Neutrophil-to-Lymphocyte Ratios and Infections after Traumatic Brain Injury: Associations with Hospital Resource Utilization and Long-Term Outcome
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Cohort Descriptions
2.2. Demographic and Clinical Data Abstraction
2.3. Long-Term Global Outcome Assessment
2.4. Statistical Analyses
2.5. Group-Based Trajectory Analysis
2.6. Survival Analysis
2.7. Changepoint Analysis and a Two-Part Model
2.8. Bivariate Analyses, Univariate and Multivariable Regressions of Hospital Resource Utilization, and Global Outcome
3. Results
3.1. Full and Acute-Survivors-Only Cohort Descriptions with Demographic, Clinical, and Hospital Resource Factors
3.2. Trajectory Groups and Corresponding Cell Counts
3.3. NLR TRAJ Associations with Demographic, Clinical, and Hospital Resource Factors
3.4. Post-TBI Infection Prevalence and Associations with Demographic, Clinical, and Hospital Resource Factors
3.5. Longitudinal Associations between Infection Acquisition and NLR
3.6. Kaplan–Meier: Time to First Infection
3.7. NLR vs. Infection Changepoint Analysis: A Two-Part Model
3.8. Models of Hospital Resource Utilization
3.9. NLR and Infection Impact on Long-Term Global Outcome
4. Discussion
4.1. Early Lymphopenia Drives Initial High NLR Levels Leading to Nosocomial Infections
4.2. Infection and Subsequent Neutrophilia-Driven Increase in NLR
4.3. Covariate Effects on NLR and Infection
4.4. Applications and Utility of NLR in Traumatic Brain Injury
4.5. Hospital Resource Utilization
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Source (n) | Microbe Type | Number 1 |
---|---|---|
BAL (186) | Staphylococcus Aureus | 36 |
Viridans Streptococci | 26 | |
Enterobacter Species | 17 | |
Pseudomonas | 12 | |
Klebsiella Species | 12 | |
Sputum (27) | Staphylococcus Aureus | 6 |
Haemophilus Influenzae | 4 | |
Viridans Streptococci | 4 | |
Streptococcus Pneumonia | 4 | |
Klebsiella Species | 2 | |
Blood (25) | Coagulase Negative Staphylococcus | 12 |
Enterococcus Species | 4 | |
Enterobacter Species | 3 | |
Staphylococcus Aureus | 2 | |
Serratia Marcescens | 1 | |
Urine (25) | Escherichia Coli | 11 |
Enterococcus Species | 5 | |
Klebsiella Species | 2 | |
Enterobacter Species | 2 | |
Fungus | 2 | |
CSF (11) | Coagulase Negative Staphylococcus | 3 |
Pseudomonas | 2 | |
Enterobacter Species | 2 | |
Enterococcus Species | 1 | |
Acinetobacter Species | 1 | |
Wound (5) | Staphylococcus Aureus | 1 |
Coagulase Negative Staphylococcus | 1 | |
Other Streptococcus Species | 1 | |
Enterobacter Species | 1 | |
Peptostreptococcus Species | 1 | |
Colon (3) | Clostridium Difficile | 3 |
Nasal (2) | Staphylococcus Aureus | 1 |
Coagulase Negative Staphylococcus | 1 | |
Pleura (1) | Fungus | 1 |
Full Cohort | Acute-Survivors-Only Cohort | |||||
---|---|---|---|---|---|---|
Variable | Beta | SE | p-Value | Beta | SE | p-Value |
Sex (Male vs. Female) | −2.576 | 2.60 | 0.3243 | −3.097 | 2.77 | 0.2660 |
Age (Years) | −0.254 | 0.06 | <0.0001 | −0.222 | 0.07 | 0.0027 |
GCS Score | −1.413 | 0.31 | <0.0001 | −1.908 | 0.32 | <0.0001 |
ISS Score | 0.368 | 0.09 | <0.0001 | 0.435 | 0.09 | <0.0001 |
CT Burden | 2.367 | 0.69 | 0.0008 | 2.533 | 0.72 | 0.0005 |
NLR TRAJ | 7.162 | 2.20 | 0.0013 | 9.626 | 2.32 | 0.0001 |
Infection Status (Positive vs. Negative) | 12.697 | 2.03 | <0.0001 | 13.013 | 2.17 | <0.0001 |
Full Cohort | Acute-Survivors-Only Cohort | |||||
---|---|---|---|---|---|---|
Variable | Beta | SE | p-Value | Beta | SE | p-Value |
Sex (Male vs. Female) | −0.927 | 1.14 | 0.4207 | −0.703 | 1.25 | 0.5735 |
Age (Years) | −0.120 | 0.02 | <0.0001 | −0.125 | 0.03 | 0.0002 |
GCS Score | −0.868 | 0.13 | <0.0001 | −1.063 | 0.14 | <0.0001 |
ISS Score | 0.135 | 0.04 | 0.0009 | 0.157 | 0.04 | 0.0003 |
CT Burden | 1.385 | 0.30 | <0.0001 | 1.415 | 0.31 | <0.0001 |
NLR TRAJ | 3.142 | 0.97 | 0.0015 | 3.993 | 1.06 | 0.0002 |
Infection Status (Positive vs. Negative) | 6.913 | 0.84 | <0.0001 | 7.342 | 0.92 | <0.0001 |
Full Cohort | Acute-Survivors-Only Cohort | |||||
---|---|---|---|---|---|---|
Variable | OR | 96% CI | p-Value | OR | 96% CI | p-Value |
Age (Years) | 1.014 | (0.99, 1.03) | 0.153 | 1.002 | (0.98–1.02) | 0.870 |
Sex (Men) | 0.507 | (0.24, 1.03) | 0.064 | 0.487 | (0.23–1.04) | 0.063 |
GCS Score | 0.749 | (0.66, 0.84) | <0.0001 | 0.787 | (0.70–0.89) | <0.0001 |
ISS Score | 1.048 | (1.02, 1.08) | 0.001 | 1.044 | (1.01–1.08) | 0.004 |
CT Burden | 1.291 | (1.06, 1.59) | 0.015 | 1.306 | (1.06, 1.64) | 0.016 |
Infection Status (Positive) | 1.345 | (0.74, 2.47) | 0.336 | 1.806 | (0.92–3.53) | 0.085 |
NLR TRAJ (High) | 1.855 | (1.01, 3.47) | 0.050 | 1.692 | (0.88–3.27) | 0.118 |
References
- Faul, M.; Coronado, V. Epidemiology of traumatic brain injury. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 127, pp. 3–13. [Google Scholar] [CrossRef]
- Dismuke, C.E.; Walker, R.J.; Egede, L.E. Utilization and Cost of Health Services in Individuals with Traumatic Brain Injury. Glob. J. Health Sci. 2015, 7, 156–169. [Google Scholar] [CrossRef]
- Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 2017, 66, 1–16. [Google Scholar] [CrossRef]
- Schwab, K.A.; Gudmudsson, L.S.; Lew, H.L. Long-term functional outcomes of traumatic brain injury. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 128, pp. 649–659. [Google Scholar] [CrossRef]
