The Effects of Sex and Body Weight on Renal Graft Function—The Role of CCL2
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. CCL2/MCP-1
3.2. CCL2/BMI
3.3. CCL2/Short- and Long-Term Renal Graft Function
4. Materials and Methods
4.1. Patients
4.2. Methods
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Saat, T.C.; van den Akker, E.K.; IJzermans, J.N.M.; Dor, F.J.M.F.; de Bruin, R.W.F. Improving the Outcome of Kidney Transplantation by Ameliorating Renal Ischemia Reperfusion Injury: Lost in Translation? J. Transl. Med. 2016, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Jiang, H.; Wang, B.; Sui, W.; Zhou, H.; Zou, G. Expression and Significance of RANTES and MCP-1 in Renal Tissue with Chronic Renal Allograft Dysfunction. Transplant. Proc. 2016, 48, 2034–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, J.; Rush, D.N.; Gibson, I.W.; Karpinski, M.; Storsley, L.; Bestland, J.; Stefura, W.; Hayglass, K.T.; Nickerson, P.W. Early Urinary CCL2 Is Associated with the Later Development of Interstitial Fibrosis and Tubular Atrophy in Renal Allografts. Transplantation 2010, 90, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Boratyńska, M.; Kamińska, D.; Mazanowska, O. Patofizjologia Uszkodzenia Niedokrwienno-Reperfuzyjnego w Przeszczepianiu Nerek Patophysiology of Ischemia-Reperfusion Injury in Renal Transplantation. Postepy Hig. Med. Dosw. 2004, 58, 1–8. [Google Scholar]
- Rakotoarivelo, V.; Variya, B.; Langlois, M.F.; Ramanathan, S. Chemokines in Human Obesity. Cytokine 2020, 127, 154953. [Google Scholar] [CrossRef]
- Harakeh, S.; Kalamegam, G.; Pushparaj, P.N.; Al-Hejin, A.; Alfadul, S.M.; Al Amri, T.; Barnawi, S.; Al Sadoun, H.; Mirza, A.A.; Azhar, E. Chemokines and Their Association with Body Mass Index among Healthy Saudis. Saudi J. Biol. Sci. 2020, 27, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Glintborg, D.; Andersen, M.; Richelsen, B.; Bruun, J.M. Plasma Monocyte Chemoattractant Protein-1 (MCP-1) and Macrophage Inflammatory Protein-1α Are Increased in Patients with Polycystic Ovary Syndrome (PCOS) and Associated with Adiposity, but Unaffected by Pioglitazone Treatment. Clin. Endocrinol. 2009, 71, 652–658. [Google Scholar] [CrossRef]
- Sun, H.; Shao, X.; He, J.; Golos, M.; Shi, B. Role of the MTOR-FOXO1 Pathway in Obesity-Associated Renal Tubulointerstitial Inflammation. Mol. Med. Rep. 2019, 19, 1284–1293. [Google Scholar] [CrossRef] [Green Version]
- Dabrowska-Zamojcin, E.; Romanowski, M.; Dziedziejko, V.; Maciejewska-Karlowska, A.; Sawczuk, M.; Safranow, K.; Domanski, L.; Pawlik, A. CCL2 Gene Polymorphism Is Associated with Post-Transplant Diabetes Mellitus. Int. Immunopharmacol. 2016, 32, 62–65. [Google Scholar] [CrossRef]
- Hirt-Minkowski, P.; Rush, D.N.; Gao, A.; Hopfer, H.; Wiebe, C.; Nickerson, P.W.; Schaub, S.; Ho, J. Six-Month Urinary CCL2 and CXCL10 Levels Predict Long-Term Renal Allograft Outcome. Transplantation 2016, 100, 1988–1996. [Google Scholar] [CrossRef]
- Panee, J. Monocyte Chemoattractant Protein 1 (MCP-1) in Obesity and Diabetes. Cytokine 2012, 60, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Morreale, H.F.; Martínez-García, M.Á.; Montes-Nieto, R.; Fernández-Durán, E.; Temprano-Carazo, S.; Luque-Ramírez, M. Effects of Glucose Ingestion on Circulating Inflammatory Mediators: Influence of Sex and Weight Excess. Clin. Nutr. 2017, 36, 522–529. [Google Scholar] [CrossRef]
