Does Unidirectional Block Exist after a Radiofrequency Line Creation? Insights from Ultra-High-Density Mapping (The UNIBLOCK Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Atrial Arrhythmia Ablation Procedures
2.3. Conduction Block Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kuck, K.H.; Friday, K.J.; Kunze, K.P.; Schlüter, M.; Lazzara, R.; Jackman, W.M. Sites of conduction block in accessory atrioventricular pathways. Basis for concealed accessory pathways. Circulation 1990, 82, 407–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor, A.; Núñez, A.; Guzzo, G.; De Diego, C.; Cosío, F.G. A simple pacing method to diagnose postero-anterior (clockwise) cavo-tricuspid isthmus block after radiofrequency ablation. Europace 2010, 12, 1290–1295. [Google Scholar] [CrossRef]
- Errahmouni, A.; Bun, S.-S.; Latcu, D.G.; Saoudi, N. Ultrasound-Guided Venous Puncture in Electrophysiological Procedures: A Safe Method, Rapidly Learned. Pacing Clin. Electrophysiol. 2014, 37, 1023–1028. [Google Scholar] [CrossRef]
- Squara, F.; Latcu, D.G.; Massaad, Y.; Mahjoub, M.; Bun, S.-S.; Saoudi, N. Contact force and force-time integral in atrial radiofrequency ablation predict transmurality of lesions. Europace 2014, 16, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Tai, C.-T.; Haque, A.; Lin, Y.-K.; Tsao, H.-M.; Ding, Y.-A.; Chang, M.-S.; Chen, S.-A. Double Potential Interval and Transisthmus Conduction Time for Prediction of Cavotricuspid Isthmus Block after Ablation of Typical Atrial Flutter. J. Interv. Card. Electrophysiol. 2002, 7, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Laţcu, D.G.; Bun, S.-S.; Viera, F.; Delassi, T.; El Jamili, M.; Al Amoura, A.; Saoudi, N. Selection of Critical Isthmus in Scar-Related Atrial Tachycardia Using a New Automated Ultrahigh Resolution Mapping System. Circ. Arrhythmia Electrophysiol. 2017, 10, e004510. [Google Scholar] [CrossRef]
- Matsushita, T.; Chun, S.; Liem, L.B.; Friday, K.J.; Sung, R.J. Unidirectional conduction block at cavotricuspid isthmus created by radiofrequency catheter ablation in patients with typical atrial flutter. J. Cardiovasc. Electrophysiol. 2002, 13, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Calkins, H.; Hindricks, G.; Cappato, R.; Kim, Y.H.; Saad, E.B.; Aguinaga, L.; Akar, J.G.; Badhwar, V.; Brugada, J.; Camm, J.; et al. Document Reviewers: 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2018, 20, e1–e160. [Google Scholar] [CrossRef]
- Scaglione, M.; Riccardi, R.; Calò, L.; Donna, P.; Lamberti, F.; Caponi, D.; Coda, L.; Gaita, F. Typical Atrial Flutter Ablation: Conduction Across the Posterior Region of the Inferior Vena Cava Orifice May Mimic Unidirectional Isthmus Block. J. Cardiovasc. Electrophysiol. 2000, 11, 387–395. [Google Scholar] [CrossRef]
- Anter, E.; Tschabrunn, C.M.; Josephson, M.E. High-Resolution Mapping of Scar-Related Atrial Arrhythmias Using Smaller Electrodes With Closer Interelectrode Spacing. Circ. Arrhythmia Electrophysiol. 2015, 8, 537–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bun, S.-S.; Delassi, T.; Latcu, D.G.; El Jamili, M.; Ayari, A.; Errahmouni, A.; Berte, B.; Saoudi, N. A comparison between multipolar mapping and conventional mapping of atrial tachycardias in the context of atrial fibrillation ablation. Arch. Cardiovasc. Dis. 2018, 111, 33–40. [Google Scholar] [CrossRef]
- Bun, S.-S.; Latcu, D.G.; Delassi, T.; El Jamili, M.; Al Amoura, A.; Saoudi, N. Ultra-High-Definition Mapping of Atrial Arrhythmias. Circ. J. 2016, 80, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Nakahara, S.; Hori, Y.; Fukuda, R.; Nishiyama, N.; Kobayashi, S.; Sakai, Y.; Taguchi, I. Characterization of Residual Conduction Gaps After HotBalloon-Based Antral Ablation of Atrial Fibrillation—Evidence From Ultra-High-Resolution 3-Dimensional Mapping. Circ. J. 2019, 83, 1206–1213. [Google Scholar] [CrossRef] [Green Version]
- Vlachos, K.; Efremidis, M.; Derval, N.; Martin, C.A.; Takigawa, M.; Bazoukis, G.; Frontera, A.; Gkalapis, C.; Duchateau, J.; Nakashima, T.; et al. Use of high-density activation and voltage mapping in combination with entrainment to delineate gap-related atrial tachycardias post atrial fibrillation ablation. Europace 2021. [Google Scholar] [CrossRef]
- Bińkowski, B.J.; Kucejko, T.; Łagodziński, A.; Lubiński, A. How to avoid unnecessary RF applications in cavo-tricuspid isthmus: Common atrial flutter ablation using 8-mm-tip mini-electrode-equipped catheter. J. Interv. Card. Electrophysiol. 2021, 60, 109–114. [Google Scholar] [CrossRef]
- Latcu, D.G.; Bun, S.-S.; Saoudi, N. Intra-isthmus reentry: Diagnosis at-a-glance. Europace 2013, 16, 251. [Google Scholar] [CrossRef] [Green Version]