- Kourbeti, I.S.; Vakis, A.F.; Papadakis, J.A.; Karabetsos, D.A.; Bertsias, G.; Filippou, M.; Ioannou, A.; Neophytou, C.; Anastasaki, M.; Samonis, G. Infections in traumatic brain injury patients. Clin. Microbiol. Infect. 2012, 18, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, P.J.; Pittet, J.-F.; Kerby, J.D.; Bosarge, P.L.; Wagener, B.M. Acute brain trauma, lung injury, and pneumonia: More than just altered mental status and decreased airway protection. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 313, L1–L15. [Google Scholar] [CrossRef] [PubMed]
- Zygun, D. Non-neurological organ dysfunction in neurocritical care: Impact on outcome and etiological considerations. Curr. Opin. Crit. Care 2005, 11, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Zygun, D.A.; Kortbeek, J.B.; Fick, G.H.; Laupland, K.B.; Doig, C.J. Non-neurologic organ dysfunction in severe traumatic brain injury. Crit. Care Med. 2005, 33, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Glance, L.G.; Stone, P.W.; Mukamel, D.B.; Dick, A.W. Increases in mortality, length of stay, and cost associated with hospital-acquired infections in trauma patients. Arch. Surg. 2011, 146, 794–801. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Shultz, S.R.; Robinson, M.J.; Belli, A.; Hibbs, M.L.; O’Brien, T.J.; Semple, B.D. Infections after a traumatic brain injury: The complex interplay between the immune and neurological systems. Brain Behav. Immun. 2019, 79, 63–74. [Google Scholar] [CrossRef]
- Kesinger, M.R.; Kumar, R.G.; Wagner, A.K.; Puyana, J.C.; Peitzman, A.P.; Billiar, T.R.; Sperry, J.L. Hospital-acquired pneumonia is an independent predictor of poor global outcome in severe traumatic brain injury up to 5 years after discharge. J. Trauma Acute Care Surg. 2015, 78, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.G.; Kesinger, M.R.; Juengst, S.B.; Brooks, M.M.; Fabio, A.; Dams-O’Connor, K.; Pugh, M.J.; Sperry, J.L.; Wagner, A.K. Effects of hospital-acquired pneumonia on long-term recovery and hospital resource utilization following moderate to severe traumatic brain injury. J. Trauma Acute Care Surg. 2020, 88, 491–500. [Google Scholar] [CrossRef]
- Andraweera, N.; Seemann, R. Acute rehospitalisation during the first 3 months of in-patient rehabilitation for traumatic brain injury. Aust. Health Rev. 2016, 40, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; De Waele, J.J.; Eggimann, P.; Garnacho-Montero, J.; Kahlmeter, G.; Menichetti, F.; Nicolau, D.P.; Paiva, J.A.; Tumbarello, M.; Welte, T.; et al. Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria. Intensiv. Care Med. 2015, 41, 776–795. [Google Scholar] [CrossRef]
- Kopp, M.A.; Watzlawick, R.; Martus, P.; Failli, V.; Finkenstaedt, F.W.; Chen, Y.; DeVivo, M.J.; Dirnagl, U.; Schwab, J.M. Long-term functional outcome in patients with acquired infections after acute spinal cord injury. Neurology 2017, 88, 892–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alharfi, I.M.; Charyk Stewart, T.; Al Helali, I.; Daoud, H.; Fraser, D.D. Infection rates, fevers, and associated factors in pediatric severe traumatic brain injury. J. Neurotrauma 2014, 31, 452–458. [Google Scholar] [CrossRef]
- Harrison-Felix, C.; Whiteneck, G.; Devivo, M.J.; Hammond, F.M.; Jha, A. Causes of death following 1 year postinjury among individuals with traumatic brain injury. J. Head Trauma Rehabil. 2006, 21, 22–33. [Google Scholar] [CrossRef]
- Doran, S.J.; Henry, R.J.; Shirey, K.A.; Barrett, J.P.; Ritzel, R.M.; Lai, W.; Blanco, J.C.; Faden, A.I.; Vogel, S.N.; Loane, D.J. Early or Late Bacterial Lung Infection Increases Mortality after Traumatic Brain Injury in Male Mice and Chronically Impairs Monocyte Innate Immune Function. Crit. Care Med. 2020, 48, e418–e428. [Google Scholar] [CrossRef] [PubMed]
- Zygun, D.A.; Zuege, D.J.; Boiteau, P.J.; Laupland, K.B.; Henderson, E.A.; Kortbeek, J.B.; Doig, C.J. Ventilator-associated pneumonia in severe traumatic brain injury. Neurocrit. Care 2006, 5, 108–114. [Google Scholar] [CrossRef]
- Esnault, P.; Nguyen, C.; Bordes, J.; D’Aranda, E.; Montcriol, A.; Contargyris, C.; Cotte, J.; Goutorbe, P.; Joubert, C.; Dagain, A.; et al. Early-Onset Ventilator-Associated Pneumonia in Patients with Severe Traumatic Brain Injury: Incidence, Risk Factors, and Consequences in Cerebral Oxygenation and Outcome. Neurocrit. Care 2017, 27, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Hui, X.; Haider, A.H.; Hashmi, Z.G.; Rushing, A.P.; Dhiman, N.; Scott, V.K.; Selvarajah, S.; Haut, E.R.; Efron, D.T.; Schneider, E.B. Increased risk of pneumonia among ventilated patients with traumatic brain injury: Every day counts! J. Surg. Res. 2013, 184, 438–443. [Google Scholar] [CrossRef]
- Robba, C.; Rebora, P.; Banzato, E.; Wiegers, E.J.; Stocchetti, N.; Menon, D.K.; Citerio, G.; Åkerlund, C.; Nelson, D.; Amrein, K.; et al. Incidence, Risk Factors, and Effects on Outcome of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury: Analysis of a Large, Multicenter, Prospective, Observational Longitudinal Study. Chest 2020, 158, 2292–2303. [Google Scholar] [CrossRef]
