Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease
Abstract
1. Introduction
1.1. Clinical Presentation
1.2. Diagnosis
1.3. Pathogenesis
1.4. Relation to Other Congenital Diarrheal Disorders
1.5. Current Treatment of MVID
2. Parenteral Nutrition-Based Interventions in MVID
3. Pharmacological Interventions in MVID
3.1. Drugs That Stimulate the Proliferation and/or Differentiation of Enterocytes
3.1.1. Epidermal Growth Factor (EGF)
3.1.2. Steroids
3.2. Anti-Diarrheal Drugs That Modulate Electrolyte Transport across the Brush Border Membrane
3.2.1. Somatostatin/Octreotide
3.2.2. Racecadotril
3.2.3. Loperamide
3.3. Other Anti-Diarrheal Drugs
Cholestyramine
4. Discussion and Future Perspectives
4.1. Rational Approaches for Pharmacological Treatment of Patients with MVID
4.1.1. The AC-Inhibiting Drugs Somatostatin/Octreotide, Loperamide and Racecadotril
Efficacy of AC-Inhibiting Drugs in MVID
Adverse Effects and Limitations of AC-Inhibiting Drugs in MVID
Novel Anti-Diarrheal Drugs for MVID
A Genotype–Phenotype Relationship in Treatment Response?
4.1.2. The Enterocyte Proliferation- and Differentiation-Stimulating Drugs EGF and Steroids
4.2. Practical Aspects of Pharmacological Treatment of Patients with MVID
4.3. Suggestions for Future Reporting
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Davidson, G.P.; Cutz, E.; Hamilton, J.R.; Gall, D.G. Familial enteropathy: A syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology 1978, 75, 783–790. [Google Scholar] [CrossRef]
- Cutz, E.; Rhoads, J.M.; Drumm, B.; Sherman, P.M.; Durie, P.R.; Forstner, G.G. Microvillus Inclusion Disease: An Inherited Defect of Brush-Border Assembly and Differentiation. N. Engl. J. Med. 1989, 320, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.D.; Szafranski, M.; Man, L.-Y.; Wall, W.J. Periodic Acid–Schiff Staining Abnormality in Microvillous Atrophy: Photometric and Ultrastructural Studies. J. Pediatr. Gastroenterol. Nutr. 2000, 30, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Groisman, G.M.; Amar, M.; Livne, E. CD10: A valuable tool for the light microscopic diagnosis of microvillous inclusion disease (familial microvillous atrophy). Am. J. Surg. Pathol. 2002, 26, 902–907. [Google Scholar] [CrossRef]
- Müller, T.; Hess, M.W.; Schiefermeier, N.; Pfaller, K.; Ebner, H.L.; Heinz-Erian, P.; Ponstingl, H.; Partsch, J.; Röllinghoff, B.; Köhler, H.; et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat. Genet. 2008, 40, 1163–1165. [Google Scholar] [CrossRef]
- Wiegerinck, C.L.; Janecke, A.R.; Schneeberger, K.; Vogel, G.F.; Van Haaften–Visser, D.Y.; Escher, J.C.; Adam, R.; Thöni, C.E.; Pfaller, K.; Jordan, A.J.; et al. Loss of Syntaxin 3 Causes Variant Microvillus Inclusion Disease. Gastroenterology 2014, 147, 65–68.e10. [Google Scholar] [CrossRef]
- Stepensky, P.; Bartram, J.; Amrolia, P.; Weintraub, M.; Debatin, K.-M.; Hoenig, M.; Posovszky, C.; Barth, T.F.; Lehmberg, K.; Walther, P.; et al. Persistent defective membrane trafficking in epithelial cells of patients with familial hemophagocytic lymphohistiocytosis type 5 due to STXBP2/MUNC18-2 mutations. Pediatr. Blood Cancer 2013, 60, 1215–1222. [Google Scholar] [CrossRef]
- Vogel, G.F.; Janecke, A.R.; Krainer, I.M.; Gutleben, K.; Witting, B.; Mitton, S.G.; Mansour, S.; Ballauff, A.; Roland, J.T.; Engevik, A.C.; et al. Abnormal Rab11-Rab8-vesicles cluster in enterocytes of patients with microvillus inclusion disease. Traffic 2017, 18, 453–464. [Google Scholar] [CrossRef]
