Hormonal Characteristics of Women Receiving Ovarian Tissue Transplantation with or without Endogenous Ovarian Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Cryopreservation and Transplantation of Ovarian Tissue
2.3. Follow-Up after Transplantation
2.4. Statistical Methods
3. Results
Patient Characteristics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Westergaard, C.G.; Byskov, A.G.; Andersen, C.Y. Morphometric characteristics of the primordial to primary follicle transi-tion in the human ovary in relation to age. Hum. Reprod. 2007, 22, 2225–2231. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.Y.; Mamsen, L.S.; Kristensen, S.G. FERTILITY PRESERVATION: Freezing of ovarian tissue and clinical opportunities. Reproduction 2019, 158, F27–F34. [Google Scholar] [CrossRef]
- Kristensen, S.G.; Liu, Q.; Mamsen, L.S.; Greve, T.; Pors, S.E.; Bjørn, A.B.; Ernst, E.; Macklon, K.T.; Andersen, C.Y. A simple method to quantify follicle survival in cryopreserved human ovarian tissue. Hum. Reprod. 2018, 33, 2276–2284. [Google Scholar] [CrossRef]
- Dolmans, M.-M.; Donnez, J.; Cacciottola, L. Fertility Preservation: The Challenge of Freezing and Transplanting Ovarian Tissue. Trends Mol. Med. 2021, 27, 777–791. [Google Scholar] [CrossRef]
- Andersen, C.Y.; Kristensen, S.G.; Greve, T.; Schmidt, K.T. Cryopreservation of ovarian tissue for fertility preservation in young female oncological patients. Futur. Oncol. 2012, 8, 595–608. [Google Scholar] [CrossRef]
- Baird, D.T.; Webb, R.; Campbell, B.K.; Harkness, L.M.; Gosden, R.G. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at −196 °C. Endocrinology 1999, 140, 462–471. [Google Scholar] [CrossRef]
- Nugent, D.; Newton, H.; Gallivan, L.; Gosden, R.G. Protective effect of vitamin E on ischaemia-reperfusion injury in ovarian grafts. J. Reprod. Fertil. 1998, 114, 341–346. [Google Scholar] [CrossRef] [Green Version]
- Nisolle, M.; Casanas-Roux, F.; Qu, J.; Motta, P.; Donnez, J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil. Steril. 2000, 74, 122–129. [Google Scholar] [CrossRef]
- Mamsen, L.S.; Olesen, H.Ø.; Pors, S.E.; Hu, X.; Bjerring, P.; Christiansen, K.; Adrados, C.S.; Andersen, C.Y.; Kristensen, S.G. Effects of Er:YAG laser treatment on re-vascularization and follicle survival in frozen/thawed human ovarian cortex transplanted to immunodeficient mice. J. Assist. Reprod. Genet. 2021. [Google Scholar] [CrossRef]
- Dolmans, M.-M.; von Wolff, M.; Poirot, C.; Diaz-Garcia, C.; Cacciottola, L.; Boissel, N.; Liebenthron, J.; Pellicer, A.; Donnez, J.; Andersen, C.Y. Transplantation of cryopreserved ovarian tissue in a series of 285 women: A review of five leading European centers. Fertil. Steril. 2021, 115, 1102–1115, in press. [Google Scholar] [CrossRef]
- Greve, T.; Schmidt, K.T.; Kristensen, S.G.; Ernst, E.; Andersen, C.Y. Evaluation of the ovarian reserve in women transplanted with frozen and thawed ovarian cortical tissue. Fertil. Steril. 2012, 97, 1394–1398.e1. [Google Scholar] [CrossRef]
- Demeestere, I.; Simon, P.; Emiliani, S.; Delbaere, A.; Englert, Y. Orthotopic and heterotopic ovarian tissue transplantation. Hum. Reprod. Updat. 2009, 15, 649–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shikanov, A.; Zhang, Z.; Xu, M.; Smith, R.M.; Rajan, A.; Woodruff, T.; Shea, L.D. Fibrin Encapsulation and Vascular Endothelial Growth Factor Delivery Promotes Ovarian Graft Survival in Mice. Tissue Eng. Part A 2011, 17, 3095–3104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, A.; Nakamura, H.; Tabata, Y.; Fujimori, Y.; Kumasawa, K.; Kimura, T. Effect of sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogels on frozen-thawed human ovarian tissue in a xenograft model. J. Obstet. Gynaecol. Res. 2018, 44, 1947–1955. [Google Scholar] [CrossRef]
- Suzuki, H.; Ishijima, T.; Maruyama, S.; Ueta, Y.Y.; Abe, Y.; Saitoh, H. Beneficial effect of desialylated erythropoietin administration on the frozen-thawed canine ovarian xenotransplantation. J. Assist. Reprod. Genet. 2008, 25, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.J.; Lee, H.J.; Lee, J.; Youm, H.W.; Lee, J.R.; Suh, C.S.; Kim, S.H. The beneficial effects of polyethylene glycol-superoxide dis-mutase on ovarian tissue culture and transplantation. J. Assist. Reprod. Genet. 2015, 32, 1561–1569. [Google Scholar] [CrossRef] [Green Version]
