Google Scholar] [CrossRef]
- Marin, C.; Luyten, F.P.; Van der Schueren, B.; Kerckhofs, G.; Vandamme, K. The Impact of Type 2 Diabetes on Bone Fracture Healing. Front. Endocrinol. (Lausanne) 2018, 9, 6. [Google Scholar] [CrossRef]
- Hill, P.A.; Tumber, A.; Meikle, M.C. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology 1997, 138, 3849–3858. [Google Scholar] [CrossRef]
- Watford, M.; Mapes, R.E. Hormonal and acid-base regulation of phosphoenolpyruvate carboxykinase mRNA levels in rat kidney. Arch. Biochem. Biophys. 1990, 282, 399–403. [Google Scholar] [CrossRef]
- Goh, S.Y.; Cooper, M.E. Clinical review: The role of advanced glycation end products in progression and complications of diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Gortler, H.; Rusyn, J.; Godbout, C.; Chahal, J.; Schemitsch, E.H.; Nauth, A. Diabetes and Healing Outcomes in Lower Extremity Fractures: A Systematic Review. Injury 2018, 49, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Merlotti, D.; Gennari, L.; Dotta, F.; Lauro, D.; Nuti, R. Mechanisms of impaired bone strength in type 1 and 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, N.; Humphers, J.M.; Fluhman, B.L.; Jupiter, D.C. Factors associated with nonunion, delayed union, and malunion in foot and ankle surgery in diabetic patients. J. Foot Ankle Surg. 2013, 52, 207–211. [Google Scholar] [CrossRef]
- Kline, A.J.; Gruen, G.S.; Pape, H.C.; Tarkin, I.S.; Irrgang, J.J.; Wukich, D.K. Early complications following the operative treatment of pilon fractures with and without diabetes. Foot Ankle Int. 2009, 30, 1042–1047. [Google Scholar] [CrossRef]
Demographics | All Patients | Union | Non-Union | |
N | 316 | 232 (73.4%) | 84 (24.6%) | |
Age (y.o.) | 69.13 ± 20.01 | 69.48 ± 20.81 | 68.18 ± 17.70 | |
Gender | Male | 126 (39.9%) | 92 (39.7%) | 34 (40.5%) |
Female | 190 (60.1%) | 140 (60.3%) | 50 (59.5%) | |
Injury Characteristics | All Patients | Union | Non-Union | |
Mechanism of Injury | Low energy | 237 (75.0%) | 178 (76.7%) | 59 (70.2%) |
High energy | 65 (20.6%) | 47 (20.3%) | 18 (21.4%) | |
Pathological | 14 (0.4%) | 7 (3.0%) | 7 (8.3%) | |
Isolated | 264 (83.5%) | 191 (82.3%) | 73 (86.9%) | |
ISS > 16 | 25 (7.9%) | 17 (7.3%) | 8 (9.5%) | |
Side | Left | 161 (50.9%) | 116 (50.0%) | 45 (53.6%) |
Right | 155 (49.1%) | 116 (50.0%) | 39 (46.4%) | |
Open fracture | 7 (2.2%) | 4 (1.7%) | 3 (3.6%) | |
Medical Comorbidities | All Patients | Union | Non-Union | |
ASA | 1 | 40 (12.7%) | 35 (15.1%) | 5 (6.0%) |
2 | 92 (29.1%) | 64 (27.6%) | 28 (33.3%) | |
3 | 149 (47.2%) | 107 (46.1%) | 42 (50.0%) | |
4 | 35 (11.0%) | 26 (11.2%) | 9 (10.7%) | |
Charlson Comorbidity Score | 4.614 ± 3.04 | 4.56 ± 3.03 | 4.76 ± 3.06 | |
