Clinical Evaluation of Different Treatment Strategies for Motor Recovery in Poststroke Rehabilitation during the First 90 Days
Abstract
:1. Introduction
2. Material and Methods
2.1. Patient Recruitment
2.2. Patient Characteristics
2.3. Study Design
- Observation period: within 90 days of stroke.
- Observation points were selected according to phases of rehabilitation (Figure 1):
- Point 1—first day of stroke;
- Point 2—after Phase I of rehabilitation (median 14th day, range 14–16);
- Point 3—after Phase II of rehabilitation (median 45th day, range 16–60);
- Point 4—after Phase III of rehabilitation (median 82th day, range 60–90).
- Group A: 21 patients who received restorative treatment during consecutive rehabilitation Phases I–III within 90 days of stroke.
- Group B: 14 patients who received treatment during Phases I and III. Group B patients refused inpatient rehabilitation on Phase II and, during this time period (range 14–60 days), were on outpatient observation.
- Group C: 15 patients who only received treatment during Phase I. Group C patients refused further rehabilitation and were followed up on outpatient observation and examined on the 90th day of stroke.
2.4. Applied AR Rehabilitation Techniques
- (a)
- Accuracy domain (Figure 2a). The patient performs the task in a sitting position. The scene represents cubes of two colors (red and black) with selective numbering. The patient alternately clicks on the cubes, performing extensor movements in the shoulder and elbow joints. Each time after pressing, the patient returns the upper limb to its original physiological start position. The exercise is aimed to train the muscles of the shoulder girdle and upper limb, increasing the strength and accuracy of movements.
- (b)
- Statics domain (Figure 2b). The patient performs the task in a sitting position. The virtual scene represents a circle with a triangle inscribed within it. The patient holds the index and middle fingers folded together against the contour of the circle when executing the task, and then moves their arm by the contour of the circle and triangle clockwise and counterclockwise. The virtual objects change color from red to green when the patient succeeds. This task has a high level of difficulty, allowing for training the reciprocal interaction of muscles with a static–dynamic load. An example of how the task is executed is presented in Figure 3a,b.Several parameters reflecting the execution of this task can be applied to measure the quality of the made movements. Augmentation of the “variability of movements” parameter can be interpreted as making a smoother movement during the task, and by decreasing the severity of intentional tremor during movements. This variable increases when the forefinger is moved closer to the main trajectory without making extra movements such as tremors and sudden movements to the side. Increasing the “number of completed tasks” during one motor training session and enhancing the “maximal duration of movement in one approach” is gradual improvement in the control of reciprocal muscles reflected by an increase in the duration and speed of the task.
- (c)
- Capture domain (Figure 2c). The patient performs the task in a sitting position. The virtual scene represents numbered red or black balls. The patient alternately captures and compresses the balls, first the red and then the black. The exercise was designed to train hand muscles and develop finger functionality by the formation of the correct grip.
- (d)
- Balance domain (Figure 2d). The patient performs the task in a standing position while walking on the spot. The virtual scene represents a yellow road moving under the patient. The patient takes a step from time to time over a virtual obstacle and grabs objects flying past them. The exercise attempts to train the correct walking skill, maintain balance, and overcome obstacles when walking. An example of how the task is executed is presented in Figure 3c,d.
2.5. Clinical Assessments
2.6. Statistical Analysis
3. Results
3.1. Assessment of Clinical and Functional Measures
3.2. Spasticity Assessment
3.3. Assessment of Movement Quality during AR Rehabilitation
4. Discussion
5. Limitations and Strengths
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Rehabilitation Methods Applied during Phase II
- Air cryotherapy (the compact FRIGOSTREAM cryotherapy unit, Germany): air flow speed 1200–1500 L/min, air flow temperature −32 °C, the distance to the surface of the body was 10–15 cm, the speed of movement of the air jet was 1–2 cm/s. The labile technique was performed using a standard nozzle for 5–7 min on a zone with an area of no more than 4 palms of the patient. The procedures were performed daily, 10–12 procedures per course.