- Manavella, D.; Cacciottola, L.; Desmet, C.M.; Jordan, B.F.; Donnez, J.; Amorim, C.A.; Dolmans, M.M. Adipose tissue-derived stem cells in a fibrin implant enhance neovascularization in a peritoneal grafting site: A potential way to improve ovarian tissue transplantation. Hum. Reprod. 2018, 33, 270–279. [Google Scholar] [CrossRef]
- Manavella, D.; Cacciottola, L.; Payen, V.L.; Amorim, C.A.; Donnez, J.; Dolmans, M.M. Adipose tissue-derived stem cells boost vascularization in grafted ovarian tissue by growth factor secretion and differentiation into endothelial cell lineages. Mol. Hum. Reprod. 2019, 25, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Shojafar, E.; Mehranjani, M.S.; Shariatzadeh, S.M.A. Adipose derived mesenchymal stem cells improve the structure and function of autografted mice ovaries through reducing oxidative stress and inflammation: A stereological and bio-chemical analysis. Tissue Cell 2019, 56, 23–30. [Google Scholar] [CrossRef]
- Au, P.; Tam, J.; Fukumura, D.; Jain, R.K. Bone marrow–derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 2008, 111, 4551–4558. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Lu, J.; Ding, C.; Zou, Q.; Wang, W.; Li, H. Exosomes derived from human adipose mesenchymal stem cells improve ovary function of premature ovarian insufficiency by targeting SMAD. Stem Cell Res. Ther. 2018, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Silber, S.; Andersen, C.Y.; Demeestere, I.; Piver, P.; Meirow, D.; Pellicer, A.; Dolmans, M.M. Children born after autotrans-plantation of cryopreserved ovarian tissue. A review of 13 live births. Ann. Med. 2011, 43, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Dolmans, M.M.; Pellicer, A.; Diaz-Garcia, C.; Serrano, M.S.; Schmidt, K.T.; Ernst, E.; Luyckx, V.; Andersen, C.Y. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: A review of 60 cases of reimplantation. Fertil. Steril. 2013, 99, 1503–1513. [Google Scholar] [CrossRef]
- Macklon, K.T.; Jensen, A.K.; Loft, A.; Ernst, E.; Andersen, C.Y. Treatment history and outcome of 24 deliveries worldwide after autotransplantation of cryopreserved ovarian tissue, including two new Danish deliveries years after autotransplantation. J. Assist. Reprod. Genet. 2014, 31, 1557–1564. [Google Scholar] [CrossRef] [Green Version]
- Hornshøj, V.G.; Dueholm, M.; Mamsen, L.S.; Ernst, E.; Andersen, C.Y. Hormonal response in patients transplanted with cryo-preserved ovarian tissue is independent of whether freezing was performed in childhood or in adulthood. J. Assist. Reprod. Genet. 2021, 1–7. [Google Scholar] [CrossRef]
- Silber, S.J.; DeRosa, M.; Goldsmith, S.; Fan, Y.; Castleman, L.; Melnick, J. Cryopreservation and transplantation of ovarian tissue: Results from one center in the USA. J. Assist. Reprod. Genet. 2018, 35, 2205–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gougeon, A. Regulation of ovarian follicular development in primates: Facts and hypotheses. Endocr. Rev. 1996, 17, 121–155. [Google Scholar] [CrossRef]
- Andersen, C.Y.; Byskov, A.G.; Andersen, A.N. Cryopreservation of human ovarian tissue. Ugeskr. Laeger 2001, 163, 5007–5013. [Google Scholar]
- Dewailly, D.; Andersen, C.Y.; Balen, A.; Broekmans, F.; Dilaver, N.; Fanchin, R.; Griesinger, G.; Kelsey, T.; La Marca, A.; Lambalk, C.; et al. The physiology and clinical utility of anti-Müllerian hormone in women. Hum. Reprod. Updat. 2014, 20, 370–385. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, J.V.; Anderson, R.A.; Kelsey, T.W.; Christiansen, S.L.; Kristensen, S.G.; Jayaprakasan, K.; Raine-Fenning, N.; Campbell, B.K.; Andersen, C.Y. Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol. Hum. Reprod. 2013, 19, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janse, F.; Donnez, J.; Anckaert, E.; De Jong, F.H.; Fauser, B.C.; Dolmans, M.-M. Limited Value of Ovarian Function Markers following Orthotopic Transplantation of Ovarian Tissue after Gonadotoxic Treatment. J. Clin. Endocrinol. Metab. 2011, 96, 1136–1144. [Google Scholar] [CrossRef] [Green Version]