- Kemp, C.D.; Johnson, J.C.; Riordan, W.P.; Cotton, B.A. How We Die: The Impact of Nonneurologic Organ Dysfunction after Severe Traumatic Brain Injury. Am. Surg. 2008, 74, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Valencic, L.; Tokmadzic-Sotosek, V.; Kuharic, J.; Sustic, A. The incidence of nosocomial infections in patients with isolated severe traumatic brain injury. Sanamed 2015, 10, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Fàbregas, N.; Torres, A. Pulmonary infection in the brain injured patient. Minerva Anestesiol. 2002, 68, 285–290. [Google Scholar] [PubMed]
- Dziedzic, T.; Slowik, A.; Szczudlik, A. Nosocomial infections and immunity: Lesson from brain-injured patients. Crit. Care 2004, 8, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Kasmann, L.; Bolm, L.; Schild, S.E.; Janssen, S.; Rades, D. Neutrophil-to-Lymphocyte Ratio Predicts Outcome in Limited Disease Small-cell Lung Cancer. Lung 2017, 195, 217–224. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, C.; Li, J.; Sun, J.; Qu, X. Prognostic significance of preoperative neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in patients with gallbladder carcinoma. Clin. Transl. Oncol. 2015, 17, 810–818. [Google Scholar] [CrossRef]
- Zheng, J.; Cai, J.; Li, H.; Zeng, K.; He, L.; Fu, H.; Zhang, J.; Chen, L.; Yao, J.; Zhang, Y.; et al. Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio as Prognostic Predictors for Hepatocellular Carcinoma Patients with Various Treatments: A Meta-Analysis and Systematic Review. Cell. Physiol. Biochem. 2017, 44, 967–981. [Google Scholar] [CrossRef]
- Seyit, M.; Avci, E.; Nar, R.; Senol, H.; Yilmaz, A.; Ozen, M.; Oskay, A.; Aybek, H. Neutrophil to lymphocyte ratio, lymphocyte to monocyte ratio and platelet to lymphocyte ratio to predict the severity of COVID-19. Am. J. Emerg. Med. 2020, 11, 58. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, W.; Qiao, B.; Cui, X.; Feng, Y.; Chen, L.; Ma, Q.; Liu, X. The prognostic value of general laboratory testing in patients with COVID-19. J. Clin. Lab. Anal. 2020, 35, e23668. [Google Scholar] [CrossRef]
- Lowsby, R.; Gomes, C.; Jarman, I.; Lisboa, P.; Nee, P.A.; Vardhan, M.; Eckersley, T.; Saleh, R.; Mills, H. Neutrophil to lymphocyte count ratio as an early indicator of blood stream infection in the emergency department. Emerg. Med. J. 2015, 32, 531–534. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Liu, Y.; Li, Q.; Li, Z.; Hou, H.; Wu, A. Pre-treatment neutrophil-to-lymphocyte ratio is associated with neutrophil and T-cell infiltration and predicts clinical outcome in patients with glioblastoma. BMC Cancer 2015, 15, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inanc, Y.; Inanc, Y. The effects of neutrophil to lymphocyte and platelet to lymphocyte ratios on prognosis in patients undergoing mechanical thrombectomy for acute ischemic stroke. Annali Italiani Chirurgia 2018, 89, 367–373. [Google Scholar]
- Sabouri, E.; Majdi, A.; Jangjui, P.; Rahigh Aghsan, S.; Naseri Alavi, S.A. Neutrophil-to-Lymphocyte Ratio and Traumatic Brain Injury: A Review Study. World Neurosurg. 2020, 140, 142–147. [Google Scholar] [CrossRef]
- Siwicka-Gieroba, D.; Malodobry, K.; Biernawska, J.; Robba, C.; Bohatyrewicz, R.; Rola, R.; Dabrowski, W. The Neutrophil/Lymphocyte Count Ratio Predicts Mortality in Severe Traumatic Brain Injury Patients. J. Clin. Med. 2019, 8, 1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Qu, X.; Li, Z.; Zhang, D.; Hou, L. Peak Neutrophil-to-Lymphocyte Ratio Correlates with Clinical Outcomes in Patients with Severe Traumatic Brain Injury. Neurocrit. Care 2019, 30, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yang, J.; Li, B.; Peng, G.; Li, T.; Li, L.; Wang, S. Neutrophil to Lymphocyte Ratio as a Novel Predictor of Outcome in Patients With Severe Traumatic Brain Injury. J. Head Trauma Rehabil. 2018, 33, E53–E59. [Google Scholar] [CrossRef] [PubMed]
- Bhat, T.; Teli, S.; Rijal, J.; Bhat, H.; Raza, M.; Khoueiry, G.; Meghani, M.; Akhtar, M.; Costantino, T. Neutrophil to lymphocyte ratio and cardiovascular diseases: A review. Expert Rev. Cardiovasc. Ther. 2013, 11, 55–59. [Google Scholar] [CrossRef]
- Rakholia, M.V.; Kumar, R.G.; Oh, B.M.; Ranganathan, P.R.; Berga, S.L.; Kochanek, P.M.; Wagner, A.K. Systemic Estrone Production and Injury-Induced Sex Hormone Steroidogenesis after Severe Traumatic Brain Injury: A Prognostic Indicator of Traumatic Brain Injury-Related Mortality. J. Neurotrauma 2019, 36, 1156–1167. [Google Scholar] [CrossRef]
- Failla, M.D.; Kumar, R.G.; Peitzman, A.B.; Conley, Y.P.; Ferrell, R.E.; Wagner, A.K. Variation in the BDNF gene interacts with age to predict mortality in a prospective, longitudinal cohort with severe TBI. Neurorehabil. Neural Repair 2015, 29, 234–246. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.C.; Patel, R.; et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin. Infect. Dis. 2018, 67, e1–e94. [Google Scholar] [CrossRef]
- Teasdale, G.; Murray, G.; Parker, L.; Jennett, B. Adding up the Glasgow Coma Score. Acta Neurochir. Suppl. 1979, 28, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.P.; O’Neill, B.; Haddon, W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 1974, 14, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Jennett, B.; Bond, M. Assessment of outcome after severe brain damage. Lancet 1975, 1, 480–484. [Google Scholar] [CrossRef]
- R Core Team. R: Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 24 September 2021).
