Comparative Long-Term Renal Allograft Outcomes of Recurrent Immunoglobulin A with Severe Activity in Kidney Transplant Recipients with and without Rituximab: An Observational Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Designs and Participants
2.2. Immunosuppressive Regimens of Renal Transplantation
2.3. Treatment of Recurrent IgAN with Endocapillary Hypercellularity and Cellular Crescent
2.4. Outcomes of Interest
2.5. Sample Analysis
2.6. Statistical Analysis
3. Results
3.1. Rituximab Attenuated Recurrent IgA Nephropathy with Endocapillary Hypercellularity Pattern in Post-KT
3.2. Episodes of Allograft Rejection following the Treatments
3.3. Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choy, B.Y.; Chan, T.M.; Lai, K.N. Recurrent glomerulonephritis after kidney transplantation. Am. J. Transplant. 2006, 6, 2535–2542. [Google Scholar] [CrossRef]
- Andresdottir, M.B.; Haasnoot, G.W.; Doxiadis, I.I.; Persijn, G.G.; Claas, F.H. Exclusive characteristics of graft survival and risk factors in recipients with immunoglobulin A nephropathy: A retrospective analysis of registry data. Transplantation 2005, 80, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Floege, J.; GrÖne, H.J. Recurrent IgA nephropathy in the renal allograft: Not a benign condition. Nephrol. Dial. Transplant. 2013, 28, 1070–1073. [Google Scholar] [CrossRef] [Green Version]
- Kiattisunthorn, K.; Premasathian, N.; Wongwiwatana, A.; Parichatikanond, P.; Cheunsuchon, B.; Vasuvattakul, S. Evaluating the clinical course and prognostic factors of posttransplantation immunoglobulin a nephropathy. Transplant. Proc. 2008, 40, 2349–2354. [Google Scholar] [CrossRef] [PubMed]
- Moroni, G.; Longhi, S.; Quaglini, S.; Gallelli, B.; Banfi, G.; Montagnino, G.; Messa, P. The long-term outcome of renal transplantation of IgA nephropathy and the impact of recurrence on graft survival. Nephrol. Dial. Transplant. 2013, 28, 1305–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidney Disease: Improving Global Outcomes Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 2009, 9 (Suppl. 3), S1–S155. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Zeier, M.G.; Chapman, J.R.; Craig, J.C.; Ekberg, H.; Garvey, C.A.; Green, M.D.; Jha, V.; Josephson, M.A.; Kiberd, B.A.; et al. Kidney Disease: Improving Global Outcomes (2010). KDIGO clinical practice guideline for the care of kidney transplant recipients: A summary. Kidney. Int. 2010, 77, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Oka, K.; Imai, E.; Moriyama, T.; Akagi, Y.; Ando, A.; Hori, M.; Okuyama, M.; Toki, K.; Kyo, M.; Kokado, Y.; et al. A clinicopathological study of IgA nephropathy in renal transplant recipients: Beneficial effect of angiotensin-converting enzyme inhibitor. Nephrol. Dial. Transplant. 2000, 15, 689–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiremath, S.; Fergusson, D.; Doucette, S.; Mulay, A.V.; Knoll, G.A. Renin angiotensin system blockade in kidney transplantation: A systemic review of the evidence. Am. J. Transplant. 2007, 7, 2350–2360. [Google Scholar] [CrossRef] [PubMed]
- Nijim, S.; Vujjini, V.; Alasfar, S.; Luo, X.; Orandi, B.; Delp, C.; Desai, N.M.; Montgomery, R.A.; Lonze, B.E.; Alachkar, N. Recurrent IgA nephropathy after kidney transplantation. Transplant. Proc. 2016, 48, 2689–2694. [Google Scholar] [CrossRef]