- Rakotoarivelo, V.; Lacraz, G.; Mayhue, M.; Brown, C.; Rottembourg, D.; Fradette, J.; Ilangumaran, S.; Menendez, A.; Langlois, M.F.; Ramanathan, S. Inflammatory Cytokine Profiles in Visceral and Subcutaneous Adipose Tissues of Obese Patients Undergoing Bariatric Surgery Reveal Lack of Correlation with Obesity or Diabetes. EBioMedicine 2018, 30, 237–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizian, M.; Mahdipour, E.; Mirhafez, S.R.; Shoeibi, S.; Nematy, M.; Esmaily, H.; Ferns, G.A.; Ghayour-Mobarhan, M. Cytokine Profiles in Overweight and Obese Subjects and Normal Weight Individuals Matched for Age and Gender. Ann. Clin. Biochem. 2016, 53, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, S.-H.; Jung, E.S.; Kim, J.-S.; Shim, C.Y.; Ko, Y.-G.; Choi, D.; Jang, Y.; Chung, N.; Ha, J.-W. Visceral Adiposity and the Severity of Coronary Artery Disease in Middle-Aged Subjects with Normal Waist Circumference and Its Relation with Lipocalin-2 and MCP-1. Atherosclerosis 2010, 213, 592–597. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef]
- Barbosa-Desongles, A.; Hernández, C.; Simó, R.; Selva, D.M. Testosterone Induces Cell Proliferation and Cell Cycle Gene Overexpression in Human Visceral Preadipocytes. Am. J. Physiol.-Cell Physiol. 2013, 305, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasanthakumar, A.; Chisanga, D.; Blume, J.; Gloury, R.; Britt, K.; Henstridge, D.C.; Zhan, Y.; Torres, S.V.; Liene, S.; Collins, N.; et al. Sex-Specific Adipose Tissue Imprinting of Regulatory T Cells. Nature 2020, 579, 581–585. [Google Scholar] [CrossRef]
- Crisosto, N.; Flores, C.; Maliqueo, M.; Echiburú, B.; Vásquez, J.; Maluenda, F.; Sir-Petermann, T. Testosterone Increases CCL-2 Expression in Visceral Adipose Tissue from Obese Women of Reproductive Age. Mol. Cell. Endocrinol. 2017, 444, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Sartipy, P.; Loskutoff, D.J. Monocyte Chemoattractant Protein 1 in Obesity and Insulin Resistance. Proc. Natl. Acad. Sci. USA 2003, 100, 7265–7270. [Google Scholar] [CrossRef] [Green Version]
- Tamura, Y.; Sugimoto, M.; Murayama, T.; Ueda, Y.; Kanamori, H.; Ono, K.; Ariyasu, H.; Akamizu, T.; Kita, T.; Yokode, M.; et al. Inhibition of CCR2 Ameliorates Insulin Resistance and Hepatic Steatosis in Db/Db Mice. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 2195–2201. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Ornelas, M.-O.; Petri, M.H.; Vázquez-Del Mercado, M.; Chavarría-Ávila, E.; Corona-Meraz, F.-I.; Ruíz-Quezada, S.-L.; Madrigal-Ruíz, P.-M.; Castro-Albarrán, J.; Sandoval-García, F.; Navarro-Hernández, R.-E. CCL2 Serum Levels and Adiposity Are Associated with the Polymorphic Phenotypes -2518A on CCL2 and 64ILE on CCR2 in a Mexican Population with Insulin Resistance. J. Diabetes Res. 2016, 2016, 5675739. [Google Scholar] [CrossRef]