- Vogel, G.F.; Van Rijn, J.M.; Krainer, I.M.; Janecke, A.R.; Posovzsky, C.; Cohen, M.C.; Searle, C.; Jantchou, P.; Escher, J.C.; Patey, N.; et al. Disrupted apical exocytosis of cargo vesicles causes enteropathy in FHL5 patients with Munc18-2 mutations. JCI Insight 2017, 2. [Google Scholar] [CrossRef]
- Dhekne, H.S.; Pylypenko, O.; Overeem, A.W.; Zibouche, M.; Ferreira, R.J.; Van der Velde, K.J.; Rings, E.H.H.M.; Posovszky, C.; Van der Sluijs, P.; Swertz, M.A.; et al. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update. Hum. Mutat. 2018, 39, 333–344. [Google Scholar] [CrossRef]
- Engevik, A.C.; Kaji, I.; Engevik, M.A.; Meyer, A.R.; Weis, V.G.; Goldstein, A.; Hess, M.W.; Müller, T.; Koepsell, H.; Dudeja, P.K.; et al. Loss of MYO5B Leads to Reductions in Na+ Absorption with Maintenance of CFTR-Dependent Cl- Secretion in Enterocytes. Gastroenterology 2018, 155, 1883–1897.e10. [Google Scholar] [CrossRef] [PubMed]
- Knowles, B.C.; Roland, J.T.; Krishnan, M.; Tyska, M.J.; Lapierre, L.A.; Dickman, P.S.; Goldenring, J.R.; Shub, M.D. Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease. J. Clin. Investig. 2014, 124, 2947–2962. [Google Scholar] [CrossRef] [PubMed]
- Ruemmele, F.M.; Müller, T.; Schiefermeier, N.; Ebner, H.L.; Lechner, S.; Pfaller, K.; Thöni, C.E.; Goulet, O.; Lacaille, F.; Schmitz, J.; et al. Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model. Hum. Mutat. 2010, 31, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Vogel, G.F.; Klee, K.M.; Janecke, A.R.; Müller, T.; Hess, M.W.; Huber, L.A. Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3. J. Cell Biol. 2015, 211, 587–604. [Google Scholar] [CrossRef]
- Van der Velde, K.J.; Dhekne, H.S.; Swertz, M.A.; Sirigu, S.; Ropars, V.; Vinke, P.C.; Rengaw, T.; Van den Akker, P.C.; Rings, E.H.H.M.; Houdusse, A.; et al. An overview and online registry of microvillus inclusion disease patients and their MYO5B mutations. Hum. Mutat. 2013, 34, 1597–1605. [Google Scholar] [CrossRef]
- Dhekne, H.S.; Hsiao, N.-H.; Roelofs, P.; Kumari, M.; Slim, C.L.; Rings, E.H.H.M.; Van Ijzendoorn, S.C.D. Myosin Vb and Rab11a regulate phosphorylation of ezrin in enterocytes. J. Cell Sci. 2014, 127, 1007–1017. [Google Scholar] [CrossRef]
- Kravtsov, D.V.; Ahsan, K.; Kumari, V.; Van Ijzendoorn, S.C.D.; Reyes-Mugica, M.; Kumar, A.; Gujral, T.; Dudeja, P.K.; Ameen, N.A. Identification of intestinal ion transport defects in microvillus inclusion disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G142–G155. [Google Scholar] [CrossRef]
- Thoeni, C.E.; Vogel, G.F.; Muise, A.M.; Cutz, E.; Huber, L.A.; Tancevski, I.; Geley, S.; Lechner, S.; Pfaller, K.; Hess, M.W.; et al. Microvillus Inclusion Disease: Loss of Myosin Vb Disrupts Intracellular Traffic and Cell Polarity. Traffic 2014, 15, 22–42. [Google Scholar] [CrossRef]
- Jayawardena, D.; Alrefai, W.A.; Dudeja, P.K.; Gill, R.K. Recent advances in understanding and managing malabsorption: Focus on microvillus inclusion disease. F1000Research 2019, 8, 2061. [Google Scholar] [CrossRef]
- Ruemmele, F.M.; Schmitz, J.; Goulet, O. Microvillous inclusion disease (microvillous atrophy). Orphanet J. Rare Dis. 2006, 1, 22. [Google Scholar] [CrossRef]