- Functional electrical stimulation (FES) of muscles antagonistic to spastic ones (two-channel device IONOSON-Expert, Germany). FES was applied by a pulse current “surge high voltage” (HVS) in bi-phase mode with a frequency of 60–30 Hz, an increase and decrease in the current strength of 1 s and a plateau of the maximum current strength for 2 s, with a duration of sending and pausing of 4 and 6 s, respectively. The current strength was selected individually within 20–50 mA by the amplitude of visible muscle contractions and should not provoke an increase in muscle strength by more than 20–25% compared to the original muscle strength. The procedure took no more than 20 min. The course consisted of 10–12 daily procedures.
- Manual classical massage of paretic limbs: duration 30–40 min, course 10–12 procedures.
- Mechanotherapy (ARTROMOT SIMULATORS): one session took 30 min. The course included 10–12 sessions.
- Therapeutic physical culture (Bobath Neuro-Developmental Treatment),
- Active gymnastics, walking on a treadmill at a speed of 0.2–0.6 km/h for 3–10 min, walking on rehabilitation bars and stairs with adjustable height of steps.
References
- Hatem, S.M.; Saussez, G.; Della Faille, M.; Prist, V.; Zhang, X.; Dispa, D.; Bleyenheuft, Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front. Hum. Neurosci. 2016, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.; Truelsen, T.; et al. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 383, 245–255. [Google Scholar] [CrossRef]
- Feigin, V.L.; Krishnamurthi, R.V.; Parmar, P.; Norrving, B.; Mensah, G.A.; Bennett, D.A.; Barker-Collo, S.; Moran, A.E.; Sacco, R.L.; Truelsen, T.; et al. Update on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990-2013: The GBD 2013 Study. Neuroepidemiology 2015, 45, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef]
- Dimyan, M.; Cohen, L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 2011, 7, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Jones, T. Motor compensation and its effects on neural reorganization after stroke. Nat. Rev. Neurosci. 2017, 18, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Belagaje, S.R. Stroke Rehabilitation. Contin. Lifelong Learn. Neurol. 2017, 23, 238–253. [Google Scholar] [CrossRef]
- Coleman, E.R.; Moudgal, R.; Lang, K.; Hyacinth, H.I.; Awosika, O.O.; Kissela, B.M.; Feng, W. Early Rehabilitation after Stroke: A Narrative Review. Curr. Atheroscler. Rep. 2017, 19, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffers, M.S.; Karthikeyan, S.; Corbett, D. Does Stroke Rehabilitation Really Matter? Part A: Proportional Stroke Recovery in the Rat. Neurorehabilit. Neural Repair 2018, 32, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Higo, N.; Oishi, T.; Yamashita, A.; Matsuda, K.; Hayashi, M.; Yamane, S. Effects of Motor Training on the Recovery of Manual Dexterity After Primary Motor Cortex Lesion in Macaque Monkeys. J. Neurophysiol. 2008, 99, 773–786. [Google Scholar] [CrossRef] [Green Version]
- Zeiler, S.R. Should We Care About Early Post-Stroke Rehabilitation? Not Yet, but Soon. Curr. Neurol. Neurosci. Rep. 2019, 19, 13. [Google Scholar] [CrossRef]
