Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease
Abstract
:1. Introduction
1.1. Clinical Presentation
1.2. Diagnosis
1.3. Pathogenesis
1.4. Relation to Other Congenital Diarrheal Disorders
1.5. Current Treatment of MVID
2. Parenteral Nutrition-Based Interventions in MVID
3. Pharmacological Interventions in MVID
3.1. Drugs That Stimulate the Proliferation and/or Differentiation of Enterocytes
3.1.1. Epidermal Growth Factor (EGF)
3.1.2. Steroids
3.2. Anti-Diarrheal Drugs That Modulate Electrolyte Transport across the Brush Border Membrane
3.2.1. Somatostatin/Octreotide
3.2.2. Racecadotril
3.2.3. Loperamide
3.3. Other Anti-Diarrheal Drugs
Cholestyramine
4. Discussion and Future Perspectives
4.1. Rational Approaches for Pharmacological Treatment of Patients with MVID
4.1.1. The AC-Inhibiting Drugs Somatostatin/Octreotide, Loperamide and Racecadotril
Efficacy of AC-Inhibiting Drugs in MVID
Adverse Effects and Limitations of AC-Inhibiting Drugs in MVID
Novel Anti-Diarrheal Drugs for MVID
A Genotype–Phenotype Relationship in Treatment Response?
4.1.2. The Enterocyte Proliferation- and Differentiation-Stimulating Drugs EGF and Steroids
4.2. Practical Aspects of Pharmacological Treatment of Patients with MVID
4.3. Suggestions for Future Reporting
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Davidson, G.P.; Cutz, E.; Hamilton, J.R.; Gall, D.G. Familial enteropathy: A syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology 1978, 75, 783–790. [Google Scholar] [CrossRef]
- Cutz, E.; Rhoads, J.M.; Drumm, B.; Sherman, P.M.; Durie, P.R.; Forstner, G.G. Microvillus Inclusion Disease: An Inherited Defect of Brush-Border Assembly and Differentiation. N. Engl. J. Med. 1989, 320, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.D.; Szafranski, M.; Man, L.-Y.; Wall, W.J. Periodic Acid–Schiff Staining Abnormality in Microvillous Atrophy: Photometric and Ultrastructural Studies. J. Pediatr. Gastroenterol. Nutr. 2000, 30, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Groisman, G.M.; Amar, M.; Livne, E. CD10: A valuable tool for the light microscopic diagnosis of microvillous inclusion disease (familial microvillous atrophy). Am. J. Surg. Pathol. 2002, 26, 902–907. [Google Scholar] [CrossRef]
- Müller, T.; Hess, M.W.; Schiefermeier, N.; Pfaller, K.; Ebner, H.L.; Heinz-Erian, P.; Ponstingl, H.; Partsch, J.; Röllinghoff, B.; Köhler, H.; et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat. Genet. 2008, 40, 1163–1165. [Google Scholar] [CrossRef]
- Wiegerinck, C.L.; Janecke, A.R.; Schneeberger, K.; Vogel, G.F.; Van Haaften–Visser, D.Y.; Escher, J.C.; Adam, R.; Thöni, C.E.; Pfaller, K.; Jordan, A.J.; et al. Loss of Syntaxin 3 Causes Variant Microvillus Inclusion Disease. Gastroenterology 2014, 147, 65–68.e10. [Google Scholar] [CrossRef]
- Stepensky, P.; Bartram, J.; Amrolia, P.; Weintraub, M.; Debatin, K.-M.; Hoenig, M.; Posovszky, C.; Barth, T.F.; Lehmberg, K.; Walther, P.; et al. Persistent defective membrane trafficking in epithelial cells of patients with familial hemophagocytic lymphohistiocytosis type 5 due to STXBP2/MUNC18-2 mutations. Pediatr. Blood Cancer 2013, 60, 1215–1222. [Google Scholar] [CrossRef]
- Vogel, G.F.; Janecke, A.R.; Krainer, I.M.; Gutleben, K.; Witting, B.; Mitton, S.G.; Mansour, S.; Ballauff, A.; Roland, J.T.; Engevik, A.C.; et al. Abnormal Rab11-Rab8-vesicles cluster in enterocytes of patients with microvillus inclusion disease. Traffic 2017, 18, 453–464. [Google Scholar] [CrossRef]