- Engevik, A.C.; Goldenring, J.R. Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes. Cold Spring Harb. Perspect. Biol. 2018, 10, a027979. [Google Scholar] [CrossRef] [PubMed]
- Phulware, R.H.; Gahlot, G.P.S.; Malik, R.; Gupta, S.D.; Das, P. Microvillous Inclusion Disease as a Cause of Protracted Diarrhea. Indian J. Pediatr. 2019, 86, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Ruemmele, F.M.; Jan, D.; Revillon, Y.; Goulet, O.; Lacaille, F.; Cézard, J.-P.; Canioni, D.; Phillips, A.D.; Peuchmaur, M.; Aigrain, Y.; et al. New perspectives for children with microvillous inclusion disease: Early small bowel transplantation. Transplantation 2004, 77, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Halac, U.; Lacaille, F.; Joly, F.; Hugot, J.-P.; Talbotec, C.; Colomb, V.; Ruemmele, F.M.; Goulet, O. Microvillous Inclusion Disease: How to Improve the Prognosis of a Severe Congenital Enterocyte Disorder. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 460–465. [Google Scholar] [CrossRef]
- Girard, M.; Lacaille, F.; Verkarre, V.; Mategot, R.; Feldmann, G.; Grodet, A.; Sauvat, F.; Irtan, S.; Davit-Spraul, A.; Jacquemin, E.; et al. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology 2014, 60, 301–310. [Google Scholar] [CrossRef]
- Fuchs, J.; Fallon, E.M.; Gura, K.; Puder, M. Use of an omega-3 fatty acid–based emulsion in the treatment of parenteral nutrition–induced cholestasis in patients with microvillous inclusion disease. J. Pediatr. Surg. 2011, 46, 2376–2382. [Google Scholar] [CrossRef]
- Anez-Bustillos, L.; Dao, D.T.; Puder, M.; Potemkin, A.K.; Perez-Atayde, A.R.; Raphael, B.P.; Carey, A.N.; Kamin, D.S.; Thiagarajah, J.R.; Crowley, M.; et al. An Intravenous Fish Oil-Based Lipid Emulsion Successfully Treats Intractable Pruritus and Cholestasis in a Patient with Microvillous Inclusion Disease. Hepatology 2019, 69, 1353–1356. [Google Scholar] [CrossRef]
- Drumm, B.; Cutz, E.; Tomkins, K.B.; Cook, D.; Hamilton, J.R.; Sherman, P. Urogastrone/epidermal growth factor in treatment of congenital microvillous atrophy. Lancet 1988, 1, 111–112. [Google Scholar] [CrossRef]
- Walker-Smith, J.; Phillips, A.; Walford, N.; Gregory, H.; Fitzgerald, J.; Maccullagh, K.; A Wright, N. Intravenous epidermal growth factor/urogastrone increases small-intestinal cell proliferation in congenital microvillous atrophy. Lancet 1985, 326, 1239–1240. [Google Scholar] [CrossRef]
- Beck, N.S.; Chang, Y.S.; Kang, I.S.; Park, W.S.; Lee, H.J.; Suh, Y.L. Microvillus inclusion disease in two Korean infants. J. Korean Med. Sci. 1997, 12, 452–456. [Google Scholar] [CrossRef]
- Black, H.E. The Effects of Steroids Upon the Gastrointestinal Tract. Toxicol. Pathol. 1988, 16, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.W.; A Kerner, J.; Sibley, R.K. Microvillous inclusion disease. The importance of electron microscopy for diagnosis. Am. J. Surg. Pathol. 1991, 15, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Raafat, F.; Green, N.; Nathavitharana, K.; Booth, I. Intestinal microvillous dystrophy: A variant of microvillous inclusion disease or a new entity? Hum. Pathol. 1994, 25, 1243–1248. [Google Scholar] [CrossRef]
- Phillips, A.D.; Jenkins, P.; Raafat, F.; A Walker-Smith, J. Congenital microvillous atrophy: Specific diagnostic features. Arch. Dis. Child. 1985, 60, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Cegla, M.; Lohner, M.; E Schaefer, H. Congenital villous atrophy. Disease picture of congenital chronic diarrhea with poor prognosis. Monatsschr. Kinderheilkd. 1993, 141, 925–927. [Google Scholar] [PubMed]