- Wallace, W.; Kelsey, T. Human ovarian reserve from conception to the menopause. PLoS ONE 2010, 5, e8772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabinovici, J.; Blankstein, J.; Goldman, B.; Rudak, E.; Dor, Y.; Pariente, C.; Geier, A.; Lunenfeld, B.; Mashiach, S. In vitro fertilization and primary embryonic cleavage are possible in 17 alpha-hydroxylase deficiency despite extremely low intrafollicular 17 beta-estradiol. J. Clin. Endocrinol. Metab. 1989, 68, 693–697. [Google Scholar] [CrossRef]
- Morselli, E.; Santos, R.S.; Criollo, A.; Nelson, M.D.; Palmer, B.F.; Clegg, D.J. The effects of oestrogens and their receptors on cardiometabolic health. Nat. Rev. Endocrinol. 2017, 13, 352–364. [Google Scholar] [CrossRef]
- Felty, Q. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling. BMC Cardiovasc. Disord. 2006, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, K.; Banerjee, S.; Saxena, N.K.; Banerjee, S.K. Thombospondin-1 disrupts estrogen-induced endothelial cell proliferation and migration and its expression is suppressed by estradiol. Mol. Cancer Res. 2004, 2, 150–158. [Google Scholar] [PubMed]
- Geraldes, P.; Sirois, M.G.; Tanguay, J.F. Specific contribution of estrogen receptors on mitogen-activated protein kinase path-ways and vascular cell activation. Circ. Res. 2003, 93, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Gellert, S.E.; Pors, S.E.; Kristensen, S.G.; Bay-Bjørn, A.M.; Ernst, E.; Andersen, C.Y. Transplantation of frozen-thawed ovarian tissue: An update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J. Assist. Reprod. Genet. 2018, 35, 561–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. Women | Age at OTC (years) | No. Cortical Pieces Frozen | Ovarian Volume (mL) | Age at OTT (years) | No. Pieces Transplanted | % of One Ovary Grafted * | |
---|---|---|---|---|---|---|---|
Postmenopausal (FSH: >40 IU/L) | 51 | 26 ± 1.1 * (9–39) (27.6) | 23 ± 1.1 (9–49) (22) | 6.6 ± 0.5 (1.8–12.2) (6.0) | 31 ± 0.8 * (14–42) (31.2) | 9.5 ± 0.4 * (2–16) (10) | 43 ± 1.7 * (18–77) (42) |
Not menopausal FSH: ≤40 IU/L) | 23 | 30 ± 1.2 * (15–37) (30.7) | 21 ± 1.2 (8–31) (21) | 7.0 ± 0.8 (2.1–18.3) (6.2) | 35 ± 1.1 * (26–44) (35.9) | 11 ± 0.9 * (5–22) (10) | 59 ± 4.3 * (21–100) (55) |
No. Women | AMH Measurements below DL Prior to OTT | Pt. with AMH Increase | Age at OTC | Age at OTT | % Tissue Grafted | Age at OTC | Age at OTT | % Tissue Grafted | |||
---|---|---|---|---|---|---|---|---|---|---|---|
AMH | Postmenopausal | 29 | 81% * | 12 (41%) | 26 ± 1.7 (9–38) | 31 ± 1.2 (20–42) | 44 ± 2.5 (20–77) | AMH increased | 22 ± 2.7 ** (9–22) | 28 ± 1.8 ** (20–37) | 49 ± 2.7 (29–64) |
No increase | 29 ± 2.0 ** (9–39) | 36 ± 1.6 ** (20–37) | 43 ± 3.9 (20–77) | ||||||||
Non-menopausal | 19 | 41% * | 13 (68%) | 30 ± 1.4 (15–37) | 35 ± 1.3 (26–44) | 56 ± 4.5 (24–100) | AMH increased | 27 ± 1.9 ** (15–37) | 33 ± 1.6 ** (26-41) | 55 ± 5.4 (24-100) | |
No increase | 33 ± 1.4 ** (26–37) | 39 ± 1.6 ** (31–44) | 59 ± 8.3 (24–96) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hornshøj Greve, V.; Dueholm, M.; Mamsen, L.S.; Kristensen, S.G.; Ernst, E.; Andersen, C.-Y. Hormonal Characteristics of Women Receiving Ovarian Tissue Transplantation with or without Endogenous Ovarian Activity. J. Clin. Med. 2021, 10, 5217. https://doi.org/10.3390/jcm10225217
Hornshøj Greve V, Dueholm M, Mamsen LS, Kristensen SG, Ernst E, Andersen C-Y. Hormonal Characteristics of Women Receiving Ovarian Tissue Transplantation with or without Endogenous Ovarian Activity. Journal of Clinical Medicine. 2021; 10(22):5217. https://doi.org/10.3390/jcm10225217
Chicago/Turabian StyleHornshøj Greve, Vinnie, Margit Dueholm, Linn Salto Mamsen, Stine Gry Kristensen, Erik Ernst, and Claus-Yding Andersen. 2021. "Hormonal Characteristics of Women Receiving Ovarian Tissue Transplantation with or without Endogenous Ovarian Activity" Journal of Clinical Medicine 10, no. 22: 5217. https://doi.org/10.3390/jcm10225217
APA StyleHornshøj Greve, V., Dueholm, M., Mamsen, L. S., Kristensen, S. G., Ernst, E., & Andersen, C.-Y. (2021). Hormonal Characteristics of Women Receiving Ovarian Tissue Transplantation with or without Endogenous Ovarian Activity. Journal of Clinical Medicine, 10(22), 5217. https://doi.org/10.3390/jcm10225217