Diabetes | 42 (13.3%) | 25 (10.8%) | 17 (20.2%) | |
Steroids | 14 (4.4%) | 10 (4.3%) | 4 (4.8%) | |
Malignancy | 69 (21.8%) | 48 (20.7%) | 21 (25.0%) | |
Dementia | 39 (12.3%) | 34 (14.7%) | 5 (6.0%) | |
Osteoporosis | All Patients | Union | Non-Union | |
Bisphosphonates pre-admission | 60 (19.0%) | 40 (17.2%) | 20 (23.8%) | |
Bisphosphonates on discharge | 86 (27.4%) | 63 (27.2%) | 23 (28.0%) | |
Calcium/Vitamin D pre-admission | 83 (26.3%) | 58 (25.0%) | 25 (29.8%) | |
Calcium/Vitamin D on discharge | 142 (45.2%) | 103 (44.4%) | 39 (47.6%) | |
Vitamin D loading on admission | 42 (13.4%) | 34 (14.7%) | 8 (9.8%) | |
Fragility Fractures Before | 56 (17.8%) | 40 (17.2%) | 16 (19.3%) | |
Fragility Fractures After | 62 (19.9%) | 44 (19.0%) | 18 (21.7%) | |
DEXA Result | Normal | 5 (12.5%) | 3 (10.3%) | 2 (18.2%) |
Osteopenia | 13 (32.5%) | 7 (24.1%) | 6 (54.5%) | |
Osteoporosis | 22 (55.0%) | 19 (65.5%) | 3 (27.3%) | |
Singh Index | 1 | 24 (8.4%) | 18 (8.5%) | 6 (8.2%) |
2 | 61 (21.4%) | 48 (22.6%) | 13 (17.8%) | |
3 | 56 (19.6%) | 41 (19.3%) | 15 (20.5%) | |
4 | 66 (23.2%) | 48 (22.6%) | 18 (24.7%) | |
5 | 33 (11.6%) | 22 (10.4%) | 11 (15.1%) | |
6 | 45 (15.8%) | 35 (16.5%) | 10 (13.7%) | |
Social History | All Patients | Union | Non-Union | |
Smoking | 68 (21.5%) | 49 (21.1%) | 19 (22.6%) | |
Alcohol > 10 units/week | 67 (21.2%) | 44 (19.0%) | 23 (27.4%) | |
Pre-operative Mobility | ||||
Independent | 174 (55.1%) | 129 (55.6%) | 45 (53.6%) | |
Stick(s)/Crutch(es) | 94 (29.7%) | 62 (26.7%) | 32 (38.1%) | |
Frame | 35 (11.1%) | 30 (12.9%) | 5 (6.0%) | |
Wheelchair/Hoisted | 13 (4.1%) | 11 (4.7%) | 2 (2.4%) | |
Frequent falls | 80 (25.3%) | 61 (26.3%) | 19 (22.6%) | |
Operation Characteristics | All Patients | Union | Non-Union | |
Operation in less than 48 h | 247 (78.2%) | 182 (78.4%) | 65 (77.4%) | |
Simultaneous procedures | 27 (8.5%) | 22 (9.5%) | 5 (6.0%) | |
Type of Nail | Long Affixus Nail | 160 (50.6%) | 124 (53.4%) | 36 (42.9%) |
Long Gamma Nail | 128 (40.5%) | 90 (38.8%) | 38 (45.2%) | |
Others | 28 (8.9%) | 18 (7.8%) | 10 (11.9%) | |
Nail Diameter | 9 | 18 (5.8%) | 9 (3.9%) | 9 (10.8%) |
(mm) | 10 | 7 (2.1%) | 4 (1.7%) | 3 (3.6%) |
11 | 203 (64.9%) | 154 (67.0%) | 49 (59.0%) | |
13 | 85 (27.2%) | 63 (27.4%) | 22 (26.5%) | |
Open reduction | 151 (47.8%) | 104 (44.8%) | 47 (56.0%) | |
Use of cerclage wires | 39 (12.3%) | 33 (14.2%) | 6 (7.1%) | |
Post-op Mobilisation | FWB | 148 (46.9%) | 113 (48.7%) | 35 (41.7%) |
(first 6 weeks) | PWB | 80 (25.3%) | 58 (25.0%) | 22 (26.2%) |
TTWB | 51 (16.1%) | 41 (17.7%) | 10 (11.9%) | |
NWB | 37 (11.7%) | 20 (8.6%) | 17 (20.2%) | |
Surgical time (min) | 113.11 ± 45.56 | 111.32 ± 45.50 | 118.2 ± 45.62 | |