- Siperstein, A.E.; Levin, K.E.; Gum, E.T.; Clark, O.H. Effect of somatostatin on adenylate cyclase activity in normal and neoplastic thyroid tissue. World J. Surg. 1992, 16, 555–560. [Google Scholar] [CrossRef]
- Li, C.; Naren, A.P. CFTR chloride channel in the apical compartments: Spatiotemporal coupling to its interacting partners. Integr. Biol. 2010, 2, 161–177. [Google Scholar] [CrossRef]
- Al-Hussaini, A.; Butzner, D. Therapeutic applications of octreotide in pediatric patients. Saudi J. Gastroenterol. 2012, 18, 87–94. [Google Scholar] [CrossRef]
- Couper, R.T.; Berzen, A.; Berall, G.; Sherman, P.M. Clinical response to the long acting somatostatin analogue SMS 201-995 in a child with congenital microvillus atrophy. Gut 1989, 30, 1020–1024. [Google Scholar] [CrossRef]
- Schofield, D.E.; Agostini, R.M.; Yunis, E.J. Gastrointestinal Microvillus Inclusion Disease. Am. J. Clin. Pathol. 1992, 98, 119–124. [Google Scholar] [CrossRef]
- Rhoads, J.M.; Vogler, R.C.; Lacey, S.R.; Reddick, R.L.; Keku, E.O.; Azizkhan, R.G.; Berschneider, H.M. Microvillus inclusion disease: In vitro jejunal electrolyte transport. Gastroenterology 1991, 100, 811–817. [Google Scholar] [CrossRef]
- Ukarapol, N.; Chotinaruemol, S.; Lertprasertsuk, N.; Wongsawasdi, L. Microvillus inclusion disease as a cause of severe protracted diarrhea in infants. J. Med. Assoc. Thail. 2001, 84, 1356–1360. [Google Scholar]
- Mendes, C.; Figueiredo, C.; Mansilha, H.; Proenca, E.; Oliveira, D.; Lima, R.; Carvalho, C. A Case of Protracted Diarrhea in a Newborn: A Diagnostic Challenge. Pediatr. Rep. 2014, 6, 51–52. [Google Scholar] [CrossRef] [PubMed]
- Matheson, A.J.; Noble, S. Racecadotril. Drugs 2000, 59, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.C.; Lazonby, G.; Ellis, D.; Goldthorpe, J.; Iglesias, N.; Steele, J.; Zamvar, V.; Puntis, J.W.; Vora, R. Racecadotril May Reduce Diarrhoea in Microvillous Inclusion Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 64, e25–e26. [Google Scholar] [CrossRef]
- Giagnoni, G.; Casiraghi, L.; Senini, R.; Revel, L.; Parolaro, D.; Sala, M.; Gori, E. Loperamide: Evidence of interaction with μ and δ opioid receptors. Life Sci. 1983, 33 (Suppl. S1), 315–318. [Google Scholar] [CrossRef]
- Ooms, L.A.; Degryse, A.D.; A Janssen, P. Mechanisms of action of loperamide. Scand. J. Gastroenterol. Suppl. 1984, 96, 145–155. [Google Scholar]
- Barkun, A.N.; Love, J.; Gould, M.; Pluta, H.; Steinhart, A.H. Bile Acid Malabsorption in Chronic Diarrhea: Pathophysiology and Treatment. Can. J. Gastroenterol. 2013, 27, 653–659. [Google Scholar] [CrossRef]
- Engevik, A.C.; Coutts, A.W.; Williams, J.A.; Shub, M.D.; Carlson, D.F.; Melkamu, T.; Goldenring, J.R.; Kaji, I.; Rodriguez, P.; Ongaratto, F.L.; et al. Editing Myosin VB Gene to Create Porcine Model of Microvillus Inclusion Disease, with Microvillus-Lined Inclusions and Alterations in Sodium Transporters. Gastroenterology 2020, 158, 2236–2249.e9. [Google Scholar] [CrossRef]
- Singh, V.; Yang, J.; Chen, T.-E.; Zachos, N.C.; Kovbasnjuk, O.; Verkman, A.S.; Donowitz, M. Translating Molecular Physiology of Intestinal Transport into Pharmacologic Treatment of Diarrhea: Stimulation of Na+ Absorption. Clin. Gastroenterol. Hepatol. 2014, 12, 27–31. [Google Scholar] [CrossRef]
