Comparison of Jaw Elevation Device vs. Conventional Airway Assist during Sedation in Chronic Kidney Diseases Undergoing Arteriovenous Fistula Surgery: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lam, T.; Singh, M.; Yadollahi, A.; Chung, F. Is Perioperative Fluid and Salt Balance a Contributing Factor in Postoperative Worsening of Obstructive Sleep Apnea? Anesth. Analg. 2016, 122, 1335–1339. [Google Scholar] [CrossRef] [PubMed]
- Marrone, O.; Battaglia, S.; Steiropoulos, P.; Basoglu, O.K.; Kvamme, J.A.; Ryan, S.; Pepin, J.L.; Verbraecken, J.; Grote, L.; Hedner, J.; et al. Chronic kidney disease in European patients with obstructive sleep apnea: The ESADA cohort study. J. Sleep Res. 2016, 25, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Voulgaris, A.; Marrone, O.; Bonsignore, M.R.; Steiropoulos, P. Chronic kidney disease in patients with obstructive sleep apnea. A narrative review. Sleep Med. Rev. 2019, 47, 74–89. [Google Scholar] [CrossRef]
- Umbro, I.; Fabiani, V.; Fabiani, M.; Angelico, F.; Del Ben, M. A systematic review on the association between obstructive sleep apnea and chronic kidney disease. Sleep Med. Rev. 2020, 53, 101337. [Google Scholar] [CrossRef] [PubMed]
- Sekercioglu, N.; Curtis, B.; Murphy, S.; Barrett, B. Sleep apnea in patients with chronic kidney disease: A single center experience. Ren. Fail. 2015, 37, 83–87. [Google Scholar] [CrossRef]
- Shanmugam, G.V.; Abraham, G.; Mathew, M.; Ilangovan, V.; Mohapatra, M.; Singh, T. Obstructive sleep apnea in non-dialysis chronic kidney disease patients. Ren. Fail. 2015, 37, 214–218. [Google Scholar] [CrossRef]
- Mirrakhimov, A.E. Obstructive sleep apnea and kidney disease: Is there any direct link? Sleep Breath. 2012, 16, 1009–1016. [Google Scholar] [CrossRef]
- Lin, C.H.; Perger, E.; Lyons, O.D. Obstructive sleep apnea and chronic kidney disease. Curr. Opin. Pulm. Med. 2018, 24, 549–554. [Google Scholar] [CrossRef]
- Lee, Y.C.; Hung, S.Y.; Wang, H.K.; Lin, C.W.; Wang, H.H.; Chen, S.W.; Chang, M.Y.; Ho, L.C.; Chen, Y.T.; Liou, H.H.; et al. Sleep apnea and the risk of chronic kidney disease: A nationwide population-based cohort study. Sleep 2015, 38, 213–221. [Google Scholar] [CrossRef]
- Hanly, P.J.; Ahmed, S.B. Sleep apnea and the kidney: Is sleep apnea a risk factor for chronic kidney disease? Chest 2014, 146, 1114–1122. [Google Scholar] [CrossRef]
- Abuyassin, B.; Sharma, K.; Ayas, N.T.; Laher, I. Obstructive Sleep Apnea and Kidney Disease: A Potential Bidirectional Relationship? J. Clin. Sleep Med. 2015, 11, 915–924. [Google Scholar] [CrossRef]
- Lin, C.H.; Lurie, R.C.; Lyons, O.D. Sleep Apnea and Chronic Kidney Disease: A State-of-the-Art Review. Chest 2020, 157, 673–685. [Google Scholar] [CrossRef]