- Cabral, D.B.C.; de Sandes-Freitas, T.V.; Medina-Pestana, J.O.; Mastroianni-Kirsztajn, G. Clinical features, treatment and prognostic factors of post-transplant immunoglobulin A nephropathy. Ann. Transplant. 2018, 9, 166–175. [Google Scholar] [CrossRef]
- Damodar, A.; Mustafa, R.; Bhatnagar, J.; Panesar, M.; Gundroo, A.; Zachariah, M.; Blessios, G.; Tornatore, K.; Weber-Shrikant, E.; Venuto, R. Use of anti-CD20 antibody in the treatment of post-transplant glomerulonephritis. Clin. Transplant. 2011, 25, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Apeland, T.; Hartmann, A. Rituximab therapy in early recurrent focal segmental sclerosis after renal transplantation. Nephrol. Dial. Transplant. 2008, 23, 2091–2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallon, L.; Chhabra, D. Anti-CD20 monoclonal antibody (rituximab) for the treatment of recurrent idiopathic membranous nephropathy in a renal transplant patient. Am. J. Transplant. 2006, 6, 3017–3021. [Google Scholar] [CrossRef] [Green Version]
- Sirimongkolrat, T.; Premasathian, N.; Vongwiwatana, A.; Limsrichamrern, S.; Cheunsuchon, B.; Vasuvattakul, S. Anti-CD20 monoclonal antibody (rituximab) for the treatment of membranous nephropathy after living-unrelated kidney transplantation: A case report. Transplant. Proc. 2008, 40, 2440–2441. [Google Scholar] [CrossRef] [PubMed]
- Pillebout, E.; Rocha, F.; Fardet, L.; Rybojad, M.; Verine, J.; Glotz, D. Successful outcome using rituximab as the only immunomodulation in Henoch-SchÖnlein purpura: Case report. Nephrol. Dial. Transplant. 2011, 26, 2044–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Sáez, M.J.; Toledo, K.; Navarro, M.D.; Lopez-Andreu, M.; Redondo, M.D.; Ortega, R.; Pérez-Seoane, C.; Agüera, M.L.; Rodríguez-Benot, A.; Aljama, P. Recurrent membranoproliferative glomerulonephritis after second renal graft treated with plasmapheresis and rituximab. Transplant. Proc. 2011, 43, 4005–4009. [Google Scholar] [CrossRef]
- Yaginuma, T.; Yamamoto, H.; Mitome, J.; Kobayashi, A.; Yamamoto, I.; Tanno, Y.; Hayakawa, H.; Miyazaki, Y.; Yokoyama, K.; Utsunomiya, Y.; et al. Successful treatment of nephrotic syndrome caused by recurrent IgA nephropathy with chronic active antibody-mediated rejection three years after kidney transplantation. Clin. Transplant. 2011, 25 (Suppl. 23), 28–33. [Google Scholar] [CrossRef] [PubMed]
- Infante, B.; Rossini, M.; Di Lorenzo, A.; Coviello, N.; Giuseppe, C.; Gesualdo, L.; Giuseppe, G.; Stallone, G. Recurrence of immunoglobulin A nephropathy after kidney transplantation: A narrative review of the incidence, risk factors, pathophysiology and management of immunosuppressive therapy. Clin. Kidney J. 2020, 13, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, Y.; Takeda, A.; Horike, K.; Inaguma, D.; Goto, N.; Watarai, Y.; Morozumi, K. Early recurrence of active IgA nephropathy after kidney transplantation. Nephrology 2014, 19 (Suppl. 3), 45–48. [Google Scholar] [CrossRef]
- Lafayette, R.A.; Canetta, P.A.; Rovin, B.H.; Appel, G.B.; Novak, J.; Nath, K.A.; Sethi, S.; Tumlin, J.A.; Mehta, K.; Hogan, M.; et al. A randomized, controoled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J. Am. Soc. Nephrol. 2017, 28, 1306–1313. [Google Scholar] [CrossRef]
