Pretransplant Serum Uromodulin and Its Association with Delayed Graft Function Following Kidney Transplantation—A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Study Design
2.2. Exposure
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Course of sUMOD during the Transplant Process and Short Term Follow Up
3.3. Pretransplant sUMOD and DGF
3.4. ROC-Analysis to Evaluate Preoperative sUMOD as a Predictor for DGF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
AUC | Area under the curve |
BMI | Body-mass index |
CIT | Cold ischemia time |
ECD | Expanded criteria donor |
eGFR | Estimated glomerular filtration rate |
ELISA | Enzyme-linked immunosorbent assay |
DGF | Delayed graft function |
IRI | Ischemia-reperfusion injury |
95%-CI | 95% confidence interval |
OR | Odds ratio |
POD1 | Postoperative Day 1 |
ROC | Receiver-operating-characteristics |
sUMOD | Serum uromodulin. |
References
- Perico, N.; Cattaneo, D.; Sayegh, M.H.; Remuzzi, G. Delayed graft function in kidney transplantation. Lancet 2004, 364, 1814–1827. [Google Scholar] [CrossRef]
- Siedlecki, A.; Irish, W.; Brennan, D.C. Delayed graft function in the kidney transplant. Am. J. Transpl. 2011, 112, 2279–2296. [Google Scholar] [CrossRef] [Green Version]
- Yarlagadda, S.G.; Coca, S.G.; Garg, A.X.; Doshi, M.; Poggio, E.; Marcus, R.J.; Parikh, C.R. Marked variation in the definition and diagnosis of delayed graft function: A systematic review. Nephrol. Dial. Transpl. 2008, 23, 2995–3003. [Google Scholar] [CrossRef] [Green Version]
- Bahl, D.; Haddad, Z.; Datoo, A.; Qazi, Y.A. Delayed graft function in kidney transplantation. Curr. Opin. Organ Transpl. 2019, 24, 82–86. [Google Scholar] [CrossRef]
- Schroppel, B.; Legendre, C. Delayed kidney graft function: From mechanism to translation. Kidney Int. 2014, 86, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Linkermann, A.; Stockwell, B.R.; Krautwald, S.; Anders, H.J. Regulated cell death and inflammation: An auto-amplification loop causes organ failure. Nat. Rev. Immunol. 2014, 14, 759–767. [Google Scholar] [CrossRef]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatachalam, M.A.; Weinberg, J.M.; Kriz, W.; Bidani, A.K. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression. J. Am. Soc. Nephrol. 2015, 26, 1765–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, J.R. Progress in Transplantation: Will It Be Achieved in Big Steps or by Marginal Gains? Am. J. Kidney Dis. 2017, 69, 287–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohkamp, L.N.; Ollinger, R.; Chatzigeorgiou, A.; Illigens, B.M.; Siepmann, T. Intraoperative biomarkers in renal transplantation. Nephrology 2016, 21, 188–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennica, D.; Kohr, W.J.; Kuang, W.J.; Glaister, D.; Aggarwal, B.B.; Chen, E.Y.; Goeddel, D.V. Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 1987, 236, 83–88. [Google Scholar] [CrossRef]