- Cole, N.M.; Vlassakov, K.; Brovman, E.Y.; Heydarpour, M.; Urman, R.D. Regional Anesthesia for Arteriovenous Fistula Surgery May Reduce Hospital Length of Stay and Reoperation Rates. Vasc. Endovasc. Surg. 2018, 52, 418–426. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ayuse, T.; Hoshino, Y.; Kurata, S.; Moromugi, S.; Schneider, H.; Kirkness, J.P.; Schwartz, A.R.; Oi, K. Effect of head elevation on passive upper airway collapsibility in normal subjects during propofol anesthesia. Anesthesiology 2011, 115, 273–281. [Google Scholar] [CrossRef]
- Ehsan, Z.; Mahmoud, M.; Shott, S.R.; Amin, R.S.; Ishman, S.L. The effects of anesthesia and opioids on the upper airway: A systematic review. Laryngoscope 2016, 126, 270–284. [Google Scholar] [CrossRef]
- Eastwood, P.R.; Platt, P.R.; Shepherd, K.; Maddison, K.; Hillman, D.R. Collapsibility of the upper airway at different concentrations of propofol anesthesia. Anesthesiology 2005, 103, 470–477. [Google Scholar] [CrossRef]
- Devaraj, U.; Rajagopala, S.; Kumar, A.; Ramachandran, P.; Devereaux, P.J.; D’Souza, G.A. Undiagnosed Obstructive Sleep Apnea and Postoperative Outcomes: A Prospective Observational Study. Respiration 2017, 94, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, G.V.; Horst, A.; Eberhardt, J.M.; Kumar, S.; Sarker, S. Obstructive sleep apnea in general surgery patients: Is it more common than we think? Am. J. Surg. 2014, 207, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Koh, K.F. Clinical update on managing the obstructed airway. Ann. Acad. Med. Singap. 2002, 31, 253–256. [Google Scholar] [PubMed]
- Ikeda, H.; Ayuse, T.; Oi, K. The effects of head and body positioning on upper airway collapsibility in normal subjects who received midazolam sedation. J. Clin. Anesth. 2006, 18, 185–193. [Google Scholar] [CrossRef]
- McKay, W.P.; Krysak, T.; Tyan, C.C. Investigation of a novel oral airway for awake flexible bronchoscopy. Can. J. Anaesth. 2020, 67, 1305–1306. [Google Scholar] [CrossRef] [PubMed]
- McKay, W.P. Description of a novel oral airway: The McKay airway. Can. J. Anaesth. 2020, 67, 1112–1113. [Google Scholar] [CrossRef] [PubMed]
- Altschul, D.J.; Vats, T.; Unda, S.R.; Osborn, I.; McHenry, J.; Zampolin, R. Jaw Elevation Device: Tool for Neck Immobilization to Facilitate Recovery in Endovascular Thrombectomy via Transcervical Access. World Neurosurg. 2020, 140, 109–113. [Google Scholar] [CrossRef]
- Chung, F.; Abdullah, H.R.; Liao, P. STOP-Bang Questionnaire: A Practical Approach to Screen for Obstructive Sleep Apnea. Chest 2016, 149, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.; Subramanyam, R.; Liao, P.; Sasaki, E.; Shapiro, C.; Sun, Y. High STOP-Bang score indicates a high probability of obstructive sleep apnoea. Br. J. Anaesth. 2012, 108, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.; Yang, Y.; Liao, P. Predictive performance of the STOP-Bang score for identifying obstructive sleep apnea in obese patients. Obes. Surg. 2013, 23, 2050–2057. [Google Scholar] [CrossRef]