- R Core Team. RStudio: Integrated Development Environment for R; R: Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Jones, B.L.; Nagin, D.S.; Roeder, K. A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories. Sociol. Methods Res. 2001, 29, 374–393. [Google Scholar] [CrossRef]
- Niyonkuru, C.; Wagner, A.K.; Ozawa, H.; Amin, K.; Goyal, A.; Fabio, A. Group-based trajectory analysis applications for prognostic biomarker model development in severe TBI: A practical example. J. Neurotrauma 2013, 30, 938–945. [Google Scholar] [CrossRef]
- Wagner, A.K.; McCullough, E.H.; Niyonkuru, C.; Ozawa, H.; Loucks, T.L.; Dobos, J.A.; Brett, C.A.; Santarsieri, M.; Dixon, C.E.; Berga, S.L.; et al. Acute serum hormone levels: Characterization and prognosis after severe traumatic brain injury. J. Neurotrauma 2011, 28, 871–888. [Google Scholar] [CrossRef] [Green Version]
- Goel, M.K.; Khanna, P.; Kishore, J. Understanding survival analysis: Kaplan-Meier estimate. Int. J. Ayurveda Res. 2010, 1, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Rebecca Killick, K.H.; Eckley, I.A. An {R} Package for Changepoint Analysis; R: Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Kutner, M.H.; Nachtsheim, C.; Neter, J.; Li, W. Applied Linear Statistical Models; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Robertson, C.M.; Coopersmith, C.M. The systemic inflammatory response syndrome. Microbes Infect. 2006, 8, 1382–1389. [Google Scholar] [CrossRef]
- Adib-Conquy, M.; Cavaillon, J.M. Compensatory anti-inflammatory response syndrome. Thromb. Haemost. 2009, 101, 36–47. [Google Scholar]
- Ward, N.S.; Casserly, B.; Ayala, A. The Compensatory Anti-inflammatory Response syndrome (CARS) in Critically ill patients. Clin. Chest Med. 2008, 29, 617–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brochner, A.C.; Toft, P. Pathophysiology of the systemic inflammatory response after major accidental trauma. Scand. J. Trauma Resusc. Emerg. Med. 2009, 17, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Goh, S.J.; Tng, P.Y.; Deng, Y.Y.; Ling, E.A.; Moochhala, S. Systemic inflammatory response following acute traumatic brain injury. Front. Biosci. Landmark Ed. 2009, 14, 3795–3813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binkowska, A.M.; Michalak, G.; Slotwinski, R. Current views on the mechanisms of immune responses to trauma and infection. Cent. Eur. J. Immunol. 2015, 40, 206–216. [Google Scholar] [CrossRef]
- Oberholzer, A.; Oberholzer, C.; Moldawer, L.L. Sepsis syndromes: Understanding the role of innate and acquired immunity. Shock 2001, 16, 83–96. [Google Scholar] [CrossRef]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Schmieg, R.E., Jr.; Swanson, P.E.; Freeman, B.D.; Tinsley, K.W.; Cobb, J.P.; Karl, I.E.; Buchman, T.G. Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock. Crit. Care Med. 2000, 28, 3207–3217. [Google Scholar] [CrossRef]
- Cheadle, W.G.; Pemberton, R.M.; Robinson, D.; Livingston, D.H.; Rodriguez, J.L.; Polk, H.C., Jr. Lymphocyte subset responses to trauma and sepsis. J. Trauma 1993, 35, 844–849. [Google Scholar] [CrossRef]
- Gouel-Cheron, A.; Venet, F.; Allaouchiche, B.; Monneret, G. CD4+ T-lymphocyte alterations in trauma patients. Crit. Care 2012, 16, 432. [Google Scholar] [CrossRef] [Green Version]
- Girardot, T.; Rimmele, T.; Venet, F.; Monneret, G. Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis 2017, 22, 295–305. [Google Scholar] [CrossRef]
- Baumann, H.; Gauldie, J. The acute phase response. Immunol. Today 1994, 15, 74–80. [Google Scholar] [CrossRef]