- Bernhardt, J.; Godecke, E.; Johnson, L.; Langhorne, P. Early rehabilitation after stroke. Curr. Opin. Neurol. 2017, 30, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Sundseth, A.; Thommessen, B.; Rønning, O.M. Outcome after Mobilization within 24 Hours of Acute Stroke: A Randomized Controlled Trial. Stroke 2012, 43, 2389–2394. [Google Scholar] [CrossRef] [PubMed]
- Klamroth-Marganska, V. Stroke Rehabilitation: Therapy Robots and Assistive Devices. Sex-Specif. Anal. Cardiovasc. Funct. 2018, 1065, 579–587. [Google Scholar] [CrossRef]
- Palermo, E.; Hayes, D.; Russo, E.F.; Calabrò, R.S.; Pacilli, A.; Filoni, S. Translational effects of robot-mediated therapy in subacute stroke patients: An experimental evaluation of upper limb motor recovery. PeerJ 2018, 6, e5544. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, B. Preliminary trial of carisoprodol in multiple sclerosis. Practitioner 1964, 192, 540–542. [Google Scholar] [PubMed]
- Bao, X.; Mao, Y.; Lin, Q.; Qiu, Y.; Chen, S.; Li, L.; Cates, R.S.; Zhou, S.; Huang, D. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen. Res. 2013, 8, 2904–2913. [Google Scholar] [CrossRef] [PubMed]
- Comani, S.; Velluto, L.; Schinaia, L.; Cerroni, G.; Serio, A.; Buzzelli, S.; Sorbi, S.; Guarnieri, B. Monitoring Neuro-Motor Recovery From Stroke With High-Resolution EEG, Robotics and Virtual Reality: A Proof of Concept. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, G.; Maas, A.; Lecky, F.; Manley, G.; Stocchetti, N.; Murray, G. The Glasgow Coma Scale at 40 years: Standing the test of time. Lancet Neurol. 2014, 13, 844–854. [Google Scholar] [CrossRef]
- Teasdale, G.; Jennett, B. Assessment of Coma and Impaired Consciousness: A Practical Scale. Lancet 1974, 304, 81–84. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Ministry of Health of the Russian Federation. Order 928n, “On Approval of the Procedure of Care for Patients with Acute Disorders of Cerebral Circulation”; Ministry of Health of the Russian Federation: Moscow, Russia, 2012. [Google Scholar]
- Ministry of Health of the Russian Federation. Order n1740 “On Approval of the Standard of Specialized Medical Care for Brain Infarction”; Ministry of Health of the Russian Federation: Moscow, Russia, 2012. [Google Scholar]
- Department of Health of the Tomsk Region. Order No. 941, “On Medical Rehabilitation in Specialized Medical Organizations at the Inpatient Stage”; Department of Health of the Tomsk Region: Tomsk, Russia, 2018. [Google Scholar]
- Ministry of Health and Social Development of Russia. Order No. 255 “Referral for Hospitalization, Rehabilitation Treatment, Examination, Consultation”; Ministry of Health and Social Development of Russia: Moscow, Russia, 2004. [Google Scholar]
- Department of Health of the Tomsk Region. Order No. 188, “On Medical Rehabilitation in Outpatient Stage”; Department of Health of the Tomsk Region: Tomsk, Russia, 2018. [Google Scholar]
- Balasubramanian, S.; Melendez-Calderon, A.; Burdet, E. A Robust and Sensitive Metric for Quantifying Movement Smoothness. IEEE Trans. Biomed. Eng. 2011, 59, 2126–2136. [Google Scholar] [CrossRef] [PubMed]