Anaesthetic Time (min) | 47.66 ± 22.82 | 47.22 ± 22.76 | 48.91 ± 23.08 | |
Time from induction to recovery (min) | 179.94 ± 50.26 | 177.57 ± 49.40 | 186.63 ± 52.34 | |
Level of First Surgeon | ||||
Registrar | 193 (61.5%) | 142 (61.2%) | 51 (62.2%) | |
Consultant | 121 (38.5%) | 90 (38.8%) | 31 (37.8%) | |
Level of Senior Surgeon Present | ||||
Registrar | 178 (56.7%) | 131 (56.5%) | 47 (57.3%) | |
Consultant | 136 (43.3%) | 101 (43.5%) | 35 (42.7%) | |
Complications | All Patients | Union | Non-Union | |
Nail complications | 78 (24.7%) | 34 (14.7%) | 44 (52.4%) | |
Failure at lag screw junction | 24 (7.6%) | 1 (0.4%) | 23 (27.4%) | |
Self-dynamisation | 20 (6.3%) | 5 (2.2%) | 15 (17.9%) | |
Cut-out | 6 (1.9%) | 1 (0.4%) | 5 (6.0%) | |
Nail infection | 5 (1.6%) | 3 (1.3%) | 2 (2.4%) | |
Peri-implant fracture | 8 (2.5%) | 7 (3.0%) | 1 (1.2%) | |
HAP/CAP | 46 (14.6%) | 35 (15.1%) | 11 (13.1%) | |
UTI | 45 (14.2%) | 35 (15.1%) | 10 (11.9%) | |
Wound infection | Superficial | 11 (3.5%) | 5 (2.2%) | 6 (7.1%) |
Deep | 10 (3.2%) | 1 (0.4%) | 9 (10.7%) | |
Washout/Revision for Infection | 6 (8.2%) | 2 (10.5%) | 4 (7.4%) | |
CKD Stage pre-operatively | ||||
Mild | 220 (71.2%) | 169 (74.4%) | 51 (62.2%) | |
Moderate/Severe | 89 (28.8%) | 58 (25.6%) | 31 (37.8%) | |
CKD Stage post-operatively | ||||
Mild | 227 (74.4%) | 170 (76.2%) | 57 (69.5%) | |
Moderate/Severe | 78 (25.6%) | 53 (23.8%) | 25 (30.5%) | |
Pre-operative Transfusion | 25 (7.9%) | 21 (9.1%) | 4 (4.8%) | |
Post-operative Transfusion (48 h) | 153 (48.6%) | 111 (47.8%) | 42 (50.6%) | |
Post-operative Transfusion (total) | 192 (61.0%) | 138 (59.5%) | 54 (65.1%) | |
Hb Drop (g/L) | 44.29 ± 18.24 | 44.13 ± 18.30 | 44.72 ± 18.20 | |
Biochemistry | All Patients | Union | Non-Union | |
Adjusted Calcium | Normal | 181 (74.8%) | 141 (79.7%) | 40 (61.5%) |
Low | 61 (25.2%) | 36 (20.3%) | 25 (38.5%) | |
Albumin | Normal | 106 (38.4%) | 79 (38.7%) | 27 (37.5%) |
Low | 170 (61.6%) | 125 (61.3%) | 45 (62.5%) | |
Alkaline Phosphatase High | 55 (20.1%) | 40 (19.9%) | 15 (20.8%) | |
Normal | 201 (73.7%) | 149 (74.1%) | 52 (72.2%) | |
Low | 17 (6.2%) | 12 (6.0%) | 5 (6.9%) | |
Phosphate Normal/High | 201 (82.4%) | 148 (83.1%) | 53 (80.3%) | |
Low | 43 (17.6%) | 30 (16.9%) | 13 (19.7%) | |
TSH | High | 13 (9.2%) | 9 (8.5%) | 4 (11.4%) |
Normal | 126 (89.4%) | 95 (89.6%) | 31 (88.6%) | |
Low | 2 (1.4%) | 2 (1.9%) | 0 (0.0%) | |
Free T4 | High | 20 (14.4%) | 17 (16.2%) | 3 (8.8%) |
Normal | 116 (83.5%) | 85 (81.0%) | 31 (91.2%) | |
Low | 3 (2.1%) | 3 (2.9%) | 0 (0.0%) | |
PTH | High | 62 (48.8%) | 47 (53.4%) | 15 (38.5%) |
Normal | 65 (51.2%) | 41 (46.6%) | 24 (61.5%) | |
Total 25OH Vitamin D Normal | 17 (12.1%) | 13 (12.7%) | 4 (10.3%) | |