- Vogel, G.F.; Van Rijn, J.M.; Krainer, I.M.; Janecke, A.R.; Posovzsky, C.; Cohen, M.C.; Searle, C.; Jantchou, P.; Escher, J.C.; Patey, N.; et al. Disrupted apical exocytosis of cargo vesicles causes enteropathy in FHL5 patients with Munc18-2 mutations. JCI Insight 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Dhekne, H.S.; Pylypenko, O.; Overeem, A.W.; Zibouche, M.; Ferreira, R.J.; Van der Velde, K.J.; Rings, E.H.H.M.; Posovszky, C.; Van der Sluijs, P.; Swertz, M.A.; et al. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update. Hum. Mutat. 2018, 39, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Engevik, A.C.; Kaji, I.; Engevik, M.A.; Meyer, A.R.; Weis, V.G.; Goldstein, A.; Hess, M.W.; Müller, T.; Koepsell, H.; Dudeja, P.K.; et al. Loss of MYO5B Leads to Reductions in Na+ Absorption with Maintenance of CFTR-Dependent Cl- Secretion in Enterocytes. Gastroenterology 2018, 155, 1883–1897.e10. [Google Scholar] [CrossRef] [PubMed]
- Knowles, B.C.; Roland, J.T.; Krishnan, M.; Tyska, M.J.; Lapierre, L.A.; Dickman, P.S.; Goldenring, J.R.; Shub, M.D. Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease. J. Clin. Investig. 2014, 124, 2947–2962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruemmele, F.M.; Müller, T.; Schiefermeier, N.; Ebner, H.L.; Lechner, S.; Pfaller, K.; Thöni, C.E.; Goulet, O.; Lacaille, F.; Schmitz, J.; et al. Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model. Hum. Mutat. 2010, 31, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Vogel, G.F.; Klee, K.M.; Janecke, A.R.; Müller, T.; Hess, M.W.; Huber, L.A. Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3. J. Cell Biol. 2015, 211, 587–604. [Google Scholar] [CrossRef]
- Van der Velde, K.J.; Dhekne, H.S.; Swertz, M.A.; Sirigu, S.; Ropars, V.; Vinke, P.C.; Rengaw, T.; Van den Akker, P.C.; Rings, E.H.H.M.; Houdusse, A.; et al. An overview and online registry of microvillus inclusion disease patients and their MYO5B mutations. Hum. Mutat. 2013, 34, 1597–1605. [Google Scholar] [CrossRef]
- Dhekne, H.S.; Hsiao, N.-H.; Roelofs, P.; Kumari, M.; Slim, C.L.; Rings, E.H.H.M.; Van Ijzendoorn, S.C.D. Myosin Vb and Rab11a regulate phosphorylation of ezrin in enterocytes. J. Cell Sci. 2014, 127, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Kravtsov, D.V.; Ahsan, K.; Kumari, V.; Van Ijzendoorn, S.C.D.; Reyes-Mugica, M.; Kumar, A.; Gujral, T.; Dudeja, P.K.; Ameen, N.A. Identification of intestinal ion transport defects in microvillus inclusion disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G142–G155. [Google Scholar] [CrossRef]
- Thoeni, C.E.; Vogel, G.F.; Muise, A.M.; Cutz, E.; Huber, L.A.; Tancevski, I.; Geley, S.; Lechner, S.; Pfaller, K.; Hess, M.W.; et al. Microvillus Inclusion Disease: Loss of Myosin Vb Disrupts Intracellular Traffic and Cell Polarity. Traffic 2014, 15, 22–42. [Google Scholar] [CrossRef]
- Jayawardena, D.; Alrefai, W.A.; Dudeja, P.K.; Gill, R.K. Recent advances in understanding and managing malabsorption: Focus on microvillus inclusion disease. F1000Research 2019, 8, 2061. [Google Scholar] [CrossRef] [Green Version]
- Ruemmele, F.M.; Schmitz, J.; Goulet, O. Microvillous inclusion disease (microvillous atrophy). Orphanet J. Rare Dis. 2006, 1, 22. [Google Scholar] [CrossRef] [Green Version]