- Van Ree, J.M.; Verhoeven, W.M.; De Wied, D. Gamma-type endorphins: Neurolepticum-like and antipsychotic action. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1985, 9, 561–567. [Google Scholar] [CrossRef]
- Musch, M.W.; Arvans, D.L.; Wang, Y.; Nakagawa, Y.; Solomaha, E.; Chang, E.B. Cyclic AMP-mediated endocytosis of intestinal epithelial NHE3 requires binding to synaptotagmin 1. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G203–G211. [Google Scholar] [CrossRef] [PubMed]
- Tse, C.-M.; Yin, J.; Singh, V.; Sarker, R.; Lin, R.; Verkman, A.S.; Turner, J.R.; Donowitz, M. cAMP Stimulates SLC26A3 Activity in Human Colon by a CFTR-Dependent Mechanism That Does Not Require CFTR Activity. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Forteza, R.; Ahsan, M.K.; Cartón-García, F.; Arango, D.; Ameen, N.A.; Salas, P.J. Glucocorticoids and myosin5b loss of function induce heightened PKA signaling in addition to membrane traffic defects. Mol. Biol. Cell 2019, 30, 3076–3089. [Google Scholar] [CrossRef]
- Ameen, N.A.; Salas, P.J. Microvillus Inclusion Disease: A Genetic Defect Affecting Apical Membrane Protein Traffic in Intestinal Epithelium. Traffic 2000, 1, 76–83. [Google Scholar] [CrossRef]
- Thiagarajah, J.R.; Ko, E.; Tradtrantip, L.; Donowitz, M.; Verkman, A.S. Discovery and development of antisecretory drugs for treating diarrheal diseases. Clin. Gastroenterol. Hepatol. 2013, 12, 204–209. [Google Scholar] [CrossRef]
- Thiagarajah, J.R.; Donowitz, M.; Verkman, A.S. Secretory diarrhoea: Mechanisms and emerging therapies. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 446–457. [Google Scholar] [CrossRef]
- Singh, V.; Raheja, G.; Borthakur, A.; Kumar, A.; Gill, R.K.; Alakkam, A.; Malakooti, J.; Dudeja, P.K. Lactobacillus acidophilus upregulates intestinal NHE3 expression and function. Am. J. Physiol. Liver Gastrointest. Physiol. 2012, 303, G1393–G1401. [Google Scholar] [CrossRef]
- Kumar, A.; Anbazhagan, A.N.; Dudeja, P.K.; Coffing, H.; Chatterjee, I.; Priyamvada, S.; Gujral, T.; Saksena, S.; Gill, R.K.; Alrefai, W.A.; et al. Lactobacillus acidophilus counteracts inhibition of NHE3 and DRA expression and alleviates diarrheal phenotype in mice infected with Citrobacter rodentium. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G817–G826. [Google Scholar] [CrossRef]
- Roland, J.T.; Bryant, D.M.; Datta, A.; Itzen, A.; Mostov, K.E.; Goldenring, J.R. Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization. Proc. Natl. Acad. Sci. USA 2011, 108, 2789–2794. [Google Scholar] [CrossRef]
- Lin, S.; Yeruva, S.; He, P.; Singh, A.K.; Zhang, H.; Chen, M.; Lamprecht, G.; De Jonge, H.R.; Tse, M.; Donowitz, M.; et al. Lysophosphatidic Acid Stimulates the Intestinal Brush Border Na+/H+ Exchanger 3 and Fluid Absorption via LPA5 and NHERF2. Gastroenterology 2010, 138, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Kaji, I.; Roland, J.T.; Watanabe, M.; Engevik, A.C.; Goldstein, A.E.; Hodges, C.A.; Goldenring, J.R. Lysophosphatidic Acid Increases Maturation of Brush Borders and SGLT1 activity in MYO5B-deficient Mice, a Model of Microvillus Inclusion Disease. Gastroenterology 2020. [Google Scholar] [CrossRef] [PubMed]