- Penaloza, H.F.; Schultz, B.M.; Nieto, P.A.; Salazar, G.A.; Suazo, I.; Gonzalez, P.A.; Riedel, C.A.; Alvarez-Lobos, M.M.; Kalergis, A.M.; Bueno, S.M. Opposing roles of IL-10 in acute bacterial infection. Cytokine Growth Factor Rev. 2016, 32, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Teh, H.S.; Seebaran, A.; Teh, S.J. TNF receptor 2-deficient CD8 T cells are resistant to Fas/Fas ligand-induced cell death. J. Immunol. 2000, 165, 4814–4821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elzey, B.D.; Griffith, T.S.; Herndon, J.M.; Barreiro, R.; Tschopp, J.; Ferguson, T.A. Regulation of Fas ligand-induced apoptosis by TNF. J. Immunol. 2001, 167, 3049–3056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heffernan, D.S.; Monaghan, S.F.; Thakkar, R.K.; Machan, J.T.; Cioffi, W.G.; Ayala, A. Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern. Crit. Care 2012, 16, R12. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.; Kontermann, R.E.; Maier, O. Targeting sTNF/TNFR1 Signaling as a New Therapeutic Strategy. Antibodies 2015, 4, 48–70. [Google Scholar] [CrossRef]
- Steeland, S.; Libert, C.; Vandenbroucke, R.E. A New Venue of TNF Targeting. Int. J. Mol. Sci. 2018, 19, 1442. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.D.; Li, W.; Chen, Z.R.; Hu, Y.C.; Zhang, D.D.; Shen, W.; Zhou, M.L.; Zhu, L.; Hang, C.H. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem. Res. 2013, 38, 2072–2083. [Google Scholar] [CrossRef]
- Tompkins, P.; Tesiram, Y.; Lerner, M.; Gonzalez, L.P.; Lightfoot, S.; Rabb, C.H.; Brackett, D.J. Brain injury: Neuro-inflammation, cognitive deficit, and magnetic resonance imaging in a model of blast induced traumatic brain injury. J. Neurotrauma 2013, 30, 1888–1897. [Google Scholar] [CrossRef]
- Waters, R.J.; Murray, G.D.; Teasdale, G.M.; Stewart, J.; Day, I.; Lee, R.J.; Nicoll, J.A. Cytokine gene polymorphisms and outcome after traumatic brain injury. J. Neurotrauma 2013, 30, 1710–1716. [Google Scholar] [CrossRef] [Green Version]
- Manda-Handzlik, A.; Demkow, U. The Brain Entangled: The Contribution of Neutrophil Extracellular Traps to the Diseases of the Central Nervous System. Cells 2019, 8, 1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szmydynger-Chodobska, J.; Shan, R.; Thomasian, N.; Chodobski, A. The Involvement of Pial Microvessels in Leukocyte Invasion after Mild Traumatic Brain Injury. PLoS ONE 2016, 11, e0167677. [Google Scholar] [CrossRef] [PubMed]
- Strecker, J.K.; Schmidt, A.; Schabitz, W.R.; Minnerup, J. Neutrophil granulocytes in cerebral ischemia—Evolution from killers to key players. Neurochem. Int. 2017, 107, 117–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, R.S.; Kochanek, P.M.; Schwarz, M.A.; Schiding, J.K.; Turner, D.S.; Chen, M.; Carlos, T.M.; Watkins, S.C. Inducible nitric oxide synthase expression in cerebrovascular smooth muscle and neutrophils after traumatic brain injury in immature rats. Pediatr. Res. 1996, 39, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Kaneko, Y.; Yu, S.; Bae, E.; Stahl, C.E.; Kawase, T.; van Loveren, H.; Sanberg, P.R.; Borlongan, C.V. Quantitative analyses of matrix metalloproteinase activity after traumatic brain injury in adult rats. Brain Res. 2009, 1280, 172–177. [Google Scholar] [CrossRef]
- Grossetete, M.; Phelps, J.; Arko, L.; Yonas, H.; Rosenberg, G.A. Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery 2009, 65, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Manz, M.G.; Boettcher, S. Emergency granulopoiesis. Nat. Rev. Immunol. 2014, 14, 302–314. [Google Scholar] [CrossRef]
- Lammermann, T. In the eye of the neutrophil swarm-navigation signals that bring neutrophils together in inflamed and infected tissues. J. Leukoc. Biol. 2016, 100, 55–63. [Google Scholar] [CrossRef]
- Sadik, C.D.; Luster, A.D. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J. Leukoc. Biol. 2012, 91, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Meredith, W.; Rutledge, R.; Fakhry, S.M.; Emery, S.; Kromhout-Schiro, S. The Conundrum of the Glasgow Coma Scale in Intubated Patients: A Linear Regression Prediction of the Glasgow Verbal Score from the Glasgow Eye and Motor Scores. J. Trauma Acute Care Surg. 1998, 44, 839–845. [Google Scholar] [CrossRef] [Green Version]
- Dasta, J.F.; McLaughlin, T.P.; Mody, S.H.; Piech, C.T. Daily cost of an intensive care unit day: The contribution of mechanical ventilation. Crit. Care Med. 2005, 33, 1266–1271. [Google Scholar] [CrossRef]
- Kahn, J.M.; Rubenfeld, G.D.; Rohrbach, J.; Fuchs, B.D. Cost savings attributable to reductions in intensive care unit length of stay for mechanically ventilated patients. Med. Care 2008, 46, 1226–1233. [Google Scholar] [CrossRef]
