Cerebellar White Matter Abnormalities in Charcot–Marie–Tooth Disease: A Combined Volumetry and Diffusion Tensor Imaging Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Assessments
2.3. MR Volumetry and Diffusion Tensor Imaging (DTI)
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shy, M.E.; Garbern, J.Y.; Kamholz, J. Hereditary motor and sensory neuropathies: A biological perspective. Lancet Neurol. 2002, 1, 110–118. [Google Scholar] [CrossRef]
- DiVincenzo, C.; Elzinga, C.D.; Medeiros, A.C.; Karbassi, I.; Jones, J.R.; Evans, M.C.; Braastad, C.D.; Bishop, C.M.; Jaremko, M.; Wang, Z.; et al. The allelic spectrum of Charcot-Marie-Tooth disease in over 17,000 individuals with neuropathy. Mol. Genet. Genomic. Med. 2014, 2, 522–529. [Google Scholar] [CrossRef]
- Jordanova, A.; De Jonghe, P.; Boerkoel, C.F.; Takashima, H.; De Vriendt, E.; Ceuterick, C.; Martin, J.J.; Butler, I.J.; Mancias, P.; Papasozomenos, S.; et al. Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain 2003, 126, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.W.; Suh, B.C.; Cho, S.Y.; Choi, S.K.; Kang, S.H.; Yoo, J.H.; Hwang, J.Y.; Choi, B.O. Early-onset Charcot-Marie-Tooth patients with mitofusin 2 mutations and brain involvement. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1203–1206. [Google Scholar] [CrossRef]
- Paulson, H.L.; Garbern, J.Y.; Hoban, T.F.; Krajewski, K.M.; Lewis, R.A.; Fischbeck, K.H.; Grossman, R.I.; Lenkinski, R.; Kamholz, J.A.; Shy, M.E. Transient central nervous system white matter abnormality in X-linked Charcot-Marie-Tooth disease. Ann. Neurol. 2002, 52, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Horga, A.; Laurà, M.; Jaunmuktane, Z.; Jerath, N.U.; Gonzalez, M.A.; Polke, J.M.; Poh, R.; Blake, J.C.; Liu, Y.T.; Wiethoff, S.; et al. Genetic and clinical characteristics of NEFL-related Charcot-Marie-Tooth disease. J. Neurol. Neurosurg. Psychiatry 2017, 88, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gu, L.Q.; Burnette, W.B.; Li, J. N98S mutation in NEFL gene is dominantly inherited with a phenotype of polyneuropathy and cerebellar atrophy. J. Neurol. Sci. 2016, 365, 46–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrarin, M.; Gironi, M.; Mendozzi, L.; Nemni, R.; Mazzoleni, P.; Rabuffetti, M. Procedure for the quantitative evaluation of motor disturbances in cerebellar ataxic patients. Med. Biol. Eng. Comput. 2005, 43, 349–356. [Google Scholar] [CrossRef]
- Berciano, J.; García, A.; Peeters, K.; Gallardo, E.; De Vriendt, E.; Pelayo-Negro, A.L.; Infante, J.; Jordanova, A. NEFL E396K mutation is associated with a novel dominant intermediate Charcot-Marie-Tooth disease phenotype. J. Neurol. 2015, 262, 1289–1300. [Google Scholar] [CrossRef]
- Lee, M.; Park, C.H.; Chung, H.K.; Kim, H.J.; Choi, Y.; Yoo, J.H.; Yoon, Y.C.; Hong, Y.B.; Chung, K.W.; Choi, B.O.; et al. Cerebral white matter abnormalities in patients with charcot-marie-tooth disease. Ann. Neurol. 2017, 81, 147–151. [Google Scholar] [CrossRef]
- Miltenberger-Miltenyi, G.; Janecke, A.R.; Wanschitz, J.V.; Timmerman, V.; Windpassinger, C.; Auer-Grumbach, M.; Löscher, W.N. Clinical and electrophysiological features in Charcot-Marie-Tooth disease with mutations in the NEFL gene. Arch. Neurol. 2007, 64, 966–970. [Google Scholar] [CrossRef] [Green Version]