- Tan, A.; Yin, J.D.; Tan, L.W.; van Dam, R.M.; Cheung, Y.Y.; Lee, C.H. Predicting obstructive sleep apnea using the STOP-Bang questionnaire in the general population. Sleep Med. 2016, 27–28, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.; Elsaid, H. Screening for obstructive sleep apnea before surgery: Why is it important? Curr. Opin. Anaesthesiol. 2009, 22, 405–411. [Google Scholar] [CrossRef]
- Aarab, G.; Lobbezoo, F.; Hamburger, H.L.; Naeije, M. Variability in the apnea-hypopnea index and its consequences for diagnosis and therapy evaluation. Respiration 2009, 77, 32–37. [Google Scholar] [CrossRef]
- Cundrle, I., Jr.; Belehrad, M.; Jelinek, M.; Olson, L.J.; Ludka, O.; Sramek, V. The utility of perioperative polygraphy in the diagnosis of obstructive sleep apnea. Sleep Med. 2016, 25, 151–155. [Google Scholar] [CrossRef]
- Chen, H.; Lowe, A.A.; Bai, Y.; Hamilton, P.; Fleetham, J.A.; Almeida, F.R. Evaluation of a portable recording device (ApneaLink) for case selection of obstructive sleep apnea. Sleep Breath. 2009, 13, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Oh, M.; Chung, Y.H.; Ki, H.; Lee, J.J. Effects of continuous positive airway pressure in patients at high risk of obstructive sleep apnea during propofol sedation after spinal anesthesia. J. Clin. Monit. Comput. 2019, 33, 657–663. [Google Scholar] [CrossRef] [PubMed]


| Conventional Group n = 39 | JED Group n = 34 | p Value | |||
|---|---|---|---|---|---|
| Median (IQR) | 95% CI | Median (IQR) | 95% CI | ||
| Age (year) | 64.0 (55.8–71.5) | 61.9–69.0 | 61.5 (54.0–67.0) | 55.0–65.0 | 0.234 |
| Weight (kg) | 64.7 (58.5–70.7) | 60.5–69.3 | 66.2 (55.5–71.7) | 58.9–69.2 | 0.867 |
| Height (cm) | 165.7 (159.1–168.8) | 160.0–168.0 | 167.5 (160.0–171.0) | 164.5–170.0 | 0.279 |
| Male | 25 (64.1%) | 23 (67.6%) | 0.808 | ||
| Diabetes Mellitus (%) | 22 (56.4%) | 17 (51.5%) | 0.813 | ||
| Hypertension (%) | 33 (84.6%) | 27 (79.4%) | 0.760 | ||
| History of obstructive sleep apnea (%) | 4 (10.3%) | 6 (17.6%) | 0.499 | ||
| STOP-BANG score 1 | 4.0 (2.5–5.0) | 3.0–4.1 | 3.5 (3.0–5.0) | 3.0–4.2 | 0.860 |
| Conventional Group n = 39 | JED Group n = 34 | p Value | |||
|---|---|---|---|---|---|
| Median (IQR) | 95% CI | Median (IQR) | 95% CI | ||
| Surgery duration (min) | 83.0 (73.8–100.0) | 77.9–91.1 | 88.0 (77.0–97.0) | 81.7–92.5 | 0.756 |
| Intravenous crystalloid fluid (mL) | 170.0 (150.0–250.0) | 150–250 | 200.0 (150.0–300.0) | 150.0–300.0 | 0.528 |
| Midazolam (mg) | 1.0 (1.0–1.0) | 0.0–1.0 | 1.0 (1.0–1.0) | 0.0–1.0 | 0.507 |
| Hourly infused propofol (mg) | 2.49 (2.08–3.12) | 2.21–2.82 | 2.66 (2.02–3.12) | 2.14–3.01 | 0.748 |
| Hourly infused remifentanil (mcg) | 1.92 (1.54–2.38) | 1.66–2.10 | 2.07 (1.61–2.54) | 1.74–2.31 | 0.494 |
| Bispectral index (BIS) (n) | |||||
| Value ranges 60–80 | 29 (74.4%) | 23 (67.6%) | |||
| Value ranges/40–60 | 9 (23.0%) | 11 (32.4%) | |||
| BIS fail | 1 (2.6%) | 0 (0%) | 0.436 | ||