- Engevik, A.C.; Goldenring, J.R. Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes. Cold Spring Harb. Perspect. Biol. 2018, 10, a027979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phulware, R.H.; Gahlot, G.P.S.; Malik, R.; Gupta, S.D.; Das, P. Microvillous Inclusion Disease as a Cause of Protracted Diarrhea. Indian J. Pediatr. 2019, 86, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Ruemmele, F.M.; Jan, D.; Revillon, Y.; Goulet, O.; Lacaille, F.; Cézard, J.-P.; Canioni, D.; Phillips, A.D.; Peuchmaur, M.; Aigrain, Y.; et al. New perspectives for children with microvillous inclusion disease: Early small bowel transplantation. Transplantation 2004, 77, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Halac, U.; Lacaille, F.; Joly, F.; Hugot, J.-P.; Talbotec, C.; Colomb, V.; Ruemmele, F.M.; Goulet, O. Microvillous Inclusion Disease: How to Improve the Prognosis of a Severe Congenital Enterocyte Disorder. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 460–465. [Google Scholar] [CrossRef]
- Girard, M.; Lacaille, F.; Verkarre, V.; Mategot, R.; Feldmann, G.; Grodet, A.; Sauvat, F.; Irtan, S.; Davit-Spraul, A.; Jacquemin, E.; et al. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology 2014, 60, 301–310. [Google Scholar] [CrossRef]
- Fuchs, J.; Fallon, E.M.; Gura, K.; Puder, M. Use of an omega-3 fatty acid–based emulsion in the treatment of parenteral nutrition–induced cholestasis in patients with microvillous inclusion disease. J. Pediatr. Surg. 2011, 46, 2376–2382. [Google Scholar] [CrossRef]
- Anez-Bustillos, L.; Dao, D.T.; Puder, M.; Potemkin, A.K.; Perez-Atayde, A.R.; Raphael, B.P.; Carey, A.N.; Kamin, D.S.; Thiagarajah, J.R.; Crowley, M.; et al. An Intravenous Fish Oil-Based Lipid Emulsion Successfully Treats Intractable Pruritus and Cholestasis in a Patient with Microvillous Inclusion Disease. Hepatology 2019, 69, 1353–1356. [Google Scholar] [CrossRef]
- Drumm, B.; Cutz, E.; Tomkins, K.B.; Cook, D.; Hamilton, J.R.; Sherman, P. Urogastrone/epidermal growth factor in treatment of congenital microvillous atrophy. Lancet 1988, 1, 111–112. [Google Scholar] [CrossRef]
- Walker-Smith, J.; Phillips, A.; Walford, N.; Gregory, H.; Fitzgerald, J.; Maccullagh, K.; A Wright, N. Intravenous epidermal growth factor/urogastrone increases small-intestinal cell proliferation in congenital microvillous atrophy. Lancet 1985, 326, 1239–1240. [Google Scholar] [CrossRef]
- Beck, N.S.; Chang, Y.S.; Kang, I.S.; Park, W.S.; Lee, H.J.; Suh, Y.L. Microvillus inclusion disease in two Korean infants. J. Korean Med. Sci. 1997, 12, 452–456. [Google Scholar] [CrossRef] [Green Version]
- Black, H.E. The Effects of Steroids Upon the Gastrointestinal Tract. Toxicol. Pathol. 1988, 16, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, S.W.; A Kerner, J.; Sibley, R.K. Microvillous inclusion disease. The importance of electron microscopy for diagnosis. Am. J. Surg. Pathol. 1991, 15, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Raafat, F.; Green, N.; Nathavitharana, K.; Booth, I. Intestinal microvillous dystrophy: A variant of microvillous inclusion disease or a new entity? Hum. Pathol. 1994, 25, 1243–1248. [Google Scholar] [CrossRef]
- Phillips, A.D.; Jenkins, P.; Raafat, F.; A Walker-Smith, J. Congenital microvillous atrophy: Specific diagnostic features. Arch. Dis. Child. 1985, 60, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cegla, M.; Lohner, M.; E Schaefer, H. Congenital villous atrophy. Disease picture of congenital chronic diarrhea with poor prognosis. Monatsschr. Kinderheilkd. 1993, 141, 925–927. [Google Scholar] [PubMed]