- Chaumont, C.; Saoudi, N.; Savouré, A.; Lațcu, D.G.; Anselme, F. Electrophysiologic evidence of epicardial connections between low right atrium and remote right atrial region or coronary sinus musculature: Relevance for catheter ablation of typical atrial flutter. J. Cardiovasc. Electrophysiol. 2020, 31, 2344–2351. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Xue, Y.; Li, T.; Liu, M.; Liu, Y.; Deng, H.; Li, J.; Jiang, J.; Ma, Y.; Feng, C.; et al. Electrophysiological characteristics of epicardial to endocardial breakthrough in intractable cavotricuspid isthmus-dependent atrial flutter. Pacing Clin. Electrophysiol. 2021, 44, 462–471. [Google Scholar] [CrossRef]
- Hayashi, T.; Fukamizu, S.; Mitsuhashi, T.; Kitamura, T.; Aoyama, Y.; Hojo, R.; Sugawara, Y.; Sakurada, H.; Hiraoka, M.; Fujita, H.; et al. Peri-Mitral Atrial Tachycardia Using the Marshall Bundle Epicardial Connections. JACC Clin. Electrophysiol. 2016, 2, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Lockwood, D.; Yamaguchi, R.; Yoshimoto, D.; Suzuki, T.; Ho, S.Y.; Nakagawa, H. Systematic Evaluation of High-Resolution Activation Mapping to Identify Residual Endocardial and Epicardial Conduction Across the Mitral Isthmus. JACC Clin. Electrophysiol. 2021, 7, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Pambrun, T.; Duchateau, J.; Delgove, A.; Denis, A.; Constantin, M.; Ramirez, F.D.; Chauvel, R.; Tixier, R.; Welte, N.; André, C.; et al. Epicardial course of the septopulmonary bundle: Anatomical considerations and clinical implications for roof line completion. Heart Rhythm 2021, 18, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Pathik, B.; Lee, G.; Sacher, F.; Jaïs, P.; Massoullié, G.; Derval, N.; Bates, M.G.; Lipton, J.; Joseph, S.; Morton, J.; et al. New Insights Into an Old Arrhythmia: High-Resolution Mapping Demonstrates Conduction and Substrate Variability in Right Atrial Macro-Re-Entrant Tachycardia. JACC Clin. Electrophysiol. 2017, 3, 971–986. [Google Scholar] [CrossRef] [PubMed]
- Bun, S.; Lațcu, D.G.; Wedn, A.M.; Squara, F.; Scarlatti, D.; Theodore, G.; Al Amoura, A.; Benaïch, F.A.; Hasni, K.; Saoudi, N.; et al. Cavotricuspid isthmus is constantly a zone of slow conduction: Data from ultra-high-resolution mapping. Pacing Clin. Electrophysiol. 2019, 43, 189–193. [Google Scholar] [CrossRef] [PubMed]
- De Simone, A.; Anselmino, M.; Scaglione, M.; Stabile, G.; Solimene, F.; De Bellis, A.; Pepe, M.; Panella, A.; Ferraris, F.; Malacrida, M.; et al. Is the mid-diastolic isthmus always the best ablation target for re-entrant atrial tachycardias? J. Cardiovasc. Med. 2020, 21, 113–122. [Google Scholar] [CrossRef]
Characteristics | Value |
---|---|
Age (years) | 67 ± 12 |
Sex, male (%) | 28 men (70) |
Body Mass Index (kg/m²) | 25.7 ± 3.4 |
CHA2DS2VASc score | 2.66 ± 1.6 |
Structural heart disease, n (%) | 18 (45) |
Left atrial diameter (mm) | 51 ± 12 |
Left ventricular ejection fraction (%) | 54 ±10 |
Total procedure time (min) | 114 ± 52 |
Fluoroscopy time (min) | 10.4 ± 7 |
Concomitant left atrial lesion ablations, n (%) | 12 (30) |
Follow-up (months) | 12 ± 4 months |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bun, S.-S.; Da Costa, A.; Guichard, J.-B.; Khoueiry, Z.; Squara, F.; Scarlatti, D.; Taghji, P.; Moceri, P.; Ferrari, E. Does Unidirectional Block Exist after a Radiofrequency Line Creation? Insights from Ultra-High-Density Mapping (The UNIBLOCK Study). J. Clin. Med. 2021, 10, 2512. https://doi.org/10.3390/jcm10112512
Bun S-S, Da Costa A, Guichard J-B, Khoueiry Z, Squara F, Scarlatti D, Taghji P, Moceri P, Ferrari E. Does Unidirectional Block Exist after a Radiofrequency Line Creation? Insights from Ultra-High-Density Mapping (The UNIBLOCK Study). Journal of Clinical Medicine. 2021; 10(11):2512. https://doi.org/10.3390/jcm10112512
Chicago/Turabian StyleBun, Sok-Sithikun, Antoine Da Costa, Jean-Baptiste Guichard, Ziad Khoueiry, Fabien Squara, Didier Scarlatti, Philippe Taghji, Pamela Moceri, and Emile Ferrari. 2021. "Does Unidirectional Block Exist after a Radiofrequency Line Creation? Insights from Ultra-High-Density Mapping (The UNIBLOCK Study)" Journal of Clinical Medicine 10, no. 11: 2512. https://doi.org/10.3390/jcm10112512
APA StyleBun, S.-S., Da Costa, A., Guichard, J.-B., Khoueiry, Z., Squara, F., Scarlatti, D., Taghji, P., Moceri, P., & Ferrari, E. (2021). Does Unidirectional Block Exist after a Radiofrequency Line Creation? Insights from Ultra-High-Density Mapping (The UNIBLOCK Study). Journal of Clinical Medicine, 10(11), 2512. https://doi.org/10.3390/jcm10112512