- Reid, L.D.; Fingar, K.R. Inpatient stays and emergency department visits involving traumatic brain injury, 2017: Statistical brief #255. In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2020. [Google Scholar]
- Kreutzer, J.S.; Kolakowsky-Hayner, S.A.; Ripley, D.; Cifu, D.X.; Rosenthal, M.; Bushnik, T.; Zafonte, R.; Englander, J.; High, W. Charges and lengths of stay for acute and inpatient rehabilitation treatment of traumatic brain injury 1990–1996. Brain Inj. 2001, 15, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.; Costantini, T.W.; Berndtson, A.E.; Smith, A.; Doucet, J.J.; Godat, L.N. Readmissions After Acute Hospitalization for Traumatic Brain Injury. J. Surg. Res. 2019, 244, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Weppner, J.L.; Linsenmeyer, M.A.; Wagner, A.K. Acute Care Brain Injury Medicine Continuity Consultation Service Associations with Healthcare Utilization and Rehabilitation Outcomes among Individuals with Acquired Brain Injury. PM&R J. Inj. Funct. Rehabil. 2021. [Google Scholar] [CrossRef]
- Galvani, A.P.; Parpia, A.S.; Foster, E.M.; Singer, B.H.; Fitzpatrick, M.C. Improving the prognosis of health care in the USA. Lancet 2020, 395, 524–533. [Google Scholar] [CrossRef]
- Wrathall, J.; Belnap, T. Reducing Health Care Costs Through Patient Targeting: Risk Adjustment Modeling to Predict Patients Remaining High Cost. eGEMs 2017, 5, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corral, L.; Javierre, C.F.; Ventura, J.L.; Marcos, P.; Herrero, J.I.; Manez, R. Impact of non-neurological complications in severe traumatic brain injury outcome. Crit. Care 2012, 16, R44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.G.; DiSanto, D.; Awan, N.; Vaughan, L.E.; Levochkina, M.S.; Weppner, J.L.; Wright, D.W.; Berga, S.L.; Conley, Y.P.; Brooks, M.M.; et al. Temporal Acute Serum Estradiol and Tumor Necrosis Factor-alpha Associations and Risk of Death after Severe Traumatic Brain Injury. J. Neurotrauma 2020, 37, 2198–2210. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, W.; Siwicka-Gieroba, D.; Gasinska-Blotniak, M.; Zaid, S.; Jezierska, M.; Pakulski, C.; Williams Roberson, S.; Wesley Ely, E.; Kotfis, K. Pathomechanisms of Non-Traumatic Acute Brain Injury in Critically Ill Patients. Medicina 2020, 56, 469. [Google Scholar] [CrossRef]
- Sonneville, R.; Verdonk, F.; Rauturier, C.; Klein, I.F.; Wolff, M.; Annane, D.; Chretien, F.; Sharshar, T. Understanding brain dysfunction in sepsis. Ann. Intensiv. Care 2013, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Full Cohort | Acute Survivors-Only Cohort | |||
---|---|---|---|---|
Variable | Median | IQR | Median | IQR |
Age (Years) | 31 | (23–45) | 29 | (22–44) |
GCS Score (Best in 24 h) | 7 | (6–10) | 7 | (6–10) |
ISS Score | 30 | (25–38) | 30 | (25–38) |
Length of Stay in Hospital (Days) | 19 | (10–27) | 19 | (12–29) |
Mechanical Ventilation (Days) | 10 | (5–17) | 11 | (5–17) |
n | % | n | % | |
Sex (Male) | 153 | 78.1% | 137 | 78.3% |
Race (White) | 177 | 90.3% | 157 | 89.7% |
Mechanism of Injury | n | % | n | % |
MVC | 99 | 50.5% | 90 | 52.6% |
Motorcycle | 36 | 18.4% | 34 | 19.9% |
Fall | 37 | 18.9% | 30 | 17.5% |
Other | 19 | 9.7% | 17 | 9.9% |
CT Injury Type/Complications | n | % | n | % |
Intra-axial Hemorrhage | 165 | 84.6% | 146 | 83.9% |
IVH | 69 | 35.2% | 58 | 33.3% |
IPH | 102 | 52.0% | 91 | 52.3% |
Contusion | 128 | 65.3% | 114 | 65.5% |
Extra-axial Hemorrhage | 175 | 89.7% | 156 | 89.7% |
SDH | 129 | 65.8% | 111 | 63.8% |
SAH | 145 | 74.0% | 128 | 73.6% |
EDH | 41 | 20.9% | 41 | 23.6% |
DAI | 31 | 15.8% | 29 | 27.9% |
Midline Shift | 65 | 33.2% | 56 | 32.2% |
Median | IQR | Median | IQR | |
CT Burden | 3 | (2–4) | 4 | (2–4) |
n | % | n | % | |
Infection Status (Positive) | 122 | 62.2% | 113 | 64.6% |
Ventilator Use | 182 | 92.9% | 161 | 92.0% |
Low NLR TRAJ (n = 129) | High NLR TRAJ (n = 67) | ||||
---|---|---|---|---|---|
Variable | Median | IQR | Median | IQR | p-Value |
Age (Years) | 31 | (23–46) | 29 | (22–44) | 0.5084 |