- Brott, T.; Adams, H.P.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Kwah, L.K.; Diong, J. National Institutes of Health Stroke Scale (NIHSS). J. Physiother. 2014, 60, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar] [PubMed]
- Gladstone, D.; Danells, C.J.; Black, S. The Fugl-Meyer Assessment of Motor Recovery after Stroke: A Critical Review of Its Measurement Properties. Neurorehabilit. Neural Repair 2002, 16, 232–240. [Google Scholar] [CrossRef]
- Farrell, B.; Godwin, J.; Richards, S.; Warlow, C. The United Kingdom transient ischaemic attack (UK-TIA) aspirin trial: Final results. J. Neurol. Neurosurg. Psychiatry 1991, 54, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, G.; Lannin, N.; Borschmann, K.; English, C.; Ali, M.; Churilov, L.; Saposnik, G.; Winstein, C.; van Wegen, E.; Wolf, S.L.; et al. Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2017, 12, 451–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rankin, J. Cerebral Vascular Accidents in Patients over the Age of 60: II. Prognosis. Scott. Med. J. 1957, 2, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Smith, M.B. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhardt, J.; English, C.; Johnson, L.; Cumming, T. Early Mobilization after Stroke: Early adoption but limited evidence. Stroke 2015, 46, 1141–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langhorne, P.; Collier, J.M.; Bate, P.J.; Thuy, M.N.; Bernhardt, J. Very early versus delayed mobilisation after stroke. Cochrane Database Syst. Rev. 2018, 2018, CD006187. [Google Scholar] [CrossRef]
- Xing, Y.; Yang, S.; Dong, F.; Wang, M.-M.; Feng, Y.-S.; Zhang, F. The beneficial role of early exercise training following stroke and possible mechanisms. Life Sci. 2018, 198, 32–37. [Google Scholar] [CrossRef]
- Gennaro, M.; Mattiello, A.; Mazziotti, R.; Antonelli, C.; Gherardini, L.; Guzzetta, A.; Berardi, N.; Cioni, G.; Pizzorusso, T. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System. Front. Neural Circuits 2017, 11, 47. [Google Scholar] [CrossRef] [Green Version]
- Heredia, M.; Palomero, J.; De La Fuente, A.; Criado, J.M.; Yajeya, J.; Devesa, J.; Devesa, P.; Vicente-Villardón, J.L.; Riolobos, A.S. Motor Improvement of Skilled Forelimb Use Induced by Treatment with Growth Hormone and Rehabilitation Is Dependent on the Onset of the Treatment after Cortical Ablation. Neural Plast. 2018, 2018, 6125901. [Google Scholar] [CrossRef] [Green Version]
- Marzolini, S.; Robertson, A.D.; Oh, P.; Goodman, J.M.; Corbett, D.; Du, X.; MacIntosh, B.J. Aerobic Training and Mobilization Early Post-stroke: Cautions and Considerations. Front. Neurol. 2019, 10, 1187. [Google Scholar] [CrossRef]
- Pilato, F.; Silva, S.; Valente, I.; Distefano, M.; Broccolini, A.; Brunetti, V.; Caliandro, P.; Della Marca, G.; Di Iorio, R.; Frisullo, G.; et al. Predicting Factors of Functional Outcome in Patients with Acute Ischemic Stroke Admitted to Neuro-Intensive Care Unit. A Prospective Cohort Study. Brain Sci. 2020, 10, 911. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; Winters, C.; van Wegen, E.; Kwakkel, G. Is the proportional recovery rule applicable to the lower limb after a first-ever ischemic stroke? PLoS ONE 2018, 13, e0189279. [Google Scholar] [CrossRef]