- Zhu, X.; Cheng, J.; Gao, J.; Lepor, H.; Zhang, Z.T.; Pak, J.; Wu, X.R. Isolation of mouse THP gene promoter and demonstration of its kidney-specific activity in transgenic mice. Am. J. Physiol. Ren. Physiol. 2002, 282, F608–F617. [Google Scholar] [CrossRef] [Green Version]
- Serafini-Cessi, F.; Malagolini, N.; Cavallone, D. Tamm-Horsfall glycoprotein: Biology and clinical relevance. Am. J. Kidney Dis. 2003, 42, 658–676. [Google Scholar] [CrossRef]
- El-Achkar, T.M.; McCracken, R.; Liu, Y.; Heitmeier, M.R.; Bourgeois, S.; Ryerse, J.; Wu, X.R. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury. Am. J. Physiol. Ren. Physiol. 2013, 304, F1066–F1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Achkar, T.M.; Wu, X.R. Uromodulin in kidney injury: An instigator, bystander, or protector? Am. J. Kidney Dis 2012, 59, 452–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherberich, J.E.; Gruber, R.; Nockher, W.A.; Christensen, E.I.; Schmitt, H.; Herbst, V.; Block, M.; Kaden, J.; Schlumberger, W. Serum uromodulin-a marker of kidney function and renal parenchymal integrity. Nephrol. Dial. Transpl. 2018, 33, 284–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Achkar, T.M.; Wu, X.R.; Rauchman, M.; McCracken, R.; Kiefer, S.; Dagher, P.C. Tamm-Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression. Am. J. Physiol. Ren. Physiol. 2008, 295, F534–F544. [Google Scholar] [CrossRef] [PubMed]
- Micanovic, R.; Khan, S.; Janosevic, D.; Lee, M.E.; Hato, T.; Srour, E.F.; Winfree, S.; Ghosh, J.; Tong, Y.; Rice, S.E.; et al. Tamm-Horsfall Protein Regulates Mononuclear Phagocytes in the Kidney. J. Am. Soc. Nephrol. 2018, 29, 841–856. [Google Scholar] [CrossRef] [PubMed]
- El-Achkar, T.M.; McCracken, R.; Rauchman, M.; Heitmeier, M.R.; Al-Aly, Z.; Dagher, P.C.; Wu, X.R. Tamm-Horsfall protein-deficient thick ascending limbs promote injury to neighboring S3 segments in an MIP-2-dependent mechanism. Am. J. Physiol. Ren. Physiol. 2011, 300, F999–F1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steubl, D.; Block, M.; Herbst, V.; Schlumberger, W.; Nockher, A.; Angermann, S.; Schmaderer, C.; Heemann, U.; Renders, L.; Scherberich, J. Serum uromodulin predicts graft failure in renal transplant recipients. Biomarkers 2017, 22, 171–177. [Google Scholar] [CrossRef]
- Bostom, A.; Steubl, D.; Garimella, P.S.; Franceschini, N.; Roberts, M.B.; Pasch, A.; Ix, J.H.; Tuttle, K.R.; Ivanova, A.; Shireman, T.; et al. Serum Uromodulin: A Biomarker of Long-Term Kidney Allograft Failure. Am. J. Nephrol. 2018, 47, 275–282. [Google Scholar] [CrossRef]
- Hall, I.E.; Reese, P.P.; Doshi, M.D.; Weng, F.L.; Schroppel, B.; Asch, W.S.; Ficek, J.; Thiessen-Philbrook, H.; Parikh, C.R. Delayed Graft Function Phenotypes and 12-Month Kidney Transplant Outcomes. Transplantation 2017, 101, 1913–1923. [Google Scholar] [CrossRef]
