The Change in Glucagon Following Meal Ingestion Is Associated with Glycemic Control, but Not with Incretin, in People with Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Procedure
2.3. Measurements of Biochemical Markers
2.4. Statistical Analysis
3. Results
3.1. Clinico-Biochemical Characteristics of Subjects and Ingestion of Mixed Meal Induce Increase Incretin Level, but Not Glucagon Levels
3.2. In Univariate Analysis, ΔGlucagon Levels Showed Correlation with HbA1c, Fasting Glucose, Δglucose, and GFR, but Not Incretin Levels
3.3. In Hierarchical Multiple Regression Analysis, HbA1c Was the Variable Predicting ΔGlucagon Levels
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, G.; Zhang, B.B. Glucagon and regulation of glucose metabolism. Am. J. Physiol. Metab. 2003, 284, E671–E678. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.; Bloom, S. Problem or solution: The strange story of glucagon. Peptides 2018, 100, 36–41. [Google Scholar] [CrossRef]
- Moon, J.S.; Won, K.C. Pancreatic α-Cell Dysfunction in Type 2 Diabetes: Old Kids on the Block. Diabetes Metab. J. 2015, 39, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unger, R.; Orci, L. The essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet 1975, 305, 14–16. [Google Scholar] [CrossRef]
- Ahren, B.; Larsson, H. Impaired glucose tolerance (IGT) is associated with reduced insulin-induced suppression of glucagon con-centrations. Diabetologia 2001, 44, 1998–2003. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.; Vella, A.; Basu, A.; Basu, R.; Schwenk, W.F.; Rizza, R.A. Lack of suppression of glucagon contributes to postprandial hyper-glycemia in subjects with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2000, 85, 4053–4059. [Google Scholar] [PubMed] [Green Version]
- Knop, F.K.; Vilsbøll, T.; Madsbad, S.; Holst, J.J.; Krarup, T. Inappropriate suppression of glucagon during OGTT but not during isoglycaemic i.v. glucose infusion contributes to the reduced incretin effect in type 2 diabetes mellitus. Diabetologia 2007, 50, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Muscelli, E.; Mari, A.; Casolaro, A.; Camastra, S.; Seghieri, G.; Gastaldelli, A.; Holst, J.J.; Ferrannini, E. Separate Impact of Obesity and Glucose Tolerance on the Incretin Effect in Normal Subjects and Type 2 Diabetic Patients. Diabetes 2007, 57, 1340–1348. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.J.; Kim, M.Y.; Shin, J.Y.; Lee, J.C.; Kim, S.; Park, K.S.; Cho, Y.M. The incretin effect in Korean subjects with normal glucose tolerance or type 2 diabetes. Clin. Endocrinol. 2013, 80, 221–227. [Google Scholar] [CrossRef]
- Henkel, E.; Menschikowski, M.; Koehler, C.; Leonhardt, W.; Hanefeld, M. Impact of glucagon response on postprandial hypergly-cemia in men with impaired glucose tolerance and type 2 diabetes mellitus. Metabolism 2005, 54, 1168–1173. [Google Scholar] [CrossRef] [PubMed]
- Yabe, D.; Kuroe, A.; Watanabe, K.; Iwasaki, M.; Hamasaki, A.; Hamamoto, Y.; Harada, N.; Yamane, S.; Lee, S.; Murotani, K.; et al. Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients. J. Diabetes Complicat. 2015, 29, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Hare, K.J.; Vilsbøll, T.; Holst, J.J.; Knop, F.K. Inappropriate glucagon response after oral compared with isoglycemic intravenous glucose administration in patients with type 1 diabetes. Am. J. Physiol. Metab. 