- Winters, C.; Van Wegen, E.E.H.; Daffertshofer, A.; Kwakkel, G. Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke. Neurorehabilit. Neural Repair 2014, 29, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Cumming, T.B.; Marshall, R.S.; Lazar, R.M. Stroke, Cognitive Deficits, and Rehabilitation: Still an Incomplete Picture. Int. J. Stroke 2012, 8, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, E.R.; Whyte, E.M.; Holm, M.B.; Becker, J.; Butters, M.A.; Dew, M.A.; Munin, M.C.; Lenze, E.J. Cognitive and Affective Predictors of Rehabilitation Participation After Stroke. Arch. Phys. Med. Rehabil. 2010, 91, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desrosiers, J.; Malouin, F.; Richards, C.L.; Bourbonnais, D.; Rochette, A.; Bravo, G. Comparison of changes in upper and lower extremity impairments and disabilities after stroke. Int. J. Rehabil. Res. 2003, 26, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, N. Intracranial hemorrhage and COVID-19, but please do not forget “old diseases” and elective surgery. Brain Behav. Immun. 2020, 92, 207–208. [Google Scholar] [CrossRef] [PubMed]
- Afsar, S.I.; Mirzayev, I.; Yemisci, O.U.; Saracgil, S.N.C. Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial. J. Stroke Cerebrovasc. Dis. 2018, 27, 3473–3478. [Google Scholar] [CrossRef]
- Carda, S.; Invernizzi, M.; Bavikatte, G.; Bensmaïl, D.; Bianchi, F.; Deltombe, T.; Draulans, N.; Esquenazi, A.; Francisco, G.E.; Gross, R.; et al. COVID-19 pandemic. What should Physical and Rehabilitation Medicine specialists do? A clinician’s perspective. Eur. J. Phys. Rehabil. Med. 2020, 56. [Google Scholar] [CrossRef]
Ischemic Stroke n = 50 | pA–B | pB–C | pA–C | |||
---|---|---|---|---|---|---|
Group A n = 21 | Group B n = 14 | Group C n = 15 | ||||
Median Age, m (IQR), yr | 62(57;67) | 65(60;68) | 66(60.5;68) | 0.43 | 0.65 | 0.14 |
Sex | 0.51 | 0.99 | 0.74 | |||
Male, n (%) | 13(61.9%) | 7(50.0%) | 8(53.3%) | |||
Female, n (%) | 8(38.1%) | 7(50.0%) | 7(46.7%) | |||
TOAST criteria, n (%) | ||||||
Large-artery atherosclerosis | 2(9.5%) | 3(21.4%) | 2(13.3%) | |||
Cardioembolic | 3(14.3%) | 1(7.1%) | 5(33.3%) | |||
Small artery occlusion | 0(0.0%) | 0(0.0%) | 1(6.7%) | |||
Undetermined mechanism | 15(71.4%) | 8(57.1%) | 6(40.0%) | |||
Other etiologies | 1(4.8%) | 0(0.0%) | 0(0.0%) | |||
Hypertension, n (%) | 21(100%) | 14(100%) | 15(100%) | |||
Duration of Hypertension m (IQR), yr | 10(10;15) | 14(10;15) | 10(9;18) | 0.94 | 0.86 | 0.83 |
Coronary heart disease, n (%) | 5(23.8%) | 3(21.4%) | 7(46.7%) | 0.99 | 0.25 | 0.18 |
Heart attack, n (%) | 3(14.3%) | 1(7.1%) | 4(26.7%) | 0.64 | 0.33 | 0.42 |
Atrial fibrillation, n (%) | 3(14.3%) | 4(28.6%) | 4(26.7%) | 0.4 | 0.99 | 0.42 |
Heart valve prosthesis, n (%) | 0(0.0%) | 0(0.0%) | 2(13.3%) | |||
Dyslipidemia, n (%) | 19(90.5%) | 9(64.3%) | 10(66.7%) | 0.9 | −0.99 | 0.1 |
Diabetes, n (%) | 6(28.6%) | 2(14.3%) | 2(13.3%) | 0.43 | 0.99 | 0.42 |
Duration of Diabetes m (IQR), yr | 4(4;5) | 8(5;10) | 12(5;20) | 0.14 | 0.66 | 0.14 |
Group A | Group B | Group C | pA–B | pB–C | pA–C | |