- Canani, R.B.; Terrin, G.; Elce, A.; Pezzella, V.; Heinz-Erian, P.; Pedrolli, A.; Centenari, C.; Amato, F.; Tomaiuolo, R.; Calignano, A.; et al. Genotype-dependency of butyrate efficacy in children with congenital chloride diarrhea. Orphanet J. Rare Dis. 2013, 8, 194. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.G.; Zhong, P.; Zheng, W.; Beekman, J.M. Pharmacological analysis of CFTR variants of cystic fibrosis using stem cell-derived organoids. Drug Discov. Today 2019, 24, 2126–2138. [Google Scholar] [CrossRef] [PubMed]
- Cartón-García, F.; Overeem, A.W.; Nieto, R.; Bazzocco, S.; Dopeso, H.; Macaya, I.; Bilic, J.; Landolfi, S.; Hernandez-Losa, J.; Sc, V.I.; et al. Myo5b knockout mice as a model of microvillus inclusion disease. Sci. Rep. 2015, 5, 12312. [Google Scholar] [CrossRef]
- Schlegel, C.; Weis, V.G.; Knowles, B.C.; Lapierre, L.A.; Martin, M.G.; Dickman, P.; Goldenring, J.R.; Shub, M.D. Apical Membrane Alterations in Non-intestinal Organs in Microvillus Inclusion Disease. Dig. Dis. Sci. 2018, 63, 356–365. [Google Scholar] [CrossRef]
- Overeem, A.W.; Li, Q.; Van Ijzendoorn, S.C.; Qiu, Y.; Cartón-García, F.; Leng, C.; Klappe, K.; Dronkers, J.; Hsiao, N.; Wang, J.; et al. A Molecular Mechanism Underlying Genotype-Specific Intrahepatic Cholestasis Resulting from MYO5B Mutations. Hepatology 2020, 72, 213–229. [Google Scholar] [CrossRef]
- Onay, O.S.; Tekin, A.N.; Gunes, D.; Aydemir, O.; Artan, S.; Aydemir, Y. GP248 Mesenchymal stem cell therapy in microvillus inclusion disease. Arch. Dis. Child. 2019, 104 (Suppl. S3), A133. [Google Scholar] [CrossRef]
PMID# | Gender | Gestation (Week) | Birth Body Weight (g) | Poly Hydramnios | Onset (Day) | Stool Output (ml/kg/d) * | Fecal Electrolyte (mmol/L) | Fecal Osmolarity (mOsm/kg *) | Fecal PH Value * | Dead/Alive | Follow-up | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na * | Cl * | K * | |||||||||||
28842815 | Male | at term | 3500 | 3 | 78 | 64 | 7.3 | 7 | Dead | 1 month | |||
Female | 34 | 2000 | 5 | 7 | Dead | 36 days | |||||||
29546954 | Male | 36 | No | 10 | 190 | 120 | 67 | 30 | Alive | 36 months | |||
25111220 | Female | 150 | 15 | Alive | 132 months | ||||||||
23525737 | Male | at term | 6 | 150 | Alive | 168 months | |||||||
23354788 | Female | 35 | 2330 | Yes | 1 | 85 | 78 | 22 | Dead | 7 months | |||
23226823 | Female | at term | No | 3 | 100 | Dead | 4 months | ||||||
22318102 | Female | 35 | 2320 | Yes | 3 | 35 | 21 | Dead | 23 days | ||||
22197941 | Female | at term | 2900 | Yes | 1 | 100 | 78 | 42 | 40 | 11 | Alive | 4 days | |
22152886 | Male | 36 | 4 | 148 | Alive | 41 months | |||||||
21968248 | Male | at term | 2734 | No | 3 | 175 | 84 | 68 | 13 | Alive | 3 months | ||
21299349 | Male | 35 | 3 | 6 | Dead | 2 months | |||||||
18277898 | Male | 34 | 2450 | No | 8 | 112 | 113 | 21.6 | 292 | Alive | 12 days | ||
17418172 | Male | 31 | 3 | 100 | 139 | 105 | 4.7 | 279 | Alive | 12 days | |||
15456973 | Female | at term | 2530 | 1 | 200 | Dead | 1.5 months | ||||||
11783915 | Male | at term | 6 | 115 | 95 | 95 | 30 | 270 | 9 | Alive | 5 months | ||
11414303 | Male | 36 | 2700 | NO | 2 | 200 | 100 | 60 | 17.5 | Alive | 4 months | ||
11251929 | Male | 35 | 3720 | Yes | 300 | Alive | 3 days | ||||||
11173328 | Male | 36 | 2740 | No | 3 | 76 | 79 | 39 | Dead | 6 months | |||
10941974 | Female | at term | 3510 | 11 | 108 | 55 | 11.9 | 330 | Alive | 39 months | |||
10941971 | Female | 34 | 2100 | No | 6 | 175 | Alive | 24 months | |||||