Low | 124 (87.9%) | 89 (87.3%) | 35 (89.7%) | |
Radiographic Measurements | All Patients | Union | Non-Union | |
Femoral Neck Shaft Angle | ||||
Normal | 209 (67.4%) | 150 (65.8%) | 59 (72.0%) | |
Coxa Valga | 89 (28.7%) | 70 (30.7%) | 19 (23.2%) | |
Coxa Vara | 12 (3.9%) | 8 (3.5%) | 4 (4.9%) | |
Number of fragments | Simple | 88 (28.0%) | 58 (25.0%) | 30 (36.6%) |
(Comminution) | Moderate | 153 (48.8%) | 131 (56.5%) | 22 (26.8%) |
Severe | 73 (23.2%) | 43 (18.5%) | 30 (36.6%) | |
Isolated Subtrochanteric Extension | 49 (15.6%) | 33 (14.2%) | 16 (19.5%) | |
Atypical | 20 (6.4%) | 7 (3.0%) | 13 (15.9%) | |
Pathological | 11 (3.5%) | 7 (3.0%) | 4 (4.9%) | |
Distal Extension | 123 (39.2%) | 91 (39.2%) | 32 (39.0%) | |
Lesser Trochanter Fracture | 203 (64.6%) | 154 (66.4%) | 49 (59.8%) | |
Medial Calcar Comminution | 21 (6.7%) | 16 (6.9%) | 5 (6.1%) | |
Lateral Cortex Gap Size | ≤4 | 191 (60.4%) | 159 (68.5%) | 32 (38.1%) |
(mm) | 5–9 | 85 (26.9%) | 48 (20.7%) | 37 (44.0%) |
≥10 | 40 (12.7%) | 25 (10.8%) | 15 (17.9%) | |
Medial Cortex Gap Size | ≤4 | 210 (66.5%) | 166 (71.6%) | 44 (52.4%) |
(mm) | 5–9 | 72 (22.8%) | 43 (18.5%) | 29 (34.5%) |
≥10 | 34 (10.7%) | 23 (9.9%) | 11 (13.1%) | |
Anterior Cortex Gap Size | ≤4 | 201 (63.6%) | 156 (67.2%) | 45 (53.6%) |
(mm) | 5–9 | 68 (21.5%) | 48 (20.7%) | 20 (23.8%) |
≥10 | 47 (14.9%) | 28 (12.1%) | 19 (22.6%) | |
Posterior Cortex Gap Size | ≤4 | 231 (73.1%) | 185 (79.7%) | 46 (54.8%) |
(mm) | 5–9 | 64 (20.2%) | 34 (14.7%) | 30 (35.7%) |
≥10 | 21 (6.7%) | 13 (5.6%) | 8 (9.5%) | |
Reduction Angle Grouped | ||||
(degrees) | Valgus 5–Varus 5 | 233 (73.7%) | 188 (81.0%) | 45 (53.6%) |
Valgus >5 | 17 (5.4%) | 10 (4.3%) | 7 (8.3%) | |
Varus 5–10 | 52 (16.5%) | 29 (12.5%) | 23 (27.4%) | |
Varus >10 | 14 (4.4%) | 5 (2.2%) | 9 (10.7%) | |
Anti-rotation Screw | 110 (35.6%) | 84 (37.0%) | 26 (31.7%) | |
TAD | <25 | 259 (84.6%) | 193 (86.2%) | 66 (80.5%) |
(mm) | ≥25 | 47 (15.4%) | 31 (13.8%) | 16 (19.5%) |
Distal locking | 1 | 10 (3.2%) | 9 (3.9%) | 1 (1.2%) |
(Number of Screws) | 2 | 306 (96.8%) | 223 (96.1%) | 83 (98.8%) |
Method of locking | ||||
Static Locking | 204 (64.8%) | 153 (66.2%) | 51 (60.7%) | |
Secondary Dynamisation | 108 (34.3%) | 75 (32.5%) | 33 (39.3%) | |
Dynamic | 3 (0.9%) | 3 (1.3%) | 0 (0.0%) | |
Distance of tip of the nail from centre (AP) | ||||
(mm) | −4 to 4 | 200 (63.7%) | 153 (66.5%) | 47 (56.0%) |
Lateral ≥5 | 64 (20.4%) | 41 (17.8%) | 23 (27.4%) | |
Medial ≥5 | 50 (15.9%) | 36 (15.7%) | 14 (16.7%) | |
Distance of tip of the nail from centre (LAT) (mm) | ||||
−4 to 4 | 256 (81.5%) | 186 (80.9%) | 70 (83.3%) | |
Anterior ≥5 | 53 (16.9%) | 41 (17.8%) | 12 (14.3%) | |
Posterior ≥5 | 5 (1.6%) | 3 (1.3%) | 2 (2.4%) | |
