Outcomes of Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome in COVID-19 Patients: A Propensity-Matched Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. ECMO Settings
2.2. Anticoagulation
2.3. Statistical Analysis
3. Results
3.1. Pre-ECMO Laboratory Parameters
3.2. Time Course of Hemostasis Parameters
3.3. Outcomes and Clinical Course
4. Discussion
4.1. Hemostasis Parameters and Thromboembolic Events
4.2. Perspectives
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Novel Coronavirus (2019-nCoV) Situation Reports; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (2019-nCoV) Infection Is Suspected—Interim Guidance; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Munshi, L.; Walkey, A.; Goligher, E.; Pham, T.; Uleryk, E.M.; Fan, E. Venovenous exextracorporealembrane oxygenation for acute respiratory distress syndrome: A systematic review and meta-analysis. Lancet Respir. Med. 2019, 7, 163–172. [Google Scholar] [CrossRef]
- Goligher, E.C.; Tomlinson, G.; Hajage, D.; Wijeysundera, D.N.; Fan, E.; Jüni, P.; Brodie, D.; Slutsky, A.S.; Combes, A. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized Clinical Trial. JAMA 2018, 320, 2251–2259. [Google Scholar] [CrossRef] [PubMed]
- Noah, M.A.; Peek, G.J.; Finney, S.J.; Griffiths, M.J.; Harrison, D.A.; Grieve, R.; Sadique, M.Z.; Sekhon, J.S.; McAuley, D.F.; Firmin, R.K.; et al. Referral to an exextracorporealembrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 2011, 306, 1659–1668. [Google Scholar] [CrossRef] [Green Version]
- Fisser, C.; Reichenbaecher, C.; Mueller, T.; Malfertheiner, M.; Philipp, A.; Foltan, M.; Lunz, D.; Zeman, F.; Lubnow, M. Incidence and risk factors for venous thrombosis after venovenous exextracorporealembrane oxygenation in adult patients with acute respiratory failure. Eur. Respir. J. 2018, 52, PA323. [Google Scholar] [CrossRef]
- Lodigiani, C.; Iapichino, G.; Carenzo, L.; Cecconi, M.; Ferrazzi, P.; Sebastian, T.; Kucher, N.; Studt, J.-D.; Sacco, C.; Alexia, B.; et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 2020, 191, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Fagot Gandet, F.; et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Shekar, K.; Badulak, J.; Peek, G.; Boeken, U.; Dalton, H.J.; Arora, L.; Zakhary, B.; Ramanathan, K.; Starr, J.; Akkanti, B.; et al. ExExtracorporealife Support Organization Coronavirus Disease 2019 Interim Guidelines: A Consensus Document from an International Group of Interdisciplinary Extracorporeal Membrane Oxygenation Providers. ASAIO J. Am. Soc. Artif. Intern. Organs 2020, 66, 707–721. [Google Scholar] [CrossRef]
- Zayat, R.; Kalverkamp, S.; Grottke, O.; Durak, K.; Dreher, M.; Autschbach, R.; Marx, G.; Marx, N.; Spillner, J.; Kersten, A. Role of exextracorporealembrane oxygenation in critically Ill COVID-19 patients and predictors of mortality. Artif. Organs 2020. [Google Scholar] [CrossRef]
- Hébert, P.C.; Wells, G.; Blajchman, M.A.; Marshall, J.; Martin, C.; Pagliarello, G.; Tweeddale, M.; Schweitzer, I.; Yetisir, E. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N. Engl. J. Med. 1999, 340, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Schulman, S.; Kearon, C. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J. Thromb. Haemost. 2005, 3, 692–694. [Google Scholar] [CrossRef]
- Rassen, J.A.; Shelat, A.A.; Myers, J.; Glynn, R.J.; Rothman, K.J.; Schneeweiss, S. One-to-many propensity score matching in cohort studies. Pharm. Drug Saf. 2012, 21 (Suppl. 2), 69–80. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; Lippi, G. Poor survival with exextracorporealembrane oxygenation in acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19): Pooled analysis of early reports. J. Crit. Care 2020, 58, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, R.P.; MacLaren, G.; Boonstra, P.S.; Iwashyna, T.J.; Slutsky, A.S.; Fan, E.; Bartlett, R.H.; Tonna, J.E.; Hyslop, R.; Fanning, J.J.; et al. ExExtracorporealembrane oxygenation support in COVID-19: An international cohort study of the ExExtracorporealife Support Organization registry. Lancet 2020, 396, 1071–1078. [Google Scholar] [CrossRef]