- Wu, W.K.; Famure, O.; Li, Y.; Kim, S.J. Delayed graft function and the risk of acute rejection in the modern era of kidney transplantation. Kidney Int. 2015, 88, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Querard, A.H.; Le Borgne, F.; Dion, A.; Giral, M.; Mourad, G.; Garrigue, V.; Rostaing, L.; Kamar, N.; Loupy, A.; Legendre, C.; et al. Propensity score-based comparison of the graft failure risk between kidney transplant recipients of standard and expanded criteria donor grafts: Toward increasing the pool of marginal donors. Am. J. Transpl. 2018, 18, 1151–1157. [Google Scholar] [CrossRef]
- Sharif, A.; Borrows, R. Delayed graft function after kidney transplantation: The clinical perspective. Am. J. Kidney Dis. 2013, 62, 150–158. [Google Scholar] [CrossRef]
- LaFavers, K.A.; Macedo, E.; Garimella, P.S.; Lima, C.; Khan, S.; Myslinski, J.; McClintick, J.; Witzmann, F.A.; Winfree, S.; Phillips, C.L.; et al. Circulating uromodulin inhibits systemic oxidative stress by inactivating the TRPM2 channel. Sci. Transl. Med. 2019, 11, eaaw3639. [Google Scholar] [CrossRef] [PubMed]
- Steubl, D.; Buzkova, P.; Garimella, P.S.; Ix, J.H.; Devarajan, P.; Bennett, M.R.; Chaves, P.H.M.; Shlipak, M.G.; Bansal, N.; Sarnak, M.J. Association of Serum Uromodulin with ESKD and Kidney Function Decline in the Elderly: The Cardiovascular Health Study. Am. J. Kidney Dis. 2019, 74, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Steubl, D.; Buzkova, P.; Garimella, P.S.; Ix, J.H.; Devarajan, P.; Bennett, M.R.; Chaves, P.H.M.; Shlipak, M.G.; Bansal, N.; Sarnak, M.J. Association of serum uromodulin with mortality and cardiovascular disease in the elderly-the Cardiovascular Health Study. Nephrol. Dial. Transpl. 2020, 35, 1399–1405. [Google Scholar] [CrossRef]
- Borstnar, S.; Veceric-Haler, Z.; Bostjancic, E.; Pipan Tkalec, Z.; Kovac, D.; Lindic, J.; Kojc, N. Uromodulin and microRNAs in Kidney Transplantation-Association with Kidney Graft Function. Int. J. Mol. Sci. 2020, 21, 5592. [Google Scholar] [CrossRef] [PubMed]
- Micanovic, R.; Chitteti, B.R.; Dagher, P.C.; Srour, E.F.; Khan, S.; Hato, T.; Lyle, A.; Tong, Y.; Wu, X.R.; El-Achkar, T.M. Tamm-Horsfall Protein Regulates Granulopoiesis and Systemic Neutrophil Homeostasis. J. Am. Soc. Nephrol. 2015, 26, 2172–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-C.; Chapman, W.C.; Hanto, D.W. Ischemia-Reperfusion injury in kidney transplantation. Front. Biosci. 2015, 7, 117–134. [Google Scholar]
- Grenda, R. Delayed graft function and its management in children. Pediatric Nephrol. 2017, 32, 1157–1167. [Google Scholar] [CrossRef]