Distance of tip of the nail from knee | ||||
(mm) | <10 | 2 (0.6%) | 2 (0.9%) | 0 (0.0%) |
10 to 19 | 24 (7.6%) | 13 (5.7%) | 11 (13.1%) | |
20–29 | 99 (31.5%) | 78 (33.9%) | 21 (25.0%) | |
≥30 | 189 (60.3%) | 137 (59.6%) | 52 (61.9%) | |
Nail/Canal Ratio | 0.82 ± 0.08 | 0.82 ± 0.08 | 0.83 ± 0.07 | |
Hospital Stay | All Patients | Union | Non-Union | |
HDU/ICU stay | 36 (11.4%) | 21 (9.1%) | 15 (17.9%) | |
Total length of hospital stay (days) | 21.26 ± 19.19 | 20.74 ± 18.00 | 22.69 ± 22.22 | |
Weekend admission | 105 (33.2%) | 76 (32.8%) | 29 (34.5%) |
Medical Comorbidities | Unadjusted OR (95% CI) | p-Value | |
Diabetes | 2.10 (1.07–4.13) | 0.031 | |
Operation Characteristics | Unadjusted OR (95% CI) | p-Value | |
Post-op Mobilisation | FWB | Ref | Ref |
(first 6 weeks) | PWB | 1.23 (0.66–2.28) | 0.522 |
TTWB | 0.79 (0.358–1.73) | 0.553 | |
NWB | 2.74 (1.30–5.81) | 0.008 | |
Complications | Unadjusted OR (95% CI) | p-Value | |
Nail complications | 6.41 (3.65–1.24) | <0.001 | |
Failure at lag screw junction | 87.10 (11.54–657.56) | <0.001 | |
Self-dynamisation | 9.87 (3.46–28.13) | <0.001 | |
Cut-out | 14.62 (1.68–127.05) | 0.015 | |
Wound infection | Superficial | 3.93 (1.16–13.27) | 0.028 |
Deep | 29.48 (3.67–236.74) | 0.001 | |
CKD Stage pre-operatively | |||
Mild | Ref | Ref | |
Moderate/Severe | 1.77 (1.04–3.03) | 0.037 | |
Biochemistry | Unadjusted OR (95% CI) | p-Value | |
Adjusted Calcium | Normal | Ref | Ref |
Low | 2.45 (1.32–4.55) | 0.005 | |
Radiographic Measurements | Unadjusted OR (95% CI) | p-Value | |
Number of fragments | |||
(Comminution) | Moderate | Ref | Ref |
Simple -Severe | 0.28 (0.16–0.49) | <0.001 | |
Atypical | 6.06 (2.32–15.78) | <0.001 | |
Lateral Cortex Gap Size | ≤4 | Ref | Ref |
(mm) | ≥5 | 3.54 (2.10–5.96) | <0.001 |
Medial Cortex Gap Size | ≤4 | Ref | Ref |
(mm) | 5–9 | 2.54 (1.43–4.53) | 0.001 |
≥10 | 1.80 (0.82–3.98) | 0.144 | |
Anterior Cortex Gap Size | ≤4 | Ref | Ref |
(mm) | 5–9 | 1.44 (0.78–2.68) | 0.244 |
≥10 | 2.35 (1.20–4.60) | 0.012 | |
Posterior Cortex Gap Size | ≤4 | Ref | Ref |
(mm) | 5–9 | 3.55 (1.97–6.39) | <0.001 |
≥10 | 2.48 (0.97–6.32) | 0.058 | |
Reduction Angle Grouped | |||
(degrees) | Varus <5 | Ref | Ref |
Varus 5–10 | 3.02 (1.61–5.65) | 0.001 | |
Varus >10 | 6.85 (2.20–21.33) | 0.001 | |
Hospital Stay | p-Value | ||
HDU/ICU stay | 2.18 (1.07–4.47) | 0.033 |
A Model 1: Associations with progression to non-union, including self-dynamisation; OR: Odds Ratio | |||||
Model 1 | Score | β Coefficient | Standard Error | Adjusted OR (95% CI) | p-Value |
Diabetes | 5 | 0.79 | 0.45 | 2.20 (0.92–5.25) | 0.077 |
Self-dynamisation | 20 | 3.03 | 0.63 | 20.74 (6.09–70.68) | <0.001 |
Wound infection (Deep) | 29 | 4.35 | 1.14 | 77.80 (8.26–732.71) | <0.001 |