- Suzuki, H.; Fan, R.; Zhang, Z.; Brown, R.; Hall, S.; Julian, B.A.; Chatham, W.W.; Suzuki, Y.; Wyatt, R.J.; Moldoveanu, Z.; et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Investig. 2009, 119, 1668–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chancharoenthana, W.; Townamchai, N.; Leelahavanichkul, A.; Wattanatorn, S.; Kanjanabuch, T.; Avihingsanon, Y.; Praditpornsilpa, K.; Eiam-Ong, S. Rituximab for recurrent IgA nephropathy in kidney transplantation: A report of three cases and proposed mechanisms. Nephrology 2017, 22, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Trimarchi, H.; Barratt, J.; Cattran, D.C.; Cook, H.T.; Coppo, R.; Haas, M.; Liu, Z.H.; Roberts, I.S.; Yuzawa, Y.; Zhang, H.; et al. Classification of IgA nephropathy 2016: An update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017, 91, 1014–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racusen, L.C.; Solez, K.; Colvin, R.B.; Bonsib, S.M.; Castro, M.C.; Cavallo, T.; Croker, B.P.; Demetris, A.J.; Drachenberg, C.B.; Fogo, A.B.; et al. The Banff 97 working classification of renal allograft pathology. Kidney Int. 1999, 55, 713–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, M.; Sis, B.; Racusen, L.C.; Solez, K.; Glotz, D.; Colvin, R.B.; Castro, M.C.; David, D.S.; David-Neto, E.; Bagnasco, S.M.; et al. Banff meeting report writing committee (2014). Banff 2013 meeting report: Inclusion of c4d-negative antibody-mediated rejection and antibody-associated arterial lesions. Am. J. Transplant. 2014, 14, 272–283. [Google Scholar] [CrossRef]
- Ponticelli, C.; Traversi, L.; Feliciani, A.; Cesana, B.M.; Banfi, G.; Tarantino, A. Kidney transplantation in patients with IgA mesangial glomerulonephritis. Kidney. Int. 2001, 60, 1948–1954. [Google Scholar] [CrossRef] [Green Version]
- Tomana, M.; Novak, J.; Julian, B.A.; Matousovic, K.; Konecny, K.; Mestecky, J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J. Clin. Investig. 1999, 104, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthelot, L.; Robert, T.; Vuiblet, V.; Tabary, T.; Braconnier, A.; Dramé, M.; Toupance, O.; Rieu, P.; Monteiro, R.C.; Touré, F. Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int. 2015, 88, 815–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthoux, F.; El Deeb, S.; Mariat, C.; Diconne, E.; Laurent, B.; Thibaudin, L. Antithymocyte globulin (ATG) induction therapy and disease recurrence in renal transplant recipients with primary IgA nephropathy. Transplantation 2008, 85, 1505–1507. [Google Scholar] [CrossRef]
- Leeaphorn, N.; Garg, N.; Khankin, E.V.; Cardarelli, F.; Pavlakis, M. Recurrence of IgA nephropathy after kidney transplantation in steroid continuation versus early steroid-withdrawal regimens: A retrospective analysis of UNOS/OPTN database. Transplant. Int. 2018, 31, 175–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, P.; McDonald, S.; Chadban, S. Steroids and recurrent IgA nephropathy after kidney transplantation. Am. J. Transplant. 2011, 11, 1645–1649. [Google Scholar] [CrossRef] [PubMed]
- Reich, H.N.; Troyanov, S.; Scholey, J.W.; Cattran, D.C.; Toronto Glomerulonephritis Registry. Remission of proteinuria improves prognosis in IgA nephropathy. J. Am. Soc. Nephrol. 2007, 18, 3177–3183. [Google Scholar] [CrossRef]