2010, 298, E832–E837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knop, F.K.; Vilsboll, T.; Hojberg, P.V.; Larsen, S.; Madsbad, S.; Volund, A.; Holst, J.J.; Krarup, T. Reduced incretin effect in type 2 diabetes: Cause or consequence of the diabetic state? Diabetes 2007, 56, 1951–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, A.; Bagger, J.I.; Wewer Albrechtsen, N.J.; Christensen, M.; Grondahl, M.; Hartmann, B.; Mathiesen, E.R.; Hansen, C.P.; Storkholm, J.H.; van Hall, G.; et al. Evidence of Extrapancreatic Glu-cagon Secretion in Man. Diabetes 2016, 65, 585–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostoft, S.H.; Bagger, J.I.; Hansen, T.; Pedersen, O.; Holst, J.J.; Knop, F.K.; Vilsbøll, T. Incretin effect and glucagon responses to oral and intra-venous glucose in patients with maturity-onset diabetes of the young--type 2 and type 3. Diabetes 2014, 63, 2838–2844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, J. Glucagon, a key factor in the pathophysiology of type 2 diabetes. Biochimie 2017, 143, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Lefèbvre, P.J.; Paquot, N.; Scheen, A.J. Inhibiting or antagonizing glucagon: Making progress in diabetes care. Diabetes Obes. Metab. 2015, 17, 720–725. [Google Scholar] [CrossRef]
- Henquin, J.C.; Rahier, J. Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia 2011, 54, 1720–1725. [Google Scholar] [CrossRef] [Green Version]
- Yoon, K.H.; Ko, S.H.; Cho, J.H.; Lee, J.M.; Ahn, Y.B.; Song, K.H.; Yoo, S.J.; Kang, M.I.; Cha, B.Y.; Lee, K.W.; et al. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J. Clin. Endocrinol. Metab. 2003, 88, 2300–2308. [Google Scholar] [CrossRef]
- Knop, F.K. EJE PRIZE 2018: A gut feeling about glucagon. Eur. J. Endocrinol. 2018, 178, R267–R80. [Google Scholar] [CrossRef] [Green Version]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Nauck, M.A.; Heimesaat, M.M.; Orskov, C.; Holst, J.J.; Ebert, R.; Creutzfeldt, W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Investig. 1993, 91, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, J.J.; Gallwitz, B.; Siepmann, N.; Holst, J.J.; Deacon, C.F.; Schmidt, W.E.; Nauck, M.A. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 2003, 46, 798–801. [Google Scholar] [CrossRef] [Green Version]
- Vilsboll, T.; Krarup, T.; Madsbad, S.; Holst, J.J. Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 2002, 45, 1111–1119. [Google Scholar] [PubMed] [Green Version]
- Lund, A.; Bagger, J.I.; Christensen, M.; Knop, F.K.; Vilsbøll, T. Glucagon and Type 2 Diabetes: The Return of the Alpha Cell. Curr. Diabetes Rep. 2014, 14, s11892–s12014. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef] [PubMed]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- Unger, R.H.; Orci, L. Glucagon and the A cell: Physiology and pathophysiology (first two parts). N. Engl. J. Med. 1981, 304, 1518–1524. [Google Scholar] [CrossRef]
- Unger, R.H.; Orci, L. Glucagon and the A cell: Physiology and pathophysiology (second of two parts). N. Engl. J. Med. 1981, 304, 1575–1580. [Google Scholar] [CrossRef]
- U.K. Prospective Diabetes Study Group. U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: A progressive disease. Diabetes 1995, 44, 1249–1258. [CrossRef]
- Aydin, I.; Raskin, P.; Unger, R.H. The effect of short-term intravenous insulin administration on the glucagon response to a car-bohydrate meal in adult onset and juvenile type diabetes. Diabetologia 1977, 13, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Raskin, P.; Unger, R.H. Effect of Insulin Therapy on the Profiles of Plasma Immunoreactive Glucagon in Juvenile-type and Adult-type Diabetics. Diabetes 1978, 27, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.; Magnusson, I.; Rothman, D.L.; Cline, G.W.; Caumo, A.; Cobelli, C.I.; Shulman, G. Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J. Clin. Investig. 1996, 97, 126–132. [Google Scholar] [CrossRef]