- Malyszko, J.; Lukaszyk, E.; Glowinska, I.; Durlik, M. Biomarkers of Delayed Graft Function as a Form of Acute Kidney Injury in Kidney Transplantation. Sci. Rep. 2015, 5, 11684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, C.J.; Courtney, A.E.; Cardwell, C.R.; Maxwell, A.P.; Lucarelli, G.; Veroux, M.; Furriel, F.; Cannon, R.M.; Hoogeveen, E.K.; Doshi, M.; et al. Recipient Obesity and Outcomes after Kidney Transplantation: A Systematic Review and Meta-Analysis. Nephrol. Dial. Transplant 2015, 30, 1403–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sood, A.; Hakim, D.N.; Hakim, N.S. Consequences of Recipient Obesity on Postoperative Outcomes in a Renal Transplant: A Systematic Review and Meta-Analysis. Exp. Clin. Transplant. 2016, 14, 121–128. [Google Scholar] [PubMed]
- Liese, J.; Bottner, N.; Büttner, S.; Reinisch, A.; Woeste, G.; Wortmann, M.; Hauser, I.A.; Bechstein, W.O.; Ulrich, F. Influence of the Recipient Body Mass Index on the Outcomes after Kidney Transplantation. Langenbecks Arch. Surg. 2018, 403, 73–82. [Google Scholar] [CrossRef]
- Kieszek, R.; Kwiatkowski, A.; Jędrzejko, K.; Domagała, P.; Bieniasz, M.; Wszoła, M.; Drozdrowski, J.; Tomaszek, A.; Gozdowska, J.; Zygier, D. Impact of Pretransplant Body Mass Index on Early Kidney Graft Function. Transplant. Proc. 2014, 46, 2689–2691. [Google Scholar] [CrossRef]
- Erturk, T.; Berber, I.; Cakir, U. Effect of Obesity on Clinical Outcomes of Kidney Transplant Patients. Transplant. Proc. 2019, 51, 1093–1095. [Google Scholar] [CrossRef]
- Kanthawar, P.; Mei, X.; Daily, M.F.; Chandarana, J.; Shah, M.; Berger, J.; Castellanos, A.L.; Marti, F.; Gedaly, R. Kidney Transplant Outcomes in the Super Obese: A National Study from the UNOS Dataset. World J. Surg. 2016, 40, 2808–2815. [Google Scholar] [CrossRef]
- Ho, J.; Wiebe, C.; Gibson, I.W.; Hombach-Klonisch, S.; Gao, A.; Rigatto, C.; Karpinski, M.; Storsley, L.; Nickerson, P.W.; Rush, D.N. Elevated Urinary CCL2: Cr at 6 Months Is Associated with Renal Allograft Interstitial Fibrosis and Inflammation at 24 Months. Transplantation 2014, 98, 39–46. [Google Scholar] [CrossRef]
- Toki, D.; Zhang, W.; Hor, K.L.M.; Liuwantara, D.; Alexander, S.I.; Yi, Z.; Sharma, R.; Chapman, J.R.; Nankivell, B.J.; Murphy, B.; et al. The Role of Macrophages in the Development of Human Renal Allograft Fibrosis in the First Year after Transplantation: Role of Macrophages in Renal Graft Fibrosis. Am. J. Transpl. 2014, 14, 2126–2136. [Google Scholar] [CrossRef] [PubMed]
- Park, W.D.; Griffin, M.D.; Cornell, L.D.; Cosio, F.G.; Stegall, M.D. Fibrosis with Inflammation at One Year Predicts Transplant Functional Decline. J. Am. Soc. Nephrol. 2010, 21, 1987–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Recipients | W (n = 23) | M (n = 26) | p | ||||
---|---|---|---|---|---|---|---|
ME | SD | MEAN | ME | SD | MEAN | ||
Age | 43.1 | 12.4 | 41 | 48 | 13.6 | 49.8 | 0.027332 |
BMI at Tx | 21.4 | 2.9 | 22 | 25.8 | 3.9 | 26.3 | 0.000403 |
BMI at last appointment | 22.9 | 3.4 | 23.6 | 27.7 | 4.1 | 27.8 | 0.000613 |
Time from Tx (months) | 87.2 | 56.1 | 92 | 54 | 44.9 | 61 | NS |
Duration of dialysis prior to Tx (months) | 14 | 26.5 | 25.6 | 14.5 | 21.7 | 22.46 | NS |
PRA | 3 | 18.9 | 11.46 | 0 | 13.9 | 6.22 | NS |
CIT (min) | 1170 | 667.4 | 1139 | 1108 | 446.7 | 1095.5 | NS |
Mismatch | NS | ||||||
A | 1 | 1 | 0.8 | 1 | 0.7 | 0.7 | |
B | 1 | 0.7 | 0.8 | 1 | 0.64 | 0.7 | |
DR | 1 | 0.5 | 0.94 | 1.1 | 0.64 | 1.1 | |
ZENITH eGFR | 57.5 | 18.5 | 62 | 58.06 | 16.11 | 58.5 | NS |
eGFR at 1 year | 48.2 | 19.5 | 51.1 | 43.2 | 16.5 | 45.2 | NS |
eGFR at 2 years | 48.9 | 17.9 | 51.1 | 45.3 | 16.4 | 45.8 | NS |