- Nankivell, B.J.; Agrawal, N.; Sharma, A.; Taverniti, A.; P’Ng, C.H.; Shingde, M.; Wong, G.; Chapman, J.R. The clinical and pathological significance of borderline T cell-mediated rejection. Am. J. Transplant. 2019, 19, 1452–1463. [Google Scholar] [CrossRef]
- Lundberg, S.; Westergren, E.; Smolander, J.; Bruchfeld, A. B cell-depleting therapy with rituximab or ofatumumab in immunoglobulin A nephropathy or vasculitis with nephritis. Clin. Kidney J. 2017, 10, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, W.; Lakkis, F.G.; Chalasani, G. B cells, antibodies, and more. Clin. J. Am. Soc. Nephrol. 2016, 11, 137–154. [Google Scholar] [CrossRef]
- McCarthy, D.D.; Kujawa, J.; Wilson, C.; Papandile, A.; Poreci, U.; Porfilio, E.A.; Ward, L.; Lawson, M.A.; Macpherson, A.J.; McCoy, K.D.; et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J. Clin. Investig. 2011, 121, 3991–4002. [Google Scholar] [CrossRef] [Green Version]
- Mei, H.E.; Schmidt, S.; DÖrner, T. Rationale of anti-CD19 immunotherapy: An option to target autoreactive plasma cells in autoimmunity. Arthritis Res. Ther. 2012, 14 (Suppl. 5), S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Bao, H.; Xu, X.; Zhou, X.; Qin, W.; Zeng, C.; Liu, Z. Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. FEBS. Lett. 2015, 589, 4019–4025. [Google Scholar] [CrossRef] [PubMed]
- Ramos, E.J.; Pollinger, H.S.; Stegall, M.D.; Gloor, J.M.; Dogan, A.; Grande, J.P. The effect of desensitization protocols on human splenic B-cell populations in vivo. Am. J. Transplant. 2007, 7, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Sfikakis, P.P.; Souliotis, V.L.; Fragiadaki, K.G.; Moutsopoulos, H.M.; Boletis, J.N.; Theofilopoulos, A.N. Increased expression of the FoxP3 functional marker of regulatory T cells following B cell depletion with rituximab in patients with lupus nephritis. Clin. Immunol. 2007, 123, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Nixon, A.; Ogden, L.; Woywodt, A.; Dhaygude, A. Infectious complications of rituximab therapy in renal disease. Clin. Kidney J. 2017, 10, 455–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthoux, F.; Suzuki, H.; Mohey, H.; Maillard, N.; Mariat, C.; Novak, J.; Julian, B.A. Prognostic value of serum biomarkers of autoimmunity for recurrence of IgA nephropathy after kidney transplantation. J. Am. Soc. Nephrol. 2017, 28, 1943–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fornoni, A.; Sageshima, J.; Wei, C.; Merscher-Gomez, S.; Aguillon-Prada, R.; Jauregui, A.N.; Li, J.; Mattiazzi, A.; Ciancio, G.; Chen, L.; et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci. Transl. Med. 2011, 3, 85ra46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulay, A.V.; van Walraven, C.; Knoll, G.A. Impact of immunosuppressive medication on the risk of renal allograft failure due to recurrent glomerulonephritis. Am. J. Transplant. 2009, 9, 804–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | All Recipients (n = 64) | Rituximab Addition to Conventional Standard Treatment (n = 21) | Conventional Standard Treatment (n = 43) | p-Value |
---|---|---|---|---|
Recipient age, year | 53.9 ± 11.2 | 53.1 ± 9.2 | 55.3 ± 6.4 | 0.047 |
Recipient gender, n (% male) | 37 (57.8) | 13 (61.9) | 24 (55.8) | 0.65 |
Donor type, n (% living donors) | 59 (92.2) | 18 (85.7) | 41 (95.3) | 0.18 |
Donor age, year | 39.4 ± 6.1 | 38.3 ± 10.6 | 41.6 ± 11.2 | 0.81 |