- Kottgen, A.; Hwang, S.J.; Larson, M.G.; Van Eyk, J.E.; Fu, Q.; Benjamin, E.J.; Dehghan, A.; Glazer, N.L.; Kao, W.H.; Harris, T.B.; et al. Uromodulin levels associate with a common UMOD variant and risk for incident CKD. J. Am. Soc. Nephrol. 2010, 21, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, G.E.; Kleber, M.E.; Scharnagl, H.; Kramer, B.K.; Marz, W.; Scherberich, J.E. Serum Uromodulin and Mortality Risk in Patients Undergoing Coronary Angiography. J. Am. Soc. Nephrol. 2017, 28, 2201–2210. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total | Quartile 1 sUMOD: <2.59 ng/mL | Quartile 2 sUMOD: 2.59–7.04 ng/mL | Quartile 3 sUMOD: >7.04–14.66 ng/mL | Quartile 4 sUMOD: >14.66 ng/mL | p-Value |
---|---|---|---|---|---|---|
Number (no.) of patients | 239 | 60 | 60 | 59 | 60 | |
Recipient demographics | ||||||
Age [years] | 51 ± 14 | 50 ± 14 | 54 ± 13 | 52 ± 14 | 49 ±16 | 0.185 |
Female, no. (%) | 75 (31.4) | 17 (28.3) | 20 (33.3) | 15 (25.4) | 23 (38.3) | 0.443 |
Body-mass index [kg/m2] | 25.3 ± 4.8 | 25.0 ± 5.1 | 25.6 ± 5.1 | 26.0 ± 4.8 | 24.8 ± 4.3 | 0.525 |
Diabetes, no. (%) | 48 (20.1) | 4 (6.7) | 18 (30.0) | 15 (25.4) | 11 (18.3) | 0.009 |
Hypertension, no. (%) | 194 (81.2) | 46 (76.7) | 51 (85.0) | 50 (84.7) | 47 (78.3) | 0.536 |
Cardiovascular disease, no. (%) | 79 (33.1) | 18 (30.0) | 25 (41.7) | 22 (37.3) | 14 (23.3) | 0.151 |
Dialysis vintage [days] | 1559 ± 1418 | 2137 (1469) | 1921 ± 1392 | 1220 ± 1267 | 953 ± 1215 | <0.001 |
Preemptive transplant, no. (%) | 29 (12.1) | 3 (5.0) | 1 (1.7) | 7 (11.9) | 18 (30.0) | <0.001 |
Pretransplant sUMOD [ng/mL] | 14.9 ± 23.8 | 0.9 ± 0.8 | 4.5 ± 1.3 | 10.1 ± 2.0 | 44.2 ± 32.8 | <0.001 |
Recipient laboratory measures on postoperative Day 1 (POD1) | ||||||
sUMOD [ng/mL] | 52.3 ± 50.2 | 56.0 ± 65.1 | 50.6 ± 51.1 | 36.4 ± 24.5 | 65.3 ± 48.7 | 0.014 |
Serum creatinine [mg/dL] | 6.0 ± 2.3 | 6.0 ± 2.1 | 6.7 ± 2.4 | 6.1 ± 2.4 | 5.2 ± 2.2 | 0.004 |
Hemoglobin [g/dL] | 10.3 ± 1.6 | 10.3 ± 1.8 | 10.6 ± 1.6) | 10.5 ± 1.4 | 10.0 ± 1.6 | 0.223 |
Leucocyte count [G/L] | 11.6 ± 4.2 | 10.6 ± 3.8 | 11.7 ± 3.8 | 11.6 ± 4.5 | 12.6 ± 4.5 | 0.095 |
C-reactive protein [mg/dL] | 3.4 ± 2.3 | 2.6 ± 1.4 | 6.0 ± 3.6 | 3.2 ± 1.7 | 2.8 ± 1.6 | <0.001 |
Sodium [mmol/L] | 141 ± 4 | 140 ± 4 | 141 ± 4 | 141± 5 | 141 ± 4 | 0.093 |
Potassium [mmol/L] | 4.9 ± 0.8 | 5.1 ± 0.7 | 5.0 ± 0.8 | 4.7 ± 0.7 | 4.6 ± 0.8 | <0.001 |
Donor characteristics | ||||||
Age [years] | 54.4 ±15.5 | 51 ± 16 | 55 ±16) | 55 ± 15) | 52 ± 15 | 0.256 |
Female, no. (%) | 118 (49.4) | 25 (41.7) | 32 (53.3) | 29 (49.2) | 32 (53.3) | 0.536 |
Body-mass index [kg/m2] | 26.4 ± 4.4 | 27.0 ± 5.2 | 26.0 ± 3.7 | 26.5 ± 4.5 | 26.1 ± 3.8 | 0.574 |
Diabetes, no. (%) | 0.131 | |||||
No | 166 (69.5) | 37 (61.7) | 46 (76.7) | 35 (59.3) | 48 (80.0) | |
Yes | 15 (6.3) | 4 (6.7) | 4 (6.7) | 5 (8.5) | 2 (3.3) | |
Unknown | 58 (24.3) | 19 (31.7) | 10 (16.7) | 19 (32.2) | 10 (16.7) | |