9932857 | Female | 36 | 10 | 170 | 261 | Alive | 9 months | ||||||
9880458 | Male | at term | 3500 | 6 | 95 | 110 | 85 | 7 | Alive | 24 months | |||
Male | at term | 2600 | 6 | 135 | 81 | 44 | 2 | Alive | 96 months | ||||
Male | 36 | 3300 | 6 | 150 | 115 | 96 | 5 | Alive | 84 months | ||||
Female | at term | 3160 | 4 | 175 | 107 | 84 | 18 | Alive | 48 months | ||||
Female | at term | 2700 | 4 | 100 | 6 | 27 | Dead | 36 months | |||||
9844114 | Male | at term | 3300 | No | 1 | 75 | Alive | 132 months | |||||
9822319 | Male | 36 | 3090 | No | 1 | 100 | 119 | 111 | 14 | 6.5 | Alive | 3 months | |
Male | 14 | 150 | 105 | 74 | 12 | 281 | Alive | 9 months | |||||
9740207 | Male | at term | 3900 | No | 14 | 178 | 105 | 74 | 12.1 | 281 | 8 | Dead | 18 months |
9364305 | Female | 36 | 2700 | No | 175 | Alive | 3 months | ||||||
9323563 | Male | 33 | 2950 | Yes | 1 | 99 | 12 | 240 | Dead | 7 months | |||
8732907 | Male | at term | 3350 | No | 7 | 50 | Alive | 7 months | |||||
7959671 | Female | at term | 4100 | No | 14 | 60 | 91 | Dead | 39 months | ||||
Male | at term | 4200 | No | 14 | 50 | 100 | Dead | 5 months | |||||
Male | at term | 3800 | No | 7 | 95 | Alive | 58 months | ||||||
8067796 | Male | at term | 3325 | No | 1 | 166 | 58 | 36 | 15 | 309 | Dead | 9 days | |
Male | 35 | 2880 | No | 2 | 200 | Dead | 4 months | ||||||
8032396 | Female | 35 | 2810 | No | 3 | 120 | 104 | 19 | 240 | Alive | 7 months | ||
1319670 | Female | at term | 2700 | No | 4 | 200 | 6 | 27 | Dead | 37 months | |||
1660676 | Male | at term | 3530 | Yes | 1 | 150 | 103 | 89 | 19 | Alive | 72 months | ||
Male | at term | 3300 | Yes | 1 | 150 | 122 | 102 | 19.4 | Alive | 9 months | |||
2759484 | Female | at term | 2300 | No | 3 | 85 | 100 | 82 | 29 | Alive | 13 months | ||
3977385 | Female | at term | 2500 | No | 2 | 91 | Dead | 6 months | |||||
Female | 34 | 2200 | No | 4 | 93 | Dead | 6 months | ||||||
25635218 | Female | 36 | 2800 | 1 | 120 | 83 | 8 | Dead | 9 months | ||||
Female | 36 | 7 | 100 | Alive | 13 months |
Birth Body Weight (g) n = 37 | Stool Output (ml/kg/d) n = 35 | Fecal Electrolyte (mmol/L) | Fecal Osmolarity (mOsm/kg) n = 12 | Fecal PH Value n = 7 | |||
---|---|---|---|---|---|---|---|
Na+ n = 34 | Cl- n = 23 | K+ n = 25 | |||||
Minimum | 2000 | 50 | 6 | 21 | 2 | 11 | 6 |
Maximum | 4200 | 300 | 139 | 113 | 40 | 330 | 9 |
Average | 2987 | 140.2 | 88.8 | 75.0 | 17.8 | 235.3 | 7.36 |
Drug Name | Protocol | Outcome Measures | Result | Patients Number | PMID |
---|---|---|---|---|---|
EGF | 100 ng/kg/h for two 6-day with a 5-day rest period between two courses | Stool volume, small-bowel mucosal morphometry and epithelial cell kinetics | No effect except mitotic index in duodenal crypt increased | 1 | 2866310 |
EGF | 100 ng/kg/h (IV) for 5 days, then followed by same dose for 21 days intravenously | 24 h stool collections, disaccharidase activity in jejunal biopsy homogenates and mucosal epithelial morphometry | No effect except mitotic index in duodenal crypt increased | 1 | 2891946 |
EGF | 100 ng/kg/h (IV) for 21 days, then followed by same dose for 21 days continuous enteral infusion | 24 h stool collections, disaccharidase activity in jejunal biopsy homogenates and mucosal epithelial morphometry | No effect except mitotic index in duodenal crypt increased | 1 | 2891946 |