- Singhal, P.; Caumo, A.; Carey, P.E.; Cobelli, C.; Taylor, R. Regulation of endogenous glucose production after a mixed meal in type 2 diabetes. Am. J. Physiol. Metab. 2002, 283, E275–E283. [Google Scholar] [CrossRef] [Green Version]
- Patarrão, R.S.; Lautt, W.W.; Macedo, M.P. Acute Glucagon Induces Postprandial Peripheral Insulin Resistance. PLoS ONE 2015, 10, e0127221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenbaum, C.J.; Mandrup-Poulsen, T.; McGee, P.F.; Battelino, T.; Haastert, B.; Ludvigsson, J.; Pozzilli, P.; Lachin, J.M.; Kolb, H. Mixed-meal tolerance test versus glucagon stimulation test for the assessment of beta-cell function in therapeutic trials in type 1 diabetes. Diabetes Care 2008, 31, 1966–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horie, I.; Abiru, N.; Eto, M.; Sako, A.; Akeshima, J.; Nakao, T.; Nakashima, Y.; Niri, T.; Ito, A.; Nozaki, A.; et al. Sex differences in insulin and glucagon responses for glucose homeostasis in young healthy Japanese adults. J. Diabetes Investig. 2018, 9, 1283–1287. [Google Scholar] [CrossRef]
- Karlsson, S.; Scheurink, A.J.W.; Ahrén, B. Gender difference in the glucagon response to glucopenic stress in mice. Am. J. Physiol. Integr. Comp. Physiol. 2002, 282, R281–R288. [Google Scholar] [CrossRef] [Green Version]
- Bonnevie-Nielsen, V. Different effects of high glucose and high fat diet on pancreatic insulin and glucagon in female and male mice. Diabete Metab. 1982, 8, 271–277. [Google Scholar] [PubMed]
- Lee, M.; Kim, M.; Park, J.S.; Lee, S.; You, J.; Ahn, C.W.; Kim, K.R.; Kang, S. Higher glucagon-to-insulin ratio is associated with elevated glycated he-moglobin levels in type 2 diabetes patients. Korean J. Intern Med. 2017, 34, 1068–1077. [Google Scholar] [CrossRef]
- Wallis, K.; Walters, J.R.; Forbes, A. Review article: Glucagon-like peptide 2--current applications and future directions. Aliment. Pharmacol. Ther. 2007, 25, 365–372. [Google Scholar] [CrossRef]
- Meier, J.J.; Nauck, M.A.; Pott, A.; Heinze, K.; Goetze, O.; Bulut, K.; Schmidt, W.E.; Gallwitz, B.; Holst, J.J. Glucagon-Like Peptide 2 Stimulates Glucagon Secretion, Enhances Lipid Absorption, and Inhibits Gastric Acid Secretion in Humans. Gastroenterology 2006, 130, 44–54. [Google Scholar] [CrossRef]
- Lund, A.; Vilsbøll, T.; Bagger, J.I.; Holst, J.J.; Knop, F.K. The separate and combined impact of the intestinal hormones, GIP, GLP-1, and GLP-2, on glucagon secretion in type 2 diabetes. Am. J. Physiol. Metab. 2011, 300, E1038–E1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deacon, C.F.; Nauck, M.A.; Meier, J.; Hücking, K.; Holst, J.J. Degradation of Endogenous and Exogenous Gastric Inhibitory Polypeptide in Healthy and in Type 2 Diabetic Subjects as Revealed Using a New Assay for the Intact Peptide1. J. Clin. Endocrinol. Metab. 2000, 85, 3575–3581. [Google Scholar] [CrossRef] [PubMed]
- Deacon, C.F.; Nauck, M.A.; Toft-Nielsen, M.; Pridal, L.; Willms, B.; Holst, J.J. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995, 44, 1126–1131. [Google Scholar] [CrossRef]
- Vilsboll, T.; Krarup, T.; Deacon, C.F.; Madsbad, S.; Holst, J.J. Reduced postprandial concentrations of intact biologically active glu-cagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001, 50, 609–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hædersdal, S.; Lund, A.; Knop, F.K.; Vilsbøll, T. The Role of Glucagon in the Pathophysiology and Treatment of Type 2 Diabetes. Mayo Clin. Proc. 2018, 93, 217–239. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.C.N.; Malik, V.; Jia, W.; Kadowaki, T.; Yajnik, C.S.; Yoon, K.-H.; Hu, B.F. Diabetes in Asia: Epidemiology, risk factors, and patho-physiology. JAMA 2009, 301, 2129–2140. [Google Scholar] [CrossRef] [PubMed]