Hypertension, no. (%) | 0.071 | |||||
No | 119 (49.8) | 29 (48.3) | 30 (50.0) | 23 (39.0) | 37 (61.7) | |
Yes | 79 (33.1) | 16 (26.7) | 22 (36.7) | 27 (45.8) | 14 (23.3) | |
Unknown | 41 (17.2) | 15 (25.0) | 8 (13.3) | 9 (15.3) | 9 (15.0) | |
Serum creatinine [mg/dL] | 1.0 ± 0.7 | 1.0 ± 0.8 | 0.9 ± 0.5) | 1.1 ± 0.8 | 1.0 ± 0.7 | 0.740 |
Expanded criteria donor, no (%) | 97 (40.6) | 20 (33.3) | 28 (46.7) | 28 (47.5) | 21 (35.0) | 0.245 |
Transplant related variables | ||||||
Living donation, no. (%) | 90 (37.7) | 14 (23.3) | 14 (23.3) | 27 (45.8) | 35 (58.3) | <0.001 |
Cold ischemic time [hours] | 8 ± 6 | 10 ± 6 | 10 ± 6 | 7 ± 5 | 6 ± 6 | <0.001 |
Warm ischemic time [minutes] | 25 ± 13 | 26 ± 12 | 27 ± 13 | 27 ± 16 | 23 ± 7 | 0.313 |
Primary non-function, no. (%) | 8 (3.3) | 1 (1.7) | 2 (3.3) | 3 (5.1) | 2 (3.3) | 0.783 |
No. of HLA-mismatches | 4 ± 2 | 4 ± 2 | 4 ± 2 | 3 ± 2 | 3 ± 2 | 0.410 |
Characteristics | Without DGF | With DGF | p-Value |
---|---|---|---|
Number (no.) of patients | 175 | 64 | |
Recipient demographics | |||
Age [years] | 50 ± 14 | 56 ± 13 | 0.003 |
Female, no. (%) | 61 (34.9) | 14 (21.9) | 0.079 |
Body-mass index [kg/m2] | 24.5 ± 4.4 | 27.8 ± 5.2 | <0.001 |
Diabetes, no. (%) | 30 (17.1) | 18 (28.1) | 0.090 |
Hypertension, no. (%) | 141 (80.6) | 53 (82.8) | 0.837 |
Cardiovascular disease, no. (%) | 45 (25.7) | 34 (53.1) | <0.001 |
Dialysis vintage [days] | 1321 ± 1331 | 2208 ± 1456 | <0.001 |
Preemptive transplant, no. (%) | 28 (16.0) | 1 (1.6) | <0.001 |
Pretransplant sUMOD [ng/mL] | 18.3 ± 26.8 | 5.9 ± 6.4 | <0.001 |
Recipient laboratory measures on postoperative Day 1 (POD1) | |||
sUMOD [ng/mL] | 51.7 ± 50.3 | 54.0 ± 50.4 | 0.747 |
Serum creatinine [mg/dL] | 5.6 ± 2.2 | 7.1 ± 2.4 | <0.001 |
Hemoglobin [g/dL] | 10.3 ± 1.6 | 10.4 ± 1.8 | 0.687 |
Leucocyte count [G/L] | 11.5 ± 4.2 | 12.0 ± 4.2 | 0.479 |
C-reactive protein [mg/dL] | 3.5 ± 2.6 | 3.2 ± 1.3 | 0.585 |
Sodium [mmol/L] | 141 ± 4 | 139 ± 5 | 0.005 |
Potassium [mmol/L] | 4.7 ± 0.7 | 5.4 ± 0.6 | <0.001 |
Donor characteristics | |||
Age [years] | 52 ± 15 | 57 ± 15 | 0.021 |
Female, no. (%) | 96 (54.9) | 22 (34.4) | 0.008 |
Body-mass index [kg/m2] | 25.8 ± 3.7 | 28.1 ± 5.5 | <0.001 |
Diabetes, no. (%) | <0.001 | ||
No | 131 (74.9) | 35 (54.7) | |
Yes | 5 (2.9) | 10 (15.6) | |
Unknown | 39 (22.3) | 19 (29.7) | |
Hypertension, no. (%) | 0.209 | ||
No | 93 (53.1) | 26 (40.6) | |
Yes | 55 (31.4) | 24 (37.5) | |
Unknown | 27 (15.4) | 14 (21.9) | |
Serum creatinine [mg/dL] | 1.0 ± 0.6 | 1.1 ± 0.9 | 0.057 |
Expanded criteria donor, no (%) | 64 (36.6) | 33 (51.6) | 0.052 |
Transplant related variables | |||
Living donation, no. (%) | 79 (45.1) | 11 (17.2) | <0.001 |
Cold ischemic time [hours] | 7.2 ± 6.0 | 9.9 ± 5.5 | 0.002 |
Warm ischemic time [minutes] | 24 ± 12 | 29 ± 14 | 0.006 |