---|---|---|---|---|---|---|
n = 21 | n = 14 | n = 15 | ||||
mRS-1 | 3(2;3) | 3(2;4) | 3(3;4) | 0.86 | 0.85 | 0.68 |
mRS-2 | 3(2;3) | 2(2;3) | 2(2;3) | 0.31 | 0.48 | 0.11 |
mRS-3 | 2(2;2) | 2(2;3) | N/A | 0.33 | N/A | N/A |
mRS-4 | 1(1;2) | 1(1;2) | 2(1;3) | 0.93 | 0.01 * | 0.05 * |
NIHSS-1 | 5(3;6) | 5(4;7) | 6(3;8) | 0.73 | 0.78 | 0.43 |
NIHSS-2 | 4(3;4) | 4(3;4) | 3(2;5) | 0.93 | 0.72 | 0.61 |
NIHSS-3 | 3(2;4) | 4(2;4) | N/A | 0.61 | N/A | N/A |
NIHSS-4 | 2(1;3) | 2(1;2) | 3(2;5) | 0.65 | 0.02 * | 0.05 * |
FMA-1 | 179(158;187) | 187(178;194) | 172(150;195) | 0.28 | 0.45 | 0.95 |
FMA-shoulder-forearm-1 | 20(17;24) | 23(18;26) | 23(6;26) | 0.33 | 0.78 | 0.63 |
FMA-wrist-hand-1 | 15(11;18) | 17(10;20) | 17(6;19) | 0.52 | 0.78 | 0.78 |
FMA-UE-1 | 35(31;40) | 39(28;45) | 39(15;45) | 0.5 | 0.72 | 0.9 |
FMA-LE-1 | 24(21;27) | 26(22;28) | 24(20;29) | 0.28 | 0.51 | 0.99 |
FMA-Motor function (sum)-1 | 57(50;73) | 67(55;73) | 65(34;73) | 0.45 | 0.72 | 0.95 |
FMA-Balance-1 | 10(9;12) | 12(11;12) | 11(5;13) | 0.11 | 0.4 | 0.99 |
FMA-2 | 191(177;201) | 206(194;212) | 205(192;211) | 0.01 * | 0.72 | 0.12 |
FMA-shoulder-forearm-2 | 24(22;28) | 29(28;32) | 30(28;32) | 0.02 * | 0.88 | 0.08 |
FMA-wrist-hand-2 | 18(15;19) | 23(19;25) | 23(19;27) | 0.00 * | 0.75 | 0.01 |
FMA-UE-2 | 42(38;50) | 53(49;54) | 54(47;58) | 0.01 * | 0.72 | 0.02 |
FMA-LE-2 | 28(24;30) | 31(26;34) | 28(27;33) | 0.08 | 0.53 | 0.36 |
FMA-Motor function (sum)-2 | 71(59;81) | 82(80;87) | 83(76;89) | 0.01 * | 0.95 | 0.04 |
FMA-Balance | 12(10;13) | 13(12;14) | 12(12;14) | 0.1 | 0.4 | 0.68 |
FMA-3 | 199(190;215) | 207(195;217) | N/A | 0.31 | N/A | N/A |
FMA-shoulder-forearm | 27(25;34) | 31(28;33) | N/A | 0.33 | N/A | N/A |
FMA-wrist-hand | 21(19;24) | 24(20;25) | N/A | 0.22 | N/A | N/A |
FMA-UE | 49(43;57) | 53(50;57) | N/A | 0.33 | N/A | N/A |
FMA-LE | 29(27;33) | 32(29;34) | N/A | 0.21 | N/A | N/A |
FMA-Motor function (sum) | 78(71;89) | 83(81;89) | N/A | 0.26 | N/A | N/A |
FMA-Balance | 12(12;14) | 13(12;14) | N/A | 0.47 | N/A | N/A |
FMA-4 | 213(208;222) | 221(210;223) | 205(192;213) | 0.45 | 0.00 * | 0.02 * |
FMA-shoulder-forearm | 33(30;36) | 35(32;36) | 30(28;32) | 0.19 | 0.00 * | 0.03 * |
FMA-wrist-hand | 27(25;28) | 27(26;28) | 24(19;27) | 0.36 | 0.02 * | 0.09 * |
FMA-UE | 61(56;64) | 63(58;64) | 54(47;59) | 0.24 | 0.00 * | 0.03 * |
FMA-LE | 33(29;34) | 33(29;34) | 29(27;33) | 0.65 | 0.05 * | 0.11 |
FMA-Motor function (sum) | 93(84;97) | 96(87;98) | 84(76;91) | 0.26 | 0.00 * | 0.03 * |
FMA-Balance | 13(12;14) | 14(13;14) | 12(12;14) | 0.41 | 0.06 | 0.2 |
Group A | ||||||||
n = 21 | Point 1 | Point 2 | Point 3 | Point 4 | p1–2 | p2–3 | p3–4 | p2–4 |
mRS, m (IQR) | 3(2;3) | 3(2;3) | 2(2;2) | 1(1;2) | 0.008 * | 0.002 * | <0.001 * | <0.001 * |
NIHSS, m (IQR) | 5(3;6) | 4(3;4) | 3(2;4) | 2(1;3) | 0.001 * | 0.009 * | <0.001 * | <0.001 * |
FMA m (IQR) | 179 | 191 | 199 | 213 | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
(158;187) | (177;201) | (190;215) | (201;222) | |||||
FMA-shoulder-forearm | 20(17;24) | 24(22;28) | 27(25;34) | 33(30;36) | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