- Lax, S.F.; Skok, K.; Zechner, P.; Kessler, H.H.; Kaufmann, N.; Koelblinger, C.; Vander, K.; Bargfrieder, U.; Trauner, M. Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome: Results From a Prospective, Single-Center, Clinicopathologic Case Series. Ann. Intern. Med. 2020, 173, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, D.; Sperhake, J.P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S.; et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann. Intern. Med. 2020, 173, 268–277. [Google Scholar] [CrossRef]
- Hoechter, D.J.; Becker-Pennrich, A.; Langrehr, J.; Bruegel, M.; Zwissler, B.; Schaefer, S.; Spannagl, M.; Hinske, L.C.; Zoller, M. Higher procoagulatory potential but lower DIC score in COVID-19 ARDS patients compared to non-COVID-19 ARDS patients. Thromb. Res. 2020, 196, 186–192. [Google Scholar] [CrossRef]
- Di Micco, P.; Russo, V.; Carannante, N.; Imparato, M.; Rodolfi, S.; Cardillo, G.; Lodigiani, C. Clotting Factors in COVID-19: Epidemiological Association and Prognostic Values in Different Clinical Presentations in an Italian Cohort. J. Clin. Med. 2020, 9, 1371. [Google Scholar] [CrossRef]
- Henry, B.M.; Vikse, J.; Benoit, S.; Favaloro, E.J.; Lippi, G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin. Chim. Acta 2020, 507, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Oudemans-van Straaten, H.M. Hemostasis and thrombosis in continuous renal replacement treatment. Semin. Thromb. Hemost. 2015, 41, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Guo, H.; Zhang, Y.; Zhang, Z.; Liu, Y.; Wang, J.; Lu, H.; Qian, Z. Analysis of coagulation parameters in patients with COVID-19 in Shanghai, China. Biosci. Trends 2020, 14, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Jiritano, F.; Serraino, G.F.; ten Cate, H.; Fina, D.; Matteucci, M.; Mastroroberto, P.; Lorusso, R. Platelets and exextracorporealembrane oxygenation in adult patients: A systematic review and meta-analysis. Intensive Care Med. 2020, 46, 1154–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
COVID (n = 19) | NCOVID (n = 34) | p Value | |
---|---|---|---|
Age (y) | 57 (50–62) | 55 (50–62) | 0.914 |
Female gender, n (%) | 6 (32) | 11 (32) | 1.000 |
Weight (kg) | 90 (80–100) | 80.15 (70–100) | 0.330 |
Height (cm) | 176 (170–185) | 172 (165–181) | 0.177 |
BMI (kg/m2) | 28.2 (24.7–31.1) | 26.6 (25–33.4) | 0.817 |
Pre-ECMO LOS in-hospital (d) | 6 (4–16) | 1 (0–8) | 0.695 |
Coronary artery disease, n (%) | 1 (5) | 6 (18) | 0.125 |
Prior myocardial infarction, n (%) | 1 (5) | 2 (6) | 1.000 |
Arterial hypertension, n (%) | 14 (74) | 14 (41) | 0.013 * |
COPD, n (%) | 3 (16) | 10 (29) | 0.267 |
Diabetes mellitus type 2, n (%) | 7 (37) | 5 (15) | 0.096 |
Pulmonary hypertension, n (%) | 2 (11) | 0 (0) | 0.250 |
Chronic kidney disease, n (%) † | 2 (11) | 3 (9) | 1.000 |
Leukemia, n (%) | 0 (0) | 2 (6) | 0.500 |
Nicotine use, n (%) | 4 (21) | 18 (53) | 0.008 * |
Immunosuppressive medication, n (%) | 1 (5) | 6 (18) | 0.289 |
History of malignancy, n (%) | 1 (5) | 2 (6) | 1.000 |
Blood Gas and Laboratory Tests | |||
pO2 (mmHg) | 68 (54–72) | 71 (51–82) | 1.000 |
pCO2 (mmHg) | 41 (35–51) | 66 (48–79) | 0.000 * |
Lactate (mmol/L) | 2.4 (1.1–4.6) | 1.9 (1.3–3.0) | 0.654 |
pH | 7.4 (7.36–7.47) | 7.3 (7.2–7.4) | 0.003 * |
HCO3− | 25.6 (20–31) | 27 (24.7–34.4) | 0.108 |
FiO2 | 60 (50–80) | 100 (55–100) | 0.056 |
NO before ECMO (%) | 10 (30) | 14 (74) | 0.001 * |
NMB before ECMO (%) | 33 (97) | 11 (57) | 0.04 * |
FiO2 (ratio) | 60 (50–80) | 100 (55–100) | 1.000 |