- Inada, B.S.Y.; Rezende, T.J.R.; Pereira, F.V.; Garcia LÁ, L.; da Rocha, A.J.; Neto, P.B.; Barsottini, O.G.P.; França, M.C., Jr.; Pedroso, J.L. Corticospinal tract involvement in spinocerebellar ataxia type 3: A diffusion tensor imaging study. Neuroradiology 2021, 63, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.S.; Klein, J.C.; Baudrexel, S.; Deichmann, R.; Nolte, D.; Hilker, R. White matter damage is related to ataxia severity in SCA3. J. Neurol. 2014, 261, 291–299. [Google Scholar] [CrossRef]
- Stezin, A.; Bhardwaj, S.; Khokhar, S.; Hegde, S.; Jain, S.; Bharath, R.D.; Saini, J.; Pal, P.K. In vivo microstructural white matter changes in early spinocerebellar ataxia 2. Acta Neurol. Scand. 2021, 143, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liao, X.; Zhan, Y.; Cheng, C.; Shen, W.; Huang, M.; Zhou, Z.; Wang, Z.; Qiu, Z.; Xing, W.; et al. Microstructural Alterations in Asymptomatic and Symptomatic Patients with Spinocerebellar Ataxia Type 3: A Tract-Based Spatial Statistics Study. Front. Neurol. 2017, 8, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontillo, G.; Dubbioso, R.; Cocozza, S.; Tozza, S.; Severi, D.; Iodice, R.; Tedeschi, E.; Elefante, A.; Brunetti, A.; Manganelli, F.; et al. Brain Plasticity in Charcot-Marie-Tooth Type 1A Patients? A Combined Structural and Diffusion MRI Study. Front. Neurol. 2020, 11, 795. [Google Scholar] [CrossRef]
- Paternostro-Sluga, T.; Grim-Stieger, M.; Posch, M.; Schuhfried, O.; Vacariu, G.; Mittermaier, C.; Bittner, C.; Fialka-Moser, V. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J. Rehabil. Med. 2008, 40, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Birouk, N.; LeGuern, E.; Maisonobe, T.; Rouger, H.; Gouider, R.; Tardieu, S.; Gugenheim, M.; Routon, M.C.; Léger, J.M.; Agid, Y.; et al. X-linked Charcot-Marie-Tooth disease with connexin 32 mutations: Clinical and electrophysiologic study. Neurology 1998, 50, 1074–1082. [Google Scholar] [CrossRef]
- Shy, M.E.; Blake, J.; Krajewski, K.; Fuerst, D.R.; Laura, M.; Hahn, A.F.; Li, J.; Lewis, R.A.; Reilly, M. Reliability and validity of the CMT neuropathy score as a measure of disability. Neurology 2005, 64, 1209–1214. [Google Scholar] [CrossRef]
- Schmitz-Hübsch, T.; Du Montcel, S.T.; Baliko, L.; Berciano, J.; Boesch, S.; Depondt, C.; Giunti, P.; Globas, C.; Infante, J.; Kang, J.S.; et al. Scale for the assessment and rating of ataxia: Development of a new clinical scale. Neurology 2006, 66, 1717–1720. [Google Scholar] [CrossRef]
- Forbes, J.L.; Kim, R.E.; Paulsen, J.S.; Johnson, H.J. An Open-Source Label Atlas Correction Tool and Preliminary Results on Huntingtons Disease Whole-Brain MRI Atlases. Front. Neuroinform. 2016, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.Y.; Magnotta, V.A.; Liu, D.; Johnson, H.J. Stable Atlas-based Mapped Prior (STAMP) machine-learning segmentation for multicenter large-scale MRI data. Magn. Reson. Imaging 2014, 32, 832–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, R.E.; Lourens, S.; Long, J.D.; Paulsen, J.S.; Johnson, H.J. Preliminary analysis using multi-atlas labeling algorithms for tracing longitudinal change. Front. Neurosci. 2015, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yushkevich, P.A. Multi-atlas segmentation with joint label fusion and corrective learning-an open source implementation. Front. Neuroinform. 2013, 7, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.E.; Lee, J.H.; Chung, H.K.; Lim, S.M.; Lee, H.W. Alterations in white matter microstructures and cognitive dysfunctions in benign childhood epilepsy with centrotemporal spikes. Eur. J. Neurol. 2014, 21, 708–717. [Google Scholar] [CrossRef]