| Conventional Group n = 39 | JED Group n = 34 | p Value | |||
|---|---|---|---|---|---|
| Median (IQR) | 95% CI | Median (IQR) | 95% CI | ||
| Number of additional airway interventions in each patient, n | 1 (0.0–2.0) | 0–1.0 | 0 (0.0–0.0) | 0.0–0.0 | 0.002 |
| Number (%) of patients in each group with no requirement for additional airway interventions, n (%) | 17 (43.6%) | 26 (76.5%) | 0.004 | ||
| Number (%) of patients in each group with additional airway interventions applied during sedation | |||||
| (1) head lateral rotation | 18 (46.2%) | 1 (2.9%) | <0.001 | ||
| (2) neck extension | 8 (20.5%) | 1 (2.9%) | 0.032 | ||
| (3) oral airway insertion | 12 (30.8%) | 5 (14.7%) | 0.165 | ||
| (4) nasal airway insertion | 0 (0%) | 1 (2.9%) | 0.466 | ||
| (5) jaw thrust maneuver | 3 (7.7%) | 5 (14.7%) | 0.460 | ||
| Conventional Group n = 36 | JED Group n = 31 | ||||
|---|---|---|---|---|---|
| Median (IQR) | 95% CI | Median (IQR) | 95% CI | p value | |
| Polysomnography analysis time (min) | 77 (70.5–88.0) | 72.0–81.7 | 82 (74.5–91.8) | 77.6–90.4 | 0.280 |
| AHI | 9.3 (3.8–21.9) | 6.1–17.9 | 4.5 (1.5–11.9) | 1.7–7.6 | 0.015 |
| Snoring time (min) | 45.7 (29.7–56.0) | 37.3–54.8 | 39.2 (23.2–57.3) | 30.6–53.9 | 0.440 |
| Relative snoring time per analysis (%) | 63.8 (43.5–77.3) | 53.5–69.8 | 46.3 (27.9–76.5) | 39.8–70.9 | 0.228 |
| Average SpO2 | 98.9 (98.3–99.4) | 98.5–99.2 | 99.2 (98.4–99.9) | 98.9–99.4 | 0.206 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.; Jeong, J.S.; Jang, J.; Shin, Y.H.; Gil, N.-S.; Choi, J.-w.; Hahm, T.S. Comparison of Jaw Elevation Device vs. Conventional Airway Assist during Sedation in Chronic Kidney Diseases Undergoing Arteriovenous Fistula Surgery: A Randomized Controlled Trial. J. Clin. Med. 2021, 10, 2280. https://doi.org/10.3390/jcm10112280
Lee SH, Jeong JS, Jang J, Shin YH, Gil N-S, Choi J-w, Hahm TS. Comparison of Jaw Elevation Device vs. Conventional Airway Assist during Sedation in Chronic Kidney Diseases Undergoing Arteriovenous Fistula Surgery: A Randomized Controlled Trial. Journal of Clinical Medicine. 2021; 10(11):2280. https://doi.org/10.3390/jcm10112280
Chicago/Turabian StyleLee, Sang Hyun, Ji Seon Jeong, Jaeni Jang, Young Hee Shin, Nam-Su Gil, Ji-won Choi, and Tae Soo Hahm. 2021. "Comparison of Jaw Elevation Device vs. Conventional Airway Assist during Sedation in Chronic Kidney Diseases Undergoing Arteriovenous Fistula Surgery: A Randomized Controlled Trial" Journal of Clinical Medicine 10, no. 11: 2280. https://doi.org/10.3390/jcm10112280
APA StyleLee, S. H., Jeong, J. S., Jang, J., Shin, Y. H., Gil, N.-S., Choi, J.-w., & Hahm, T. S. (2021). Comparison of Jaw Elevation Device vs. Conventional Airway Assist during Sedation in Chronic Kidney Diseases Undergoing Arteriovenous Fistula Surgery: A Randomized Controlled Trial. Journal of Clinical Medicine, 10(11), 2280. https://doi.org/10.3390/jcm10112280