Donor gender, n (% male) | 30 (46.9) | 10 (47.6) | 20 (46.5) | 0.93 |
HLA mismatch | 1.3 ± 0.2 | 1.3 ± 0.9 | 1.2 ± 1.0 | 0.62 |
PRA > 30%, n (%) | 14 (21.9) | 7 (33.3) | 7 (16.3) | 0.13 |
Systolic blood pressure (mmHg) | 130.0 ± 14.8 | 130.6 ± 11.4 | 129.5 ± 12.4 | 0.70 |
Diastolic blood pressure (mmHg) | 75.8 ± 9.4 | 77.2 ± 7.8 | 73.5 ± 4.5 | 0.003 |
Body mass index (kg/m2) | 23 ± 6.2 | 23 ± 2.2 | 24 ± 3.2 | 0.07 |
Serum creatinine (mg/dL) | 2.1 ± 0.8 | 2.0 ± 1.1 | 2.1 ± 1.4 | 0.25 |
24 h CrCl (mL/min/1.73m2) | 48.9 ± 12.8 | 49.1 ± 9.3 | 48.7 ± 11.1 | 0.40 |
Maximum proteinuria (mg/24 h) | 4483 | 4.51 | 4043 | 0.65 b |
(1284–8987) a | (1284–8987) | (1341–7734) | ||
Smoking, n (%) | 11 (17.2) | 4 (19.0) | 7 (16.3) | 0.79 |
Diabetes, n (%) | 36 (56.2) | 12 (57.1) | 24 (55.8) | 0.92 |
Cardiovascular disease, n (%) | 14 (21.9) | 6 (28.6) | 8 (18.6) | 0.37 |
HBV/HCV, n (%) | 0 (0)/0 (0) | 0 (0)/0 (0) | 0 (0)/0 (0) | - |
CMV status (D+/R+), n (%) | 64 (100) | 21 (100) | 43 (100) | - |
Previous allograft rejection, n (%) | 0 (0) | 0 (0) | 0 (0) | - |
Diagnosis: post-transplant, months | 64.2 (38.1, 162.4) c | 69.5 (39.2, 172.4) | 63.7 (36.8, 153.6) | 0.21 |
Cyclosporin A, n (%) | 2 (3.1) | 1 (4.8) | 1 (2.3) | 0.59 |
Tacrolimus, n (%) | 62 (96.9) | 20 (95.2) | 42 (97.7) | 0.59 |
Mycophenolate mofetil, n (%) | 64 (100) | 21 (100) | 43 (100) | - |
Corticosteroids, n (%) | 50 (78.1) | 18 (85.7) | 32 (74.4) | 0.31 |
Prednisolone dose (mg/d) | 3.3 ± 2.1 d | 3.2 ± 2.0 | 3.3 ± 1.6 | 0.27 |
ACEIs or ARBs, n (%) | 64 (100) | 21 (100) | 43 (100) | - |
ACEIs and ARBs, n (%) | 3 (4.7) | 2 (9.5) | 1 (2.3) | 0.20 |
Pulse methylprednisolone, n (%) e | 8 (12.5) | 3 (14.3) | 5 (11.6) | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chancharoenthana, W.; Leelahavanichkul, A.; Ariyanon, W.; Vadcharavivad, S.; Phumratanaprapin, W. Comparative Long-Term Renal Allograft Outcomes of Recurrent Immunoglobulin A with Severe Activity in Kidney Transplant Recipients with and without Rituximab: An Observational Cohort Study. J. Clin. Med. 2021, 10, 3939. https://doi.org/10.3390/jcm10173939
Chancharoenthana W, Leelahavanichkul A, Ariyanon W, Vadcharavivad S, Phumratanaprapin W. Comparative Long-Term Renal Allograft Outcomes of Recurrent Immunoglobulin A with Severe Activity in Kidney Transplant Recipients with and without Rituximab: An Observational Cohort Study. Journal of Clinical Medicine. 2021; 10(17):3939. https://doi.org/10.3390/jcm10173939
Chicago/Turabian StyleChancharoenthana, Wiwat, Asada Leelahavanichkul, Wassawon Ariyanon, Somratai Vadcharavivad, and Weerapong Phumratanaprapin. 2021. "Comparative Long-Term Renal Allograft Outcomes of Recurrent Immunoglobulin A with Severe Activity in Kidney Transplant Recipients with and without Rituximab: An Observational Cohort Study" Journal of Clinical Medicine 10, no. 17: 3939. https://doi.org/10.3390/jcm10173939
APA StyleChancharoenthana, W., Leelahavanichkul, A., Ariyanon, W., Vadcharavivad, S., & Phumratanaprapin, W. (2021). Comparative Long-Term Renal Allograft Outcomes of Recurrent Immunoglobulin A with Severe Activity in Kidney Transplant Recipients with and without Rituximab: An Observational Cohort Study. Journal of Clinical Medicine, 10(17), 3939. https://doi.org/10.3390/jcm10173939