- Siperstein, A.E.; Levin, K.E.; Gum, E.T.; Clark, O.H. Effect of somatostatin on adenylate cyclase activity in normal and neoplastic thyroid tissue. World J. Surg. 1992, 16, 555–560. [Google Scholar] [CrossRef]
- Li, C.; Naren, A.P. CFTR chloride channel in the apical compartments: Spatiotemporal coupling to its interacting partners. Integr. Biol. 2010, 2, 161–177. [Google Scholar] [CrossRef] [Green Version]
- Al-Hussaini, A.; Butzner, D. Therapeutic applications of octreotide in pediatric patients. Saudi J. Gastroenterol. 2012, 18, 87–94. [Google Scholar] [CrossRef]
- Couper, R.T.; Berzen, A.; Berall, G.; Sherman, P.M. Clinical response to the long acting somatostatin analogue SMS 201-995 in a child with congenital microvillus atrophy. Gut 1989, 30, 1020–1024. [Google Scholar] [CrossRef]
- Schofield, D.E.; Agostini, R.M.; Yunis, E.J. Gastrointestinal Microvillus Inclusion Disease. Am. J. Clin. Pathol. 1992, 98, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Rhoads, J.M.; Vogler, R.C.; Lacey, S.R.; Reddick, R.L.; Keku, E.O.; Azizkhan, R.G.; Berschneider, H.M. Microvillus inclusion disease: In vitro jejunal electrolyte transport. Gastroenterology 1991, 100, 811–817. [Google Scholar] [CrossRef]
- Ukarapol, N.; Chotinaruemol, S.; Lertprasertsuk, N.; Wongsawasdi, L. Microvillus inclusion disease as a cause of severe protracted diarrhea in infants. J. Med. Assoc. Thail. 2001, 84, 1356–1360. [Google Scholar]
- Mendes, C.; Figueiredo, C.; Mansilha, H.; Proenca, E.; Oliveira, D.; Lima, R.; Carvalho, C. A Case of Protracted Diarrhea in a Newborn: A Diagnostic Challenge. Pediatr. Rep. 2014, 6, 51–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matheson, A.J.; Noble, S. Racecadotril. Drugs 2000, 59, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.C.; Lazonby, G.; Ellis, D.; Goldthorpe, J.; Iglesias, N.; Steele, J.; Zamvar, V.; Puntis, J.W.; Vora, R. Racecadotril May Reduce Diarrhoea in Microvillous Inclusion Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 64, e25–e26. [Google Scholar] [CrossRef]
- Giagnoni, G.; Casiraghi, L.; Senini, R.; Revel, L.; Parolaro, D.; Sala, M.; Gori, E. Loperamide: Evidence of interaction with μ and δ opioid receptors. Life Sci. 1983, 33 (Suppl. S1), 315–318. [Google Scholar] [CrossRef]
- Ooms, L.A.; Degryse, A.D.; A Janssen, P. Mechanisms of action of loperamide. Scand. J. Gastroenterol. Suppl. 1984, 96, 145–155. [Google Scholar]
- Barkun, A.N.; Love, J.; Gould, M.; Pluta, H.; Steinhart, A.H. Bile Acid Malabsorption in Chronic Diarrhea: Pathophysiology and Treatment. Can. J. Gastroenterol. 2013, 27, 653–659. [Google Scholar] [CrossRef]
- Engevik, A.C.; Coutts, A.W.; Williams, J.A.; Shub, M.D.; Carlson, D.F.; Melkamu, T.; Goldenring, J.R.; Kaji, I.; Rodriguez, P.; Ongaratto, F.L.; et al. Editing Myosin VB Gene to Create Porcine Model of Microvillus Inclusion Disease, with Microvillus-Lined Inclusions and Alterations in Sodium Transporters. Gastroenterology 2020, 158, 2236–2249.e9. [Google Scholar] [CrossRef]