eGFR at 3 years | 48.2 | 12.8 | 51.6 | 44.2 | 16.7 | 44 | NS |
eGFR at 4 years | 50.9 | 19.8 | 56 | 42.32 | 14.84 | 40.4 | 0.0248 |
eGFR at 5 years | 57.47 | 21.4 | 58.6 | 36.9 | 10.22 | 34.5 | 0.000677 |
CCL2 (pg/mL) | 166 | 93.7 | 192 | 228.6 | 87 | 233 | 0.047 |
% | |||||||
AF | 4/23 (17.4%) | 7/26 (27%) | 0.049 | ||||
DGF | 5/23(22%) | 7/26 (27%) | 0.049 |
DGF POSITIVE | DGF NEGATIVE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ME | MIN | MAX | MEAN | SD | ME | MIN | MAX | MEAN | SD | p | |
BMI at Tx | 24.9 | 20.1 | 34.8 | 26.2 | 4 | 22.7 | 16.3 | 31.2 | 23.5 | 3.85 | 0.039 |
Donor Characteristics | W | M | p | ||||
---|---|---|---|---|---|---|---|
ME | MEAN | SD | ME | MEAN | SD | ||
Age | 41 | 43.7 | 15 | 49 | 49.7 | 11 | NS |
BMI | 23.4 | 24.1 | 3.2 | 23.5 | 25.8 | 3.7 | NS |
eGFR (mL/min/1.73 m2) | 72 | 91.45 | 6.1 | 75 | 84.9 | 40 | NS |
Sodium concentration (mmol/L) | 146.5 | 149.6 | 9.34 | 146 | 148.9 | 10.74 | NS |
N | ME | MIN | MAX | MEAN | SD | |
---|---|---|---|---|---|---|
Time from Tx (months) | 49 | 69 | 12 | 182 | 75.7 | 52.3 |
Recipient age (years) | 49 | 42 | 24 | 71 | 45.7 | 13.6 |
BMI at Tx | 49 | 23.8 | 16.1 | 34.8 | 24.4 | 4 |
BMI at last appointment | 49 | 25.4 | 18.1 | 34 | 25.9 | 4.3 |
eGFR at last appointment (mL/min/1.73 m2) | 49 | 36 | 15 | 89 | 38.6 | 19.1 |
Urine protein (mg/dL) | 49 | 0 | 0 | 865.7 | 78.7 | 165 |
Duration of dialysis prior to Tx (months) | 49 | 15 | 0 | 102 | 23.9 | 23.8 |
CIT (min) | 49 | 1260 | 72 | 2100 | 1116.7 | 555 |
PRA (%) | 49 | 3 | 0 | 56 | 8 | 15.9 |
ZENITH eGFR (mL/min/1.73 m2) | 49 | 31.0 | 98.0 | 118.0 | 58 | 17 |
eGFR at 1 year (mL/min/1.73 m2) | 49 | 45 | 9 | 96.0 | 47.7 | 17.9 |
eGFR at 2 years (mL/min/1.73 m2) | 48 | 49 | 15 | 85 | 48 | 17.1 |
eGFR at 3 years (mL/min/1.73 m2) | 43 | 47 | 17 | 87 | 47.3 | 15.4 |
eGFR at 4 years (mL/min/1.73 m2) | 38 | 46 | 19 | 98 | 48 | 18.9 |
eGFR at 5 years (mL/min/1.73 m2) | 35 | 41 | 17 | 109 | 45.5 | 20.1 |
eGFR at 10 years (mL/min/1.73 m2) | 13 | 44 | 23 | 82 | 47.8 | 18.7 |
CCL2 (pg/mL) | 49 | 204.2 | 41.8 | 438.2 | 213.9 | 91.6 |
sex | 49 (23 W, 26 M) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nalewajska, M.; Opara-Bajerowicz, M.; Safranow, K.; Pawlik, A.; Ciechanowski, K.; Kwiatkowski, S.; Kwiatkowska, E. The Effects of Sex and Body Weight on Renal Graft Function—The Role of CCL2. J. Clin. Med. 2021, 10, 4951. https://doi.org/10.3390/jcm10214951
Nalewajska M, Opara-Bajerowicz M, Safranow K, Pawlik A, Ciechanowski K, Kwiatkowski S, Kwiatkowska E. The Effects of Sex and Body Weight on Renal Graft Function—The Role of CCL2. Journal of Clinical Medicine. 2021; 10(21):4951. https://doi.org/10.3390/jcm10214951
Chicago/Turabian StyleNalewajska, Magdalena, Martyna Opara-Bajerowicz, Krzysztof Safranow, Andrzej Pawlik, Kazimierz Ciechanowski, Sebastian Kwiatkowski, and Ewa Kwiatkowska. 2021. "The Effects of Sex and Body Weight on Renal Graft Function—The Role of CCL2" Journal of Clinical Medicine 10, no. 21: 4951. https://doi.org/10.3390/jcm10214951
APA StyleNalewajska, M., Opara-Bajerowicz, M., Safranow, K., Pawlik, A., Ciechanowski, K., Kwiatkowski, S., & Kwiatkowska, E. (2021). The Effects of Sex and Body Weight on Renal Graft Function—The Role of CCL2. Journal of Clinical Medicine, 10(21), 4951. https://doi.org/10.3390/jcm10214951