GCS Score (Best in 24 h) | 7 | (6–10) | 7 | (6–10) | 0.1481 |
ISS Score | 30 | (24–38) | 33 | (26–43) | 0.0478 |
Length of Stay in Hospital (Days) | 17 | (9–23) | 23 | (15–33) | 0.0013 |
Mechanical Ventilation (Days) | 9 | (4–14) | 14 | (8–20) | 0.0015 |
n | % | n | % | p-value | |
Sex (Male) | 101 | 78.3% | 52 | 77.6% | 0.9128 |
Race (White) | 118 | 91.5% | 59 | 88.1% | 0.6089 |
Mechanism of Injury | n | % | n | % | p-value |
MVC | 99 | 50.5% | 90 | 52.6% | 0.5560 |
Motorcycle | 36 | 18.4% | 34 | 19.9% | 0.2046 |
Fall | 37 | 18.9% | 30 | 17.5% | 0.2322 |
Other | 19 | 9.7% | 17 | 9.9% | 0.4084 |
CT Injury Type/Complications | n | % | n | % | p-value |
Intra-axial Hemorrhage | 107 | 83.6% | 58 | 86.6% | 0.7356 |
IVH | 43 | 33.6% | 26 | 38.8% | 0.5719 |
IPH | 66 | 51.6% | 36 | 53.7% | 0.8910 |
Contusion | 82 | 64.1% | 46 | 68.7% | 0.6292 |
Extra-axial Hemorrhage | 116 | 90.6% | 59 | 88.1% | 0.7548 |
SDH | 85 | 66.4% | 44 | 65.7% | 1.0000 |
SAH | 92 | 71.9% | 53 | 79.1% | 0.3547 |
EDH | 30 | 23.4% | 11 | 16.4% | 0.3383 |
DAI | 23 | 18.0% | 8 | 11.9% | 0.3749 |
Midline Shift | 45 | 35.2% | 20 | 29.9% | 0.5575 |
Median | IQR | Median | IQR | p-value | |
CT Burden | 3 | (2–4) | 3 | (3–4) | 0.7347 |
n | % | n | % | p-value | |
Infection Status (Positive) | 71 | 55.0% | 51 | 76.1% | 0.0062 |
Ventilator Use | 117 | 90.7% | 65 | 97.0% | 0.1813 |
Infected (n = 122) | Non-Infected (n = 74) | ||||
---|---|---|---|---|---|
Variable | Median | IQR | Median | IQR | p-Value |
Age (Years) | 29 | (21–43) | 40 | (26–51) | 0.0029 |
GCS Score (Best in 24 h) | 7 | (6–9) | 9 | (6–12) | 0.0015 |
ISS Score | 30 | (26–38) | 29 | (20–36) | 0.0865 |
Length of Stay in Hospital (Days) | 22 | (18–33) | 9 | (5–18) | <0.0001 |
Mechanical Ventilation (Days) | 14 | (9–18) | 5 | (2–9) | <0.0001 |
n | % | n | % | p-value | |
Sex (Male) | 95 | 77.84% | 58 | 78.38% | 0.9334 |
Race (White) | 110 | 90.16% | 67 | 90.54% | 0.2306 |
Mechanism of Injury | n | % | n | % | p-value |
MVC | 65 | 54.17% | 29 | 40.80% | 0.603 |
Motorcycle | 24 | 20.00% | 12 | 16.90% | 0.736 |
Fall | 21 | 17.50% | 16 | 22.54% | 0.508 |
Other | 10 | 8.33% | 14 | 19.70% | 0.736 |
CT Injury Type/Complications | n | % | n | % | p-value |
Intra-axial Hemorrhage | 106 | 86.89% | 59 | 80.82% | 0.2561 |
IVH | 52 | 42.62% | 17 | 23.29% | 0.0063 |
IPH | 36 | 54.1% | 66 | 49.32% | 0.5175 |
Contusion | 86 | 70.49% | 42 | 57.53% | 0.0652 |
Extra-axial Hemorrhage | 110 | 90.16% | 65 | 89.04% | 0.8025 |
SDH | 81 | 66.39% | 48 | 65.75% | 0.9272 |
SAH | 96 | 78.69% | 49 | 67.12% | 0.0735 |
EDH | 28 | 22.95% | 13 | 17.81% | 0.3937 |
DAI | 24 | 19.67% | 7 | 9.59% | 0.0624 |
Midline Shift | 41 | 33.61% | 24 | 32.88% | 0.9167 |
Median | IQR | Median | IQR | p-value | |
CT Burden | 4 | (3–4) | 3 | (2–4) | 0.0065 |
n | % | n | % | p-value | |
Ventilator Use | 121 | 99.18% | 61 | 82.43% | <0.0001 |
(A) With NLR TRAJ | Beta | SE | χ2 | Hazard Ratio | p-Value |
Age | 0.004 | 0.008 | 0.18 | 1.004 | 0.671 |
Sex (Male) | 0.242 | 0.312 | 0.602 | 1.274 | 0.438 |
GCS Score | −0.144 | 0.049 | 8.802 | 0.866 | 0.003 |
ISS Score | −0.012 | 0.012 | 1.024 | 0.988 | 0.312 |
CT Burden | −0.104 | 0.083 | 1.567 | 0.901 | 0.212 |
NLR TRAJ (High) | 0.575 | 0.247 | 5.410 | 1.777 | 0.02 |
(B) With ABS Lymphocyte TRAJ | Beta | SE | χ2 | Hazard Ratio | p-Value |
Age | 0.001 | 0.009 | 0.009 | 1.001 | 0.924 |
Sex (Male) | 0.101 | 0.318 | 0.1 | 1.106 | 0.752 |
GCS Score | −0.139 | 0.049 | 8.136 | 0.870 | 0.004 |
ISS Score | −0.015 | 0.013 | 1.469 | 0.985 | 0.226 |
CT Burden | −0.096 | 0.081 | 1.4 | 0.908 | 0.237 |
Lymphocyte TRAJ (Low) | 0.521 | 0.256 | 4.138 | 1.684 | 0.042 |
(C) With ABS Neutrophil TRAJ | Beta | SE | χ2 | Hazard Ratio | p-Value |
Age | 0.004 | 0.009 | 0.264 | 1.004 | 0.607 |
Sex (Male) | 0.252 | 0.313 | 0.652 | 1.287 | 0.419 |
GCS Score | −0.152 | 0.049 | 9.419 | 0.859 | 0.002 |
ISS Score | −0.009 | 0.012 | 0.491 | 0.991 | 0.484 |
CT Burden | −0.114 | 0.084 | 1.821 | 0.892 | 0.177 |
Neutrophil TRAJ (High) | 0.316 | 0.267 | 1.397 | 1.372 | 0.237 |
(A) Time-Varying Infection Status (0–5 days) | Beta | SE | t-Value | p-Value |