- Smith, S.M.; Jenkinson, M.; Johansen-Berg, H.; Rueckert, D.; Nichols, T.E.; Mackay, C.E.; Watkins, K.E.; Ciccarelli, O.; Cader, M.Z.; Matthews, P.M.; et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 2006, 31, 1487–1505. [Google Scholar] [CrossRef]
- Abrams, C.K.; Freidin, M. GJB1-associated X-linked Charcot-Marie-Tooth disease, a disorder affecting the central and peripheral nervous systems. Cell Tissue Res. 2015, 360, 659–673. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, F.; Li, L.; Tang, F.; Siedlak, S.L.; Fujioka, H.; Liu, Y.; Su, B.; Pi, Y.; Wang, X. MFN2 couples glutamate excitotoxicity and mitochondrial dysfunction in motor neurons. J. Biol. Chem. 2015, 290, 168–182. [Google Scholar] [CrossRef] [Green Version]
Normal Control | PMP22 Duplication | MFN2 Mutations | GJB1 Mutations | NEFL Mutations | |
---|---|---|---|---|---|
Number | 47 | 10 | 15 | 11 | 11 |
Female (%) | 49 | 45 | 60 | 45 | 36 |
Age at exam (years) | 37.5 ± 14.6 | 42.0 ± 14.7 | 31.9 ± 13.6 | 39.4 ± 16.5 | 39.5 ± 11.8 |
Age at onset (years) | - | 11.2 ± 6.9 | 10.6 ± 11.3 | 23.5 ± 13.7 | 14.0 ± 4.5 |
Muscle weakness | No | UL < LL a | UL < LL | UL < LL | UL < LL |
Sensory loss | No | Yes | Yes | Yes | Yes |
MRC b (arm) | 5 | 3.9 ± 0.3 | 1.6 ± 1.7 | 3.8 ± 0.9 | 2.1 ± 0.7 |
MRC c (leg) | 5 | 2.1 ± 1.2 | 1.4 ± 1.3 | 3.5 ± 1.3 | 1.8 ± 0.6 |
FDS d | 0 | 2.0 ± 1.1 | 3.9 ± 2.2 | 2.3 ± 1.0 | 3.0 ± 1.0 |
CMTNS v2 e | 0 | 14.3 ± 5.5 | 18.7 ± 8.9 | 12.6 ± 6.3 | 14.7 ± 5.7 |
Cerebellar ataxia | 0 | 0 | 0 | 1 (9.1%) | 8 (72.7%) |
SARA f | 0 | 0 | 0 | 7.0 | 10.6 ± 3.4 |
Peripheral ulnar nerve conduction studies | |||||
CMAP g (mV) | 15.9 ± 2.8 | 6.6 ± 3.5 | 7.2 ± 6.0 | 9.3 ± 3.0 | 5.8 ± 4.8 |
MNCV h (m/s) | 61.2 ± 3.2 | 19.6 ± 3.9 | 52.3 ± 8.4 | 43.3 ± 9.0 | 36.0 ± 9.0 |
SNAP i (uV) | 23.1 ± 7.2 | 5.2 ± 1.7 | 8.4 ± 4.8 | 5.8 ± 3.3 | 4.3 ± 2.1 |
SNCV j (m/s) | 51.6 ± 2.5 | 21.3 ± 4.8 | 32.9 ± 5.8 | 30.5 ± 3.2 | 36.3 ± 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.; Park, C.-H.; Kim, R.E.-Y.; Kim, H.J.; Choi, Y.S.; Kim, S.-A.; Yoo, J.H.; Chung, K.W.; Choi, B.-O.; Lee, H.W. Cerebellar White Matter Abnormalities in Charcot–Marie–Tooth Disease: A Combined Volumetry and Diffusion Tensor Imaging Analysis. J. Clin. Med. 2021, 10, 4945. https://doi.org/10.3390/jcm10214945
Hwang S, Park C-H, Kim RE-Y, Kim HJ, Choi YS, Kim S-A, Yoo JH, Chung KW, Choi B-O, Lee HW. Cerebellar White Matter Abnormalities in Charcot–Marie–Tooth Disease: A Combined Volumetry and Diffusion Tensor Imaging Analysis. Journal of Clinical Medicine. 2021; 10(21):4945. https://doi.org/10.3390/jcm10214945
Chicago/Turabian StyleHwang, Sungeun, Chang-Hyun Park, Regina Eun-Young Kim, Hyeon Jin Kim, Yun Seo Choi, Sol-Ah Kim, Jeong Hyun Yoo, Ki Wha Chung, Byung-Ok Choi, and Hyang Woon Lee. 2021. "Cerebellar White Matter Abnormalities in Charcot–Marie–Tooth Disease: A Combined Volumetry and Diffusion Tensor Imaging Analysis" Journal of Clinical Medicine 10, no. 21: 4945. https://doi.org/10.3390/jcm10214945
APA StyleHwang, S., Park, C.-H., Kim, R. E.-Y., Kim, H. J., Choi, Y. S., Kim, S.-A., Yoo, J. H., Chung, K. W., Choi, B.-O., & Lee, H. W. (2021). Cerebellar White Matter Abnormalities in Charcot–Marie–Tooth Disease: A Combined Volumetry and Diffusion Tensor Imaging Analysis. Journal of Clinical Medicine, 10(21), 4945. https://doi.org/10.3390/jcm10214945