- Singh, V.; Yang, J.; Chen, T.-E.; Zachos, N.C.; Kovbasnjuk, O.; Verkman, A.S.; Donowitz, M. Translating Molecular Physiology of Intestinal Transport into Pharmacologic Treatment of Diarrhea: Stimulation of Na+ Absorption. Clin. Gastroenterol. Hepatol. 2014, 12, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Van Ree, J.M.; Verhoeven, W.M.; De Wied, D. Gamma-type endorphins: Neurolepticum-like and antipsychotic action. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1985, 9, 561–567. [Google Scholar] [CrossRef]
- Musch, M.W.; Arvans, D.L.; Wang, Y.; Nakagawa, Y.; Solomaha, E.; Chang, E.B. Cyclic AMP-mediated endocytosis of intestinal epithelial NHE3 requires binding to synaptotagmin 1. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G203–G211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, C.-M.; Yin, J.; Singh, V.; Sarker, R.; Lin, R.; Verkman, A.S.; Turner, J.R.; Donowitz, M. cAMP Stimulates SLC26A3 Activity in Human Colon by a CFTR-Dependent Mechanism That Does Not Require CFTR Activity. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 641–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forteza, R.; Ahsan, M.K.; Cartón-García, F.; Arango, D.; Ameen, N.A.; Salas, P.J. Glucocorticoids and myosin5b loss of function induce heightened PKA signaling in addition to membrane traffic defects. Mol. Biol. Cell 2019, 30, 3076–3089. [Google Scholar] [CrossRef]
- Ameen, N.A.; Salas, P.J. Microvillus Inclusion Disease: A Genetic Defect Affecting Apical Membrane Protein Traffic in Intestinal Epithelium. Traffic 2000, 1, 76–83. [Google Scholar] [CrossRef]
- Thiagarajah, J.R.; Ko, E.; Tradtrantip, L.; Donowitz, M.; Verkman, A.S. Discovery and development of antisecretory drugs for treating diarrheal diseases. Clin. Gastroenterol. Hepatol. 2013, 12, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Thiagarajah, J.R.; Donowitz, M.; Verkman, A.S. Secretory diarrhoea: Mechanisms and emerging therapies. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Raheja, G.; Borthakur, A.; Kumar, A.; Gill, R.K.; Alakkam, A.; Malakooti, J.; Dudeja, P.K. Lactobacillus acidophilus upregulates intestinal NHE3 expression and function. Am. J. Physiol. Liver Gastrointest. Physiol. 2012, 303, G1393–G1401. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Anbazhagan, A.N.; Dudeja, P.K.; Coffing, H.; Chatterjee, I.; Priyamvada, S.; Gujral, T.; Saksena, S.; Gill, R.K.; Alrefai, W.A.; et al. Lactobacillus acidophilus counteracts inhibition of NHE3 and DRA expression and alleviates diarrheal phenotype in mice infected with Citrobacter rodentium. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G817–G826. [Google Scholar] [CrossRef] [Green Version]
- Roland, J.T.; Bryant, D.M.; Datta, A.; Itzen, A.; Mostov, K.E.; Goldenring, J.R. Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization. Proc. Natl. Acad. Sci. USA 2011, 108, 2789–2794. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Yeruva, S.; He, P.; Singh, A.K.; Zhang, H.; Chen, M.; Lamprecht, G.; De Jonge, H.R.; Tse, M.; Donowitz, M.; et al. Lysophosphatidic Acid Stimulates the Intestinal Brush Border Na+/H+ Exchanger 3 and Fluid Absorption via LPA5 and NHERF2. Gastroenterology 2010, 138, 649–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaji, I.; Roland, J.T.; Watanabe, M.; Engevik, A.C.; Goldstein, A.E.; Hodges, C.A.; Goldenring, J.R. Lysophosphatidic Acid Increases Maturation of Brush Borders and SGLT1 activity in MYO5B-deficient Mice, a Model of Microvillus Inclusion Disease. Gastroenterology 2020. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Terrin, G.; Elce, A.; Pezzella, V.; Heinz-Erian, P.; Pedrolli, A.; Centenari, C.; Amato, F.; Tomaiuolo, R.; Calignano, A.; et al. Genotype-dependency of butyrate efficacy in children with congenital chloride diarrhea. Orphanet J. Rare Dis. 2013, 8, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.G.; Zhong, P.; Zheng, W.; Beekman, J.M. Pharmacological analysis of CFTR variants of cystic fibrosis using stem cell-derived organoids. Drug Discov. Today 2019, 24, 2126–2138. [Google Scholar] [CrossRef] [PubMed]