EGF | 100 ng/kg/h (IV) for 2 weeks | Stool volume and small-bowel mucosal morphometry | No effect except population of microvilli increased | 1 | 9364305 |
Somatostatin | 100 μg (SC) Bid for 21 days | Stool volume | Decreased from 210 mL/kg/day to 150 mL/kg/day | 1 | 2759484 |
Somatostatin | n.r. | Stool volume | No effect | 1 | 1660676 |
Somatostatin | n.r. | Stool volume | Mild decreased | 1 | 1319670 |
Somatostatin | n.r. | n.r | No effect | 1 | 8114773 |
Somatostatin | n.r. | n.r. | No effect | 1 | 9323563 |
Somatostatin | n.r. | n.r. | No effect | 1 | 9880458 |
Octreotide | 100 μg (SC) Bid for 14 days | Stool volume | Decreased from 275 mL/kg/day to 161 mL/kg/day | 1 | 2759484 |
Octreotide | n.r. | n.r. | No effect | 1 | 1993505 |
Octreotide | n.r. | n.r. | No effect | 2 | 7959671 |
Octreotide | 4 μg/kg/day | Stool volume | No effect | 2 | 9364305 |
Octreotide | n.r. | n.r. | No effect | 1 | 11800313 |
Octreotide | n.r. | n.r. | No effect | 1 | 25635218 |
Loperamide | 1 mg/kg/day | n.r. | No effect | 1 | 3977385 |
Loperamide | 0.1 mg/kg/day | Stool volume | Decreased remarkably | 1 | 3977385 |
Loperamide | n.r. | Stool volume | No effect | 1 | 1660676 |
Loperamide | n.r. | n.r. | No effect | 1 | 7959671 |
Loperamide | 0.2 mg/kg Qid | Stool frequency, Bristol stool chart | No effect | 1 | 27682357 |
Steroid | n.r. | Stool volume | No effect | 1 | 1660676 |
Steroid | n.r. | n.r. | No effect | 1 | 7959671 |
Steroid | 2 mg/kg/day for 3 weeks | Stool volume | No effect | 1 | 9364305 |
Prednisolone | n.r. | n.r. | No effect | 1 | 3977385 |
Dexamethasone | Oral | Stool volume | No effect | 1 | 3977385 |
Adrenocorticotrophic hormone | n.r. | n.r. | No effect | 1 | 3977385 |
Hydrocortisone | IV for 4-week | Stool volume | No effect | 1 | 2891946 |
Glucocorticosteroids | n.r. | n.r | No effect | 1 | 8114773 |
Cholestyramine | n.r. | Stool volume | No effect | 1 | 1660676 |
Cholestyramine | n.r. | Stool volume | Decreased from 150 mg/kg/day to 50 mg/kg/day | 1 | 9364305 |
Cholestyramine | n.r. | n.r. | No effect | 1 | 11800313 |
Pentagastrin | n.r. | n.r | No effect | 1 | 8114773 |
Racecadotril | 1.5 mg/kg Tid | Stool frequency, Bristol stool chart | The mean daily number of stools fell from 6.5 to 2.1 and stool consistency improved to Bristol type 6. | 1 | 27682357 |
Mesenchymal stem cells | 1*106 U transduodenal and 2*106 U (IV) | Fluid and electrolyte requirements | No effect except blood stream infections were reduced | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leng, C.; Rings, E.H.H.M.; de Wildt, S.N.; van IJzendoorn, S.C.D. Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease. J. Clin. Med. 2021, 10, 22. https://doi.org/10.3390/jcm10010022
Leng C, Rings EHHM, de Wildt SN, van IJzendoorn SCD. Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease. Journal of Clinical Medicine. 2021; 10(1):22. https://doi.org/10.3390/jcm10010022
Chicago/Turabian StyleLeng, Changsen, Edmond H. H. M. Rings, Saskia N. de Wildt, and Sven C. D. van IJzendoorn. 2021. "Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease" Journal of Clinical Medicine 10, no. 1: 22. https://doi.org/10.3390/jcm10010022
APA StyleLeng, C., Rings, E. H. H. M., de Wildt, S. N., & van IJzendoorn, S. C. D. (2021). Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease. Journal of Clinical Medicine, 10(1), 22. https://doi.org/10.3390/jcm10010022