Infection Status (Positive) | 0.132 | 0.073 | 1.80 | 0.072 |
Day | −0.045 | 0.016 | −2.86 | 0.004 |
Age | −0.003 | 0.002 | −1.31 | 0.189 |
Sex (Male) | 0.107 | 0.081 | 1.31 | 0.191 |
GCS Score | 0.005 | 0.012 | 0.39 | 0.696 |
ISS Score | 0.007 | 0.003 | 2.39 | 0.017 |
CT Burden | 0.049 | 0.023 | 2.12 | 0.034 |
(B) Time-Varying Infection Status (6–20 days) | Beta | SE | t-Value | p-Value |
Infection Status (Positive) | 2.024 | 0.249 | 8.14 | <0.0001 |
Day | 0.274 | 0.058 | 4.73 | <0.0001 |
Age | −0.046 | 0.005 | −8.93 | <0.0001 |
Sex (Male) | 0.002 | 0.003 | 0.54 | 0.587 |
GCS Score | −0.222 | 0.097 | −2.29 | 0.022 |
ISS Score | −0.012 | 0.015 | −0.78 | 0.437 |
CT Burden | 0.005 | 0.004 | 1.37 | 0.172 |
(A) Hospital Length of Stay | Full Cohort | Acute-Survivors-Only Cohort | ||||
Variable | Beta | SE | p-Value | Beta | SE | p-Value |
Age (Years) | −0.166 | 0.064 | 0.01 | −0.043 | 0.071 | 0.548 |
GCS Score | −0.304 | 0.337 | 0.368 | −0.993 | 0.358 | 0.006 |
ISS Score | 0.183 | 0.089 | 0.042 | 0.189 | 0.091 | 0.04 |
CT Burden | 2.144 | 0.664 | 0.001 | 2.049 | 0.682 | 0.003 |
NLR TRAJ | 3.942 | 2.001 | 0.05 | 6.217 | 2.099 | 0.004 |
Infection Status (Positive vs. Negative) | 8.671 | 2.118 | <0.001 | 6.078 | 2.304 | 0.009 |
(B) Days on Mechanical Ventilation | Full Cohort | Acute-Survivors-Only Cohort | ||||
Variable | Beta | SE | p-Value | Beta | SE | p-Value |
Age (Years) | −0.063 | 0.025 | 0.014 | −0.032 | 0.029 | 0.263 |
GCS Score | −0.429 | 0.133 | 0.002 | −0.64 | 0.146 | <0.001 |
ISS Score | 0.026 | 0.036 | 0.461 | 0.017 | 0.037 | 0.639 |
CT Burden | 0.953 | 0.266 | <0.001 | 0.833 | 0.277 | 0.003 |
NLR TRAJ | 1.693 | 0.796 | 0.035 | 2.417 | 0.854 | 0.005 |
Infection Status (Positive vs. Negative) | 4.738 | 0.836 | <0.001 | 4.139 | 0.938 | <0.001 |
Full Cohort | Acute-Survivors-Only Cohort | |||||
---|---|---|---|---|---|---|
Variable | OR | 96% CI | p-Value | OR | 96% CI | p-Value |
Age (Years) | 1.042 | (1.02, 1.07) | 0.0020 | 1.029 | (1.00, 1.06) | 0.048 |
Sex (Men) | 0.598 | (0.23, 1.47) | 0.269 | 0.533 | (0.21, 1.34) | 0.184 |
GCS Score | 0.706 | (0.60, 0.81) | <0.0001 | 0.77 | (0.65, 0.89) | 0.001 |
ISS Score | 1.027 | (0.99, 1.06) | 0.124 | 1.026 | (0.99, 1.06) | 0.149 |
CT Burden | 1.29 | (1.00, 1.69) | 0.056 | 1.318 | (1.01, 1.75) | 0.047 |
Infection Status (Positive) | 0.714 | (0.31, 1.61) | 0.421 | 0.972 | (0.40, 2.36) | 0.95 |
NLR TRAJ (High) | 2.18 | (1.03, 4.77) | 0.046 | 1.988 | (0.91, 4.43) | 0.087 |
AUC | 0.81 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levochkina, M.; McQuillan, L.; Awan, N.; Barton, D.; Maczuzak, J.; Bianchine, C.; Trombley, S.; Kotes, E.; Wiener, J.; Wagner, A.; et al. Neutrophil-to-Lymphocyte Ratios and Infections after Traumatic Brain Injury: Associations with Hospital Resource Utilization and Long-Term Outcome. J. Clin. Med. 2021, 10, 4365. https://doi.org/10.3390/jcm10194365
Levochkina M, McQuillan L, Awan N, Barton D, Maczuzak J, Bianchine C, Trombley S, Kotes E, Wiener J, Wagner A, et al. Neutrophil-to-Lymphocyte Ratios and Infections after Traumatic Brain Injury: Associations with Hospital Resource Utilization and Long-Term Outcome. Journal of Clinical Medicine. 2021; 10(19):4365. https://doi.org/10.3390/jcm10194365
Chicago/Turabian StyleLevochkina, Marina, Leah McQuillan, Nabil Awan, David Barton, John Maczuzak, Claudia Bianchine, Shannon Trombley, Emma Kotes, Joshua Wiener, Audrey Wagner, and et al. 2021. "Neutrophil-to-Lymphocyte Ratios and Infections after Traumatic Brain Injury: Associations with Hospital Resource Utilization and Long-Term Outcome" Journal of Clinical Medicine 10, no. 19: 4365. https://doi.org/10.3390/jcm10194365
APA StyleLevochkina, M., McQuillan, L., Awan, N., Barton, D., Maczuzak, J., Bianchine, C., Trombley, S., Kotes, E., Wiener, J., Wagner, A., Calcagno, J., Maza, A., Nierstedt, R., Ferimer, S., & Wagner, A. (2021). Neutrophil-to-Lymphocyte Ratios and Infections after Traumatic Brain Injury: Associations with Hospital Resource Utilization and Long-Term Outcome. Journal of Clinical Medicine, 10(19), 4365. https://doi.org/10.3390/jcm10194365