- Cartón-García, F.; Overeem, A.W.; Nieto, R.; Bazzocco, S.; Dopeso, H.; Macaya, I.; Bilic, J.; Landolfi, S.; Hernandez-Losa, J.; Sc, V.I.; et al. Myo5b knockout mice as a model of microvillus inclusion disease. Sci. Rep. 2015, 5, 12312. [Google Scholar] [CrossRef]
- Schlegel, C.; Weis, V.G.; Knowles, B.C.; Lapierre, L.A.; Martin, M.G.; Dickman, P.; Goldenring, J.R.; Shub, M.D. Apical Membrane Alterations in Non-intestinal Organs in Microvillus Inclusion Disease. Dig. Dis. Sci. 2018, 63, 356–365. [Google Scholar] [CrossRef]
- Overeem, A.W.; Li, Q.; Van Ijzendoorn, S.C.; Qiu, Y.; Cartón-García, F.; Leng, C.; Klappe, K.; Dronkers, J.; Hsiao, N.; Wang, J.; et al. A Molecular Mechanism Underlying Genotype-Specific Intrahepatic Cholestasis Resulting from MYO5B Mutations. Hepatology 2020, 72, 213–229. [Google Scholar] [CrossRef] [Green Version]
- Onay, O.S.; Tekin, A.N.; Gunes, D.; Aydemir, O.; Artan, S.; Aydemir, Y. GP248 Mesenchymal stem cell therapy in microvillus inclusion disease. Arch. Dis. Child. 2019, 104 (Suppl. S3), A133. [Google Scholar] [CrossRef] [Green Version]
PMID# | Gender | Gestation (Week) | Birth Body Weight (g) | Poly Hydramnios | Onset (Day) | Stool Output (ml/kg/d) * | Fecal Electrolyte (mmol/L) | Fecal Osmolarity (mOsm/kg *) | Fecal PH Value * | Dead/Alive | Follow-up | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na * | Cl * | K * | |||||||||||
28842815 | Male | at term | 3500 | 3 | 78 | 64 | 7.3 | 7 | Dead | 1 month | |||
Female | 34 | 2000 | 5 | 7 | Dead | 36 days | |||||||
29546954 | Male | 36 | No | 10 | 190 | 120 | 67 | 30 | Alive | 36 months | |||
25111220 | Female | 150 | 15 | Alive | 132 months | ||||||||
23525737 | Male | at term | 6 | 150 | Alive | 168 months | |||||||
23354788 | Female | 35 | 2330 | Yes | 1 | 85 | 78 | 22 | Dead | 7 months | |||
23226823 | Female | at term | No | 3 | 100 | Dead | 4 months | ||||||
22318102 | Female | 35 | 2320 | Yes | 3 | 35 | 21 | Dead | 23 days | ||||
22197941 | Female | at term | 2900 | Yes | 1 | 100 | 78 | 42 | 40 | 11 | Alive | 4 days | |
22152886 | Male | 36 | 4 | 148 | Alive | 41 months | |||||||
21968248 | Male | at term | 2734 | No | 3 | 175 | 84 | 68 | 13 | Alive | 3 months | ||
21299349 | Male | 35 | 3 | 6 | Dead | 2 months | |||||||
18277898 | Male | 34 | 2450 | No | 8 | 112 | 113 | 21.6 | 292 | Alive | 12 days | ||
17418172 | Male | 31 | 3 | 100 | 139 | 105 | 4.7 | 279 | Alive | 12 days | |||
15456973 | Female | at term | 2530 | 1 | 200 | Dead | 1.5 months | ||||||
11783915 | Male | at term | 6 | 115 | 95 | 95 | 30 | 270 | 9 | Alive | 5 months | ||
11414303 | Male | 36 | 2700 | NO | 2 | 200 | 100 | 60 | 17.5 | Alive | 4 months | ||
11251929 | Male | 35 | 3720 | Yes | 300 | Alive | 3 days | ||||||
11173328 | Male | 36 | 2740 | No | 3 | 76 | 79 | 39 | Dead | 6 months | |||
10941974 | Female | at term | 3510 | 11 | 108 | 55 | 11.9 | 330 | Alive | 39 months | |||