Primary non-function, no. (%) | 0 (0) | 8 (12.5) | <0.001 |
No. of HLA-mismatches | 3 ± 2 | 3 ± 2 | 0.650 |
Events | Unadjusted | Model 1 a | Model 2 b | Model 3 c | |
---|---|---|---|---|---|
Pretransplant sUMOD | |||||
Per 10 ng/mL higher sUMOD | 64/239 | 0.51 (0.32–0.73) | 0.54 (0.31–0.81) | 0.55 (0.31–0.83) | 0.53 (0.30–0.82) |
Q1 | 25/60 | 5.41 (2.21–14.80) | 4.47 (1.62–13.61) | 4.30 (1.53–13.31) | 4.41 (1.54–13.93) |
Q2 | 20/60 | 3.79 (1.52–10.46) | 2.55 (0.93–7.61) | 1.94 (0.68–5.93) | 1.95 (0.67–6.08) |
Q3 | 12/59 | 1.93 (0.72–5.58) | 1.52 (0.52–4.70) | 1.28 (0.42–4.06) | 1.29 (0.42–4.14) |
Q4 | 7/60 | 1 (ref.) | 1 (ref.) | 1 (ref.) | 1 (ref.) |
sUMOD on postoperative Day 1 | |||||
Per 10 ng/mL higher sUMOD | 63/237 * | 1.01 (0.95–1.07) | 1.01 (0.95–1.07) | 1.03 (0.96–1.09) | 1.03 (0.96–1.09) |
Q1 | 16/60 | 0.90 (0.40–2.01) | 0.71 (0.28–1.75) | 0.70 (0.27–1.78) | 0.71 (0.27–1.86) |
Q2 | 14/59 | 0.77 (0.33–1.74) | 0.72 (0.27–1.85) | 0.77 (0.29–2.03) | 0.79 (0.29–2.14) |
Q3 | 16/59 | 0.92 (0.41–2.06) | 0.84 (0.34–2.07) | 0.88 (0.35–2.22) | 0.86 (0.34–2.17) |
Q4 | 17/59 | 1 (ref.) | 1 (ref.) | 1 (ref.) | 1 (ref.) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kemmner, S.; Holzmann-Littig, C.; Sandberger, H.; Bachmann, Q.; Haberfellner, F.; Torrez, C.; Schmaderer, C.; Heemann, U.; Renders, L.; Assfalg, V.; et al. Pretransplant Serum Uromodulin and Its Association with Delayed Graft Function Following Kidney Transplantation—A Prospective Cohort Study. J. Clin. Med. 2021, 10, 2586. https://doi.org/10.3390/jcm10122586
Kemmner S, Holzmann-Littig C, Sandberger H, Bachmann Q, Haberfellner F, Torrez C, Schmaderer C, Heemann U, Renders L, Assfalg V, et al. Pretransplant Serum Uromodulin and Its Association with Delayed Graft Function Following Kidney Transplantation—A Prospective Cohort Study. Journal of Clinical Medicine. 2021; 10(12):2586. https://doi.org/10.3390/jcm10122586
Chicago/Turabian StyleKemmner, Stephan, Christopher Holzmann-Littig, Helene Sandberger, Quirin Bachmann, Flora Haberfellner, Carlos Torrez, Christoph Schmaderer, Uwe Heemann, Lutz Renders, Volker Assfalg, and et al. 2021. "Pretransplant Serum Uromodulin and Its Association with Delayed Graft Function Following Kidney Transplantation—A Prospective Cohort Study" Journal of Clinical Medicine 10, no. 12: 2586. https://doi.org/10.3390/jcm10122586
APA StyleKemmner, S., Holzmann-Littig, C., Sandberger, H., Bachmann, Q., Haberfellner, F., Torrez, C., Schmaderer, C., Heemann, U., Renders, L., Assfalg, V., El-Achkar, T. M., Garimella, P. S., Scherberich, J., & Steubl, D. (2021). Pretransplant Serum Uromodulin and Its Association with Delayed Graft Function Following Kidney Transplantation—A Prospective Cohort Study. Journal of Clinical Medicine, 10(12), 2586. https://doi.org/10.3390/jcm10122586