Degree of comminution (Simple or Severe) | 11 | 1.62 | 0.37 | 5.05 (2.44–10.46) | <0.001 |
Atypical | 11 | 1.59 | 0.58 | 4.92 (1.58–15.37) | 0.006 |
Lateral Cortex Gap Size (≥5 mm) | 10 | 1.44 | 0.36 | 4.24 (2.12–8.50) | <0.001 |
Reduction Angle (Varus 5–10 degrees) | 7 | 1.01 | 0.42 | 2.75 (1.21–6.23) | 0.016 |
Reduction Angle (Varus >10 degrees) | 15 | 2.34 | 0.71 | 10.33 (2.59–41.26) | 0.001 |
B Model 2: Associations witd progression to non-union, not including self-dynamisation; OR: Odds Ratio | |||||
Model 2 | Score | β Coefficient | Standard Error | Adjusted OR (95% CI) | p-Value |
Diabetes | 6 | 0.70 | 0.42 | 2.02 (0.88–4.63) | 0.096 |
Wound infection (Deep) | 35 | 3.97 | 1.12 | 53.05 (5.87–479.64) | <0.001 |
Degree of comminution (Simple or Severe) | 13 | 1.50 | 0.34 | 4.47 (2.29–8.74) | <0.001 |
Atypical | 14 | 1.53 | 0.55 | 4.63 (1.58–13.56) | 0.005 |
Lateral Cortex Gap Size (≥5 mm) | 11 | 1.21 | 0.32 | 3.37 (1.78–6.36) | <0.001 |
Reduction Angle (Varus 5–10 degrees) | 9 | 1.02 | 0.39 | 2.76 (1.30–5.88) | 0.008 |
Reduction Angle (Varus >10 degrees) | 20 | 2.27 | 0.70 | 9.71 (2.51–37.49) | 0.001 |
Non-Union Risk Score | Probability of Non-Union |
---|---|
0 | 4.0% |
6 | 7.6% |
9 | 10.3% |
13 | 15.2% |
14 | 16.7% |
15 | 18.3% |
19 | 26.0% |
20 | 28.2% |
22 | 33.0% |
23 | 35.5% |
26 | 43.5% |
27 | 46.3% |
28 | 49.1% |
33 | 62.8% |
35 | 67.9% |
36 | 70.3% |
39 | 76.8% |
41 | 80.6% |
42 | 82.3% |
44 | 85.3% |
47 | 89.0% |
48 | 90.1% |
54 | 94.7% |
63 | 98.0% |
100 * | 100.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panteli, M.; Vun, J.S.H.; West, R.M.; Howard, A.J.; Pountos, I.; Giannoudis, P.V. Development and Validation of a Post-Operative Non-Union Risk Score for Subtrochanteric Femur Fractures. J. Clin. Med. 2021, 10, 5632. https://doi.org/10.3390/jcm10235632
Panteli M, Vun JSH, West RM, Howard AJ, Pountos I, Giannoudis PV. Development and Validation of a Post-Operative Non-Union Risk Score for Subtrochanteric Femur Fractures. Journal of Clinical Medicine. 2021; 10(23):5632. https://doi.org/10.3390/jcm10235632
Chicago/Turabian StylePanteli, Michalis, James S. H. Vun, Robert M. West, Anthony J. Howard, Ippokratis Pountos, and Peter V. Giannoudis. 2021. "Development and Validation of a Post-Operative Non-Union Risk Score for Subtrochanteric Femur Fractures" Journal of Clinical Medicine 10, no. 23: 5632. https://doi.org/10.3390/jcm10235632
APA StylePanteli, M., Vun, J. S. H., West, R. M., Howard, A. J., Pountos, I., & Giannoudis, P. V. (2021). Development and Validation of a Post-Operative Non-Union Risk Score for Subtrochanteric Femur Fractures. Journal of Clinical Medicine, 10(23), 5632. https://doi.org/10.3390/jcm10235632