10941971 | Female | 34 | 2100 | No | 6 | 175 | Alive | 24 months | |||||
9932857 | Female | 36 | 10 | 170 | 261 | Alive | 9 months | ||||||
9880458 | Male | at term | 3500 | 6 | 95 | 110 | 85 | 7 | Alive | 24 months | |||
Male | at term | 2600 | 6 | 135 | 81 | 44 | 2 | Alive | 96 months | ||||
Male | 36 | 3300 | 6 | 150 | 115 | 96 | 5 | Alive | 84 months | ||||
Female | at term | 3160 | 4 | 175 | 107 | 84 | 18 | Alive | 48 months | ||||
Female | at term | 2700 | 4 | 100 | 6 | 27 | Dead | 36 months | |||||
9844114 | Male | at term | 3300 | No | 1 | 75 | Alive | 132 months | |||||
9822319 | Male | 36 | 3090 | No | 1 | 100 | 119 | 111 | 14 | 6.5 | Alive | 3 months | |
Male | 14 | 150 | 105 | 74 | 12 | 281 | Alive | 9 months | |||||
9740207 | Male | at term | 3900 | No | 14 | 178 | 105 | 74 | 12.1 | 281 | 8 | Dead | 18 months |
9364305 | Female | 36 | 2700 | No | 175 | Alive | 3 months | ||||||
9323563 | Male | 33 | 2950 | Yes | 1 | 99 | 12 | 240 | Dead | 7 months | |||
8732907 | Male | at term | 3350 | No | 7 | 50 | Alive | 7 months | |||||
7959671 | Female | at term | 4100 | No | 14 | 60 | 91 | Dead | 39 months | ||||
Male | at term | 4200 | No | 14 | 50 | 100 | Dead | 5 months | |||||
Male | at term | 3800 | No | 7 | 95 | Alive | 58 months | ||||||
8067796 | Male | at term | 3325 | No | 1 | 166 | 58 | 36 | 15 | 309 | Dead | 9 days | |
Male | 35 | 2880 | No | 2 | 200 | Dead | 4 months | ||||||
8032396 | Female | 35 | 2810 | No | 3 | 120 | 104 | 19 | 240 | Alive | 7 months | ||
1319670 | Female | at term | 2700 | No | 4 | 200 | 6 | 27 | Dead | 37 months | |||
1660676 | Male | at term | 3530 | Yes | 1 | 150 | 103 | 89 | 19 | Alive | 72 months | ||
Male | at term | 3300 | Yes | 1 | 150 | 122 | 102 | 19.4 | Alive | 9 months | |||
2759484 | Female | at term | 2300 | No | 3 | 85 | 100 | 82 | 29 | Alive | 13 months | ||
3977385 | Female | at term | 2500 | No | 2 | 91 | Dead | 6 months | |||||
Female | 34 | 2200 | No | 4 | 93 | Dead | 6 months | ||||||
25635218 | Female | 36 | 2800 | 1 | 120 | 83 | 8 | Dead | 9 months | ||||
Female | 36 | 7 | 100 | Alive | 13 months |
Birth Body Weight (g) n = 37 | Stool Output (ml/kg/d) n = 35 | Fecal Electrolyte (mmol/L) | Fecal Osmolarity (mOsm/kg) n = 12 | Fecal PH Value n = 7 | |||
---|---|---|---|---|---|---|---|
Na+ n = 34 | Cl- n = 23 | K+ n = 25 | |||||
Minimum | 2000 | 50 | 6 | 21 | 2 | 11 | 6 |
Maximum | 4200 | 300 | 139 | 113 | 40 | 330 | 9 |
Average | 2987 | 140.2 | 88.8 | 75.0 | 17.8 | 235.3 | 7.36 |
Drug Name | Protocol | Outcome Measures | Result | Patients Number | PMID |
---|---|---|---|---|---|
EGF | 100 ng/kg/h for two 6-day with a 5-day rest period between two courses | Stool volume, small-bowel mucosal morphometry and epithelial cell kinetics | No effect except mitotic index in duodenal crypt increased | 1 | 2866310 |
EGF | 100 ng/kg/h (IV) for 5 days, then followed by same dose for 21 days intravenously | 24 h stool collections, disaccharidase activity in jejunal biopsy homogenates and mucosal epithelial morphometry | No effect except mitotic index in duodenal crypt increased | 1 | 2891946 |
EGF | 100 ng/kg/h (IV) for 21 days, then followed by same dose for 21 days continuous enteral infusion | 24 h stool collections, disaccharidase activity in jejunal biopsy homogenates and mucosal epithelial morphometry | No effect except mitotic index in duodenal crypt increased | 1 | 2891946 |