FMA-wrist-hand | 15(11;18) | 18(15;19) | 21(19;24) | 27(25;28) | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
FMA-UE | 35(31;40) | 42(38;50) | 49(43;57) | 61(56;64) | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
FMA-LE | 24(21;27) | 28(24;30) | 29(27;33) | 33(29;34) | 0.002 * | 0.001 * | 0.001 * | <0.001 * |
FMA-Motor function (sum) | 57(50;73) | 71(59;81) | 78(71;89) | 93(84;97) | <0.001 * | <0.001 * | <0.001 * | <0.001 * |
FMA-Balance | 10(9;12) | 12(10;13) | 12(12;14) | 13(12;14) | 0.003 * | 0.06 | 0.002 * | <0.001 * |
Group B | ||||||||
n = 14 | Point 1 | Point 2 | Point 3 | Point 4 | p1–2 | p2–3 | p3–4 | p2–4 |
mRS, m (IQR) | 3(2;4) | 2(2;3) | 2(2;3) | 1(1;2) | 0.020 * | 1 | <0.001 * | 0.001 * |
NIHSS, m (IQR) | 5(4;7) | 4(3;4) | 4(2;4) | 2(1;2) | <0.001 * | 0.010 * | <0.001 * | 0.001 * |
FMA, m (IQR) | 187 | 206 | 207 | 221 | <0.001 * | 0.3 | <0.001 * | 0.001 * |
(178;194) | (194;211) | (195;213) | (210;223) | |||||
FMA-shoulder-forearm | 23(18;26) | 29(28;32) | 31(28;33) | 35(32;36) | <0.001 * | 0.11 | <0.001 * | 0.002 * |
FMA-wrist-hand | 17(10;20) | 23(19;25) | 24(20;25) | 27(26;28) | <0.001 * | 0.11 | <0.001 * | 0.001 * |
FMA-UE | 39(28;45) | 53(49;54) | 53(50;57) | 63(58;64) | <0.001 * | 0.11 | <0.001 * | 0.001 * |
FMA-LE | 26(22;28) | 31(26;34) | 32(29;34) | 33(29;34) | 0.010 * | 0.07 | 0.08 | 0.038 * |
FMA-Motor function (sum) | 67(55;73) | 82(80;87) | 83(81;89) | 96(87;98) | <0.001 * | 0.07 | <0.001 * | 0.024 * |
FMA-Balance | 12(11;12) | 13(12;14) | 13(12;14) | 14(13;14) | 0.010 * | 0.32 | 0.040 * | 0.001 * |
Group C | ||||||||
n = 15 | Point 1 | Point 2 | Point 3 | Point 4 | p1–2 | p2–3 | p3–4 | p2–4 |
mRS, m (IQR) | 3(3;4) | 2(2;3) | N/A | 2(1;3) | <0.001 * | N/A | N/A | 0.08 |
NIHSS, m (IQR) | 6(3;9) | 3(2;5) | N/A | 3(2;5) | <0.001 * | N/A | N/A | 0.1 |
FMA, m (IQR) | 172 | 205 | N/A | 205 | <0.001 * | N/A | N/A | 0.75 |
(149;194) | (192;210) | (192;213) | ||||||
FMA-shoulder-forearm | 23(6;26) | 30(28;32) | N/A | 30(28;32) | <0.001 * | N/A | N/A | 0.89 |
FMA-wrist-hand | 17(6;19) | 23(19;27) | N/A | 24(19;27) | <0.001 * | N/A | N/A | 0.85 |
FMA-UE | 39(15;45) | 54(47;58) | N/A | 54(47;59) | <0.001 * | N/A | N/A | 0.89 |
FMA-LE | 24(20;29) | 28(27;33) | N/A | 29(27;33) | <0.001 * | N/A | N/A | 0.79 |
FMA-Motor function (sum) | 65(34;73) | 83(76;89) | N/A | 84(76;91) | <0.001 * | N/A | N/A | 1 |
FMA-Balance | 11(5;13) | 12(12;14) | N/A | 12(12;14) | 0.010 * | N/A | N/A | 0.18 |
Group A | Group B | pA–B | |
---|---|---|---|
n = 21 | n = 14 | ||
Variability of movements, m (IQR), | |||
1st session | 0.88(0.79,0.93) | 0.89(0.86,0.9) | 0.855 |
5th session | 0.9(0.82,0.94) | 0.89(0.86,0.92) | 0.778 |
10th session | 0.94(0.92,0.97) | 0.95(0.91,0.97) | 0.516 |
Number of completed tasks, m (IQR) | |||
1st session | 21(19,25) | 25(21,27) | 0.118 |
5th session | 36(31,46) | 33(25,45) | 0.495 |
10th session | 56(47,64) | 49(43,57) | 0.396 |
Maximum duration in one approach (s), m (IQR) | |||
1st session | 27(25,28) | 23(18,26) | 0.018 * |
5th session | 39(34,46) | 38(34,44) | 0.583 |
10th session | 40(35,50) | 45(37,50) | 0.538 |
Variance of the displacement for the central point, m (IQR) | |||