Hb (g/dL) | 9.8 (8.8–10.5) | 9.6 (8.9–11.4) | 0.764 |
Leucocytes (/nL) | 13 (10–17) | 11 (9–19) | 0.558 |
Platelet (G/L) | 222 (165–395) | 131 (87–214) | 0.074 |
pfHb (mg/L) | 36 (22–50) | 48 (30–72) | 0.162 |
aPTT (s) | 30 (29–45) | 32 (29–53) | 0.174 |
INR (ratio) | 1.3 (1.2–1.4) | 1.1 (1–1.2) | 0.899 |
ATIII (%) | 70 (57–78) | 58 (40–75) | 0.155 |
D-dimer (µg/dL) | 4,345 (1810–11,806) | 2,400 (1782–7030) | 0.253 |
Fibrinogen (mg/dL) | 493 (454–704) | 364 (276–490) | 0.000 * |
PCT (percentage) | 4 (2–6) | 1 (0–6) | 0.053 |
LDH (U/L) | 403 (312–578) | 466 (318–644) | 0.589 |
ALT (U/L) | 33 (29–44) | 35 (22–50) | 0.713 |
AST (U/L) | 66 (38–140) | 62 (32–164) | 0.967 |
BUN (mg/dL) | 66 (44–114) | 61 (37–92) | 0.395 |
Creatinine (mg/dL) | 1.2 (0.9–1.7) | 1.1 (0.7–1.8) | 0.540 |
Bilirubin (mg/dL) | 0.6 (0.45–1.9) | 0.72 (0.51–1.66) | 0.765 |
Respiratory Extracorporeal Membrane Oxygenation Survival Prediction Score | |||
Total RESP Score | 0 (−3–2) | 1 (−2–2) | 0.096 |
Survival prediction (percentage) | 57 (33–57) | 57 (33–57) | 0.131 |
Cardiac arrest before ECMO, n (%) | 0 (0) | 5 (15) | 0.063 |
PaCO2 ≥ 75 mmHg, n (%) | 6 (32) | 14 (41) | 0.424 |
Peak inspiratory pressure ≥ 42 cmH2O, n (%) | 0 (0) | 0 (0) | 1.000 |
Non-infectious indication for ECMO, n (%) | 0 (0) | 1 (3) | 1.000 |
COVID (n = 19) | NCOVID (n = 34) | p Value | |
---|---|---|---|
90-day mortality, n (%) † | 9 (47) | 25 (74) | 0.064 |
ECMO duration (d) | 16 (11–23) | 13 (5–25) | 0.714 |
Total LOS in-hospital (d) | 29 (14–55) | 33 (11–60) | 0.576 |
Thromboembolic events, n (%) | 8 (42) | 4 (12) | 0.031 * |
Pulmonary artery embolism | 5 (26) | 0 (0) | 0.008 * |
Peripheral venous thrombosis | 3 (16) | 3 (9) | 0.508 |
Peripheral arterial thrombosis | 1 (5) | 0 (0) | 0.500 |
Other thromboembolic events †† | 0 (0) | 1 (3) | 1.000 |
Major bleeding events, n (%) | 8 (42) | 21 (62) | 0.263 |
Endobronchial | 2 (11) | 8 (24) | 0.227 |
Mucosal | 3 (16) | 4 (12) | 0.727 |
Cannulation side | 2 (11) | 9 (26) | 0.267 |
Gastrointestinal | 1 (5) | 0 (0) | 0.500 |
Cerebral | 0 (0) | 4 (12) | 0.125 |
Hemothorax | 1 (5) | 4 (12) | 0.625 |
Pericardial tamponade | 2 (11) | 0 (0) | 0.125 |
Other adverse events, n (%) | |||
Acute kidney failure § | 13 (68) | 17 (50) | 0.093 |
Severe thrombocytopenia §§ | 2 (6) | 11 (32) | 0.057 |
Hemorrhagic shock | 0 (0) | 4 (12) | 0.125 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Autschbach, T.; Hatam, N.; Durak, K.; Grottke, O.; Dreher, M.; Nubbemeyer, K.; Rossaint, R.; Marx, G.; Marx, N.; Spillner, J.; et al. Outcomes of Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome in COVID-19 Patients: A Propensity-Matched Analysis. J. Clin. Med. 2021, 10, 2547. https://doi.org/10.3390/jcm10122547
Autschbach T, Hatam N, Durak K, Grottke O, Dreher M, Nubbemeyer K, Rossaint R, Marx G, Marx N, Spillner J, et al. Outcomes of Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome in COVID-19 Patients: A Propensity-Matched Analysis. Journal of Clinical Medicine. 2021; 10(12):2547. https://doi.org/10.3390/jcm10122547
Chicago/Turabian StyleAutschbach, Teresa, Nima Hatam, Koray Durak, Oliver Grottke, Michael Dreher, Katharina Nubbemeyer, Rolf Rossaint, Gernot Marx, Nikolaus Marx, Jan Spillner, and et al. 2021. "Outcomes of Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome in COVID-19 Patients: A Propensity-Matched Analysis" Journal of Clinical Medicine 10, no. 12: 2547. https://doi.org/10.3390/jcm10122547
APA StyleAutschbach, T., Hatam, N., Durak, K., Grottke, O., Dreher, M., Nubbemeyer, K., Rossaint, R., Marx, G., Marx, N., Spillner, J., Zayat, R., Kalverkamp, S., & Kersten, A. (2021). Outcomes of Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome in COVID-19 Patients: A Propensity-Matched Analysis. Journal of Clinical Medicine, 10(12), 2547. https://doi.org/10.3390/jcm10122547