EGF | 100 ng/kg/h (IV) for 2 weeks | Stool volume and small-bowel mucosal morphometry | No effect except population of microvilli increased | 1 | 9364305 |
Somatostatin | 100 μg (SC) Bid for 21 days | Stool volume | Decreased from 210 mL/kg/day to 150 mL/kg/day | 1 | 2759484 |
Somatostatin | n.r. | Stool volume | No effect | 1 | 1660676 |
Somatostatin | n.r. | Stool volume | Mild decreased | 1 | 1319670 |
Somatostatin | n.r. | n.r | No effect | 1 | 8114773 |
Somatostatin | n.r. | n.r. | No effect | 1 | 9323563 |
Somatostatin | n.r. | n.r. | No effect | 1 | 9880458 |
Octreotide | 100 μg (SC) Bid for 14 days | Stool volume | Decreased from 275 mL/kg/day to 161 mL/kg/day | 1 | 2759484 |
Octreotide | n.r. | n.r. | No effect | 1 | 1993505 |
Octreotide | n.r. | n.r. | No effect | 2 | 7959671 |
Octreotide | 4 μg/kg/day | Stool volume | No effect | 2 | 9364305 |
Octreotide | n.r. | n.r. | No effect | 1 | 11800313 |
Octreotide | n.r. | n.r. | No effect | 1 | 25635218 |
Loperamide | 1 mg/kg/day | n.r. | No effect | 1 | 3977385 |
Loperamide | 0.1 mg/kg/day | Stool volume | Decreased remarkably | 1 | 3977385 |
Loperamide | n.r. | Stool volume | No effect | 1 | 1660676 |
Loperamide | n.r. | n.r. | No effect | 1 | 7959671 |
Loperamide | 0.2 mg/kg Qid | Stool frequency, Bristol stool chart | No effect | 1 | 27682357 |
Steroid | n.r. | Stool volume | No effect | 1 | 1660676 |
Steroid | n.r. | n.r. | No effect | 1 | 7959671 |
Steroid | 2 mg/kg/day for 3 weeks | Stool volume | No effect | 1 | 9364305 |
Prednisolone | n.r. | n.r. | No effect | 1 | 3977385 |
Dexamethasone | Oral | Stool volume | No effect | 1 | 3977385 |
Adrenocorticotrophic hormone | n.r. | n.r. | No effect | 1 | 3977385 |
Hydrocortisone | IV for 4-week | Stool volume | No effect | 1 | 2891946 |
Glucocorticosteroids | n.r. | n.r | No effect | 1 | 8114773 |
Cholestyramine | n.r. | Stool volume | No effect | 1 | 1660676 |
Cholestyramine | n.r. | Stool volume | Decreased from 150 mg/kg/day to 50 mg/kg/day | 1 | 9364305 |
Cholestyramine | n.r. | n.r. | No effect | 1 | 11800313 |
Pentagastrin | n.r. | n.r | No effect | 1 | 8114773 |
Racecadotril | 1.5 mg/kg Tid | Stool frequency, Bristol stool chart | The mean daily number of stools fell from 6.5 to 2.1 and stool consistency improved to Bristol type 6. | 1 | 27682357 |
Mesenchymal stem cells | 1*106 U transduodenal and 2*106 U (IV) | Fluid and electrolyte requirements | No effect except blood stream infections were reduced | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leng, C.; Rings, E.H.H.M.; de Wildt, S.N.; van IJzendoorn, S.C.D. Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease. J. Clin. Med. 2021, 10, 22. https://doi.org/10.3390/jcm10010022
Leng C, Rings EHHM, de Wildt SN, van IJzendoorn SCD. Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease. Journal of Clinical Medicine. 2021; 10(1):22. https://doi.org/10.3390/jcm10010022
Chicago/Turabian StyleLeng, Changsen, Edmond H. H. M. Rings, Saskia N. de Wildt, and Sven C. D. van IJzendoorn. 2021. "Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease" Journal of Clinical Medicine 10, no. 1: 22. https://doi.org/10.3390/jcm10010022
APA StyleLeng, C., Rings, E. H. H. M., de Wildt, S. N., & van IJzendoorn, S. C. D. (2021). Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease. Journal of Clinical Medicine, 10(1), 22. https://doi.org/10.3390/jcm10010022