Variables | Value |
---|---|
n | 317 |
Age, years | 59.6 ± 11.5 |
Gender, male, n (%) | 205 (64.6) |
Body mass index, kg/cm2 | 25.8 ± 3.7 |
Waist circumference, cm | 90.9 ± 9.0 |
Systolic BP, mmHg | 138.1 ± 17.8 |
Diastolic BP, mmHg | 81.9 ± 10.6 |
DM duration, years | 9.9 ± 8.3 |
HbA1c, % | 8.9 ± 2.2 |
Glucose, mg/dL | 168.1 ± 66.5 |
C-peptide, ng/mL | 2.1 ± 1.5 |
ALT, U/L | 32.2 ± 26.4 |
Creatinine, mg/dL | 1.1 ± 0.7 |
eGFR, mL/min | 67.3 ± 17.3 |
Antidiabetic regimen | |
Sulfonylurea, n (%) | 169 (53.3) |
Metformin, n (%) | 221 (69.7) |
Thiazolidinedione, n (%) | 18 (5.6) |
α-Glucosidase inhibitor, n (%) | 18 (5.6) |
Insulin, n (%) | 100 (31.5) |
Variables | Fasting Levels | 30-min Post-Meal Levels | p |
---|---|---|---|
Glucose, mg/dL | 168.1 ± 66.5 | 257.8 ± 71.2 | <0.001 |
C-peptide, ng/mL | 2.1 ± 1.5 | 3.2 ± 2.0 | <0.001 |
Glucagon, pg/mL | 84.6 ± 37.3 | 84.7 ± 48.2 | 0.909 |
iGLP-1, pmol/L | 5.7 ± 3.7 | 11.5 ± 9.3 | <0.001 |
iGIP, pmol/L | 3.9 ± 3.8 | 21.8 ± 6.8 | <0.001 |
Variables | ΔGlucagon, pg/mL | |
---|---|---|
r | p | |
Age | 0.005 | 0.925 |
Body mass index, kg/cm2 | 0.031 | 0.583 |
Waist circumference, cm | 0.099 | 0.084 |
Systolic BP, mmHg | −0.042 | 0.456 |
Diastolic BP, mmHg | −0.039 | 0.485 |
Log (DM duration, years) | 0.010 | 0.861 |
Log (HbA1c, %) | 0.389 | <0.001 |
Log (Fasting glucose, mg/dL) | 0.198 | <0.001 |
Log (Fasting C-peptide, ng/mL) | −0.052 | 0.360 |
ΔGlucose, mg/dL | −0.269 | <0.001 |
ΔC-peptide, ng/mL | −0.036 | 0.531 |
Log (ΔiGLP-1, pmol/L) | 0.09 | 0.118 |
Log (ΔiGIP, pmol/L) | −0.009 | 0.869 |
Log (ALT, U/L) | 0.025 | 0.667 |
Log (Creatinine, mg/dL) | 0.053 | 0.351 |
Log (eGFR, mL/min) | −0.140 | 0.013 |
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
β | p | β | p | β | p | |
Age, years | −0.028 | 0.622 | −0.056 | 0.319 | −0.049 | 0.391 |
Gender, female | 0.125 | 0.019 | 0.105 | 0.050 | 0.109 | 0.041 |
Log (HbA1c, %) | 0.359 | 0.000 | 0.337 | 0.000 | 0.327 | 0.000 |
Log (eGFR, mL/min) | −0.099 | 0.082 | −0.037 | 0.527 | −0.014 | 0.821 |
Log (Fasting glucose, mg/dL) | 0.007 | 0.905 | 0.040 | 0.563 | 0.027 | 0.703 |
Log (Fasting C-peptide, ng/mL) | 0.002 | 0.971 | −0.030 | 0.628 | −0.005 | 0.943 |
ΔGlucose, mg/dL | -0.237 | 0.000 | −0.222 | 0.000 | ||
ΔC-peptide, ng/mL | 0.092 | 0.131 | 0.087 | 0.156 | ||
Log (ΔiGLP-1, pmol/L) | 0.032 | 0.573 | 0.027 | 0.632 | ||
Log (ΔiGIP, pmol/L) | 0.067 | 0.228 | 0.062 | 0.262 | ||
Use of sulfonylurea | −0.044 | 0.463 | ||||
Use of metformin | −0.058 | 0.312 | ||||
Use of insulin | 0.023 | 0.716 | ||||
Adjusted R2 | 0.175 | 0.243 | 0.250 | |||
F | 10.874 | <0.001 | 9.037 | <0.001 | 7.127 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, S.; Kim, D.; Koh, G. The Change in Glucagon Following Meal Ingestion Is Associated with Glycemic Control, but Not with Incretin, in People with Diabetes. J. Clin. Med. 2021, 10, 2487. https://doi.org/10.3390/jcm10112487
Yoo S, Kim D, Koh G. The Change in Glucagon Following Meal Ingestion Is Associated with Glycemic Control, but Not with Incretin, in People with Diabetes. Journal of Clinical Medicine. 2021; 10(11):2487. https://doi.org/10.3390/jcm10112487
Chicago/Turabian StyleYoo, Soyeon, Dongkyu Kim, and Gwanpyo Koh. 2021. "The Change in Glucagon Following Meal Ingestion Is Associated with Glycemic Control, but Not with Incretin, in People with Diabetes" Journal of Clinical Medicine 10, no. 11: 2487. https://doi.org/10.3390/jcm10112487
APA StyleYoo, S., Kim, D., & Koh, G. (2021). The Change in Glucagon Following Meal Ingestion Is Associated with Glycemic Control, but Not with Incretin, in People with Diabetes. Journal of Clinical Medicine, 10(11), 2487. https://doi.org/10.3390/jcm10112487