1st session | 0.08(0.08,0.09) | 0.09(0.08,0.1) | 0.554 |
5th session | 0.07(0.08,0.09) | 0.06(0.07,0.09) | 0.712 |
10th session | 0.04(0.03,0.06) | 0.05(0.04,0.06) | 0.528 |
Height of raising the paretic leg, m (IQR), | |||
1st session | 0.22(0.12,0.35) | 0.20(0.14,0.28) | 0.282 |
5th session | 0.34(0.32,0.40) | 0.32(0.31,0.38) | 0.343 |
10th session | 0.36(0.34,0.40) | 0.35(0.33,0.40) | 0.532 |
Group A | ||||||
n = 21 | 1st Session | 5th Session | 10th Session | p1–5 | p5–10 | p1–10 |
Variability of movements, m (IQR) | 0.88(0.79;0.93) | 0.90(0.82;0.94) | 0.94(0.92;0.97) | <0.001 * | <0.001 * | <0.001 * |
Number of completed tasks, m (IQR) | 21(19;25) | 36(31;46) | 56(47;64) | 0.001 * | <0.001 * | <0.001 * |
Maximum duration in one approach (s), m (IQR) | 27(25;28) | 39(34;46) | 40(35;50) | <0.001 * | 0.434 | <0.001 * |
Variance of the displacement for the central point, m (IQR) | 0.08(0.08:0.09) | 0.07(0.08:0.09) | 0.04(0.03:0.06) | 0.144 | 0.001 * | <0.001 * |
Height of raising the paretic leg, m (IQR) | 0.22(0.12:0.35) | 0.34(0.32:0.40) | 0.36(0.34:0.40) | 0.002 * | 0.09 | 0.001 * |
Group B | ||||||
n = 14 | 1st Session | 5th Session | 10th Session | p1–5 | p5–10 | p1–10 |
Variability of movements, m (IQR) | 0.89(0.86;0.9) | 0.89(0.86;0.92) | 0.95(0.91;0.97) | 0.022 * | 0.001 * | <0.001 * |
Number of completed tasks, m (IQR) | 25(21;27) | 33(25;45) | 49(43;57) | 0.016 * | 0.001 * | <0.001 * |
Maximum duration in one approach, (s), m (IQR) | 23(18;26) | 38(34;44) | 45(37;50) | 0.001 * | 0.084 | <0.001 * |
Variance of the displacement for the central point, m (IQR) | 0.09(0.08:0.1) | 0.06(0.07:0.09) | 0.05(0.04:0.06) | 0.23 | 0.002 * | 0.001 * |
Height of raising the paretic leg, m (IQR) | 0.20(0.14:0.28) | 0.32(0.31:0.38) | 0.35(0.33:0.40) | 0.018 * | 0.08 | 0.003 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koroleva, E.S.; Kazakov, S.D.; Tolmachev, I.V.; Loonen, A.J.M.; Ivanova, S.A.; Alifirova, V.M. Clinical Evaluation of Different Treatment Strategies for Motor Recovery in Poststroke Rehabilitation during the First 90 Days. J. Clin. Med. 2021, 10, 3718. https://doi.org/10.3390/jcm10163718
Koroleva ES, Kazakov SD, Tolmachev IV, Loonen AJM, Ivanova SA, Alifirova VM. Clinical Evaluation of Different Treatment Strategies for Motor Recovery in Poststroke Rehabilitation during the First 90 Days. Journal of Clinical Medicine. 2021; 10(16):3718. https://doi.org/10.3390/jcm10163718
Chicago/Turabian StyleKoroleva, Ekaterina S., Stanislav D. Kazakov, Ivan V. Tolmachev, Anton J. M. Loonen, Svetlana A. Ivanova, and Valentina M. Alifirova. 2021. "Clinical Evaluation of Different Treatment Strategies for Motor Recovery in Poststroke Rehabilitation during the First 90 Days" Journal of Clinical Medicine 10, no. 16: 3718. https://doi.org/10.3390/jcm10163718
APA StyleKoroleva, E. S., Kazakov, S. D., Tolmachev, I. V., Loonen, A. J. M., Ivanova, S. A., & Alifirova, V. M. (2021). Clinical Evaluation of Different Treatment Strategies for Motor Recovery in Poststroke Rehabilitation during the First 90 Days. Journal of Clinical Medicine, 10(16), 3718. https://doi.org/10.3390/jcm10163718