Effectiveness of a Home-Based Fragility Fracture Integrated Rehabilitation Management (FIRM) Program in Patients Surgically Treated for Hip Fractures
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Intervention Protocol
2.3.1. I-FIRM Program
2.3.2. H-FIRM Program
2.4. Outcome Measurements
2.4.1. Primary Outcome
Koval’s Walking Ability Grade
2.4.2. Secondary Outcomes
FAC
FIM Locomotion
MRMI
BBS
MWT
K-MMSE
EQ-5D
K-MBI
2.5. Statistical Analysis
3. Results
3.1. Demographics, Disease-Related Characteristics, and Physical Function
3.2. Changes over Time in Patient Outcomes
3.3. Comparison of Patient Outcomes in the Intervention and Control Groups
3.4. Analysis of Exercise Compliance by Exercise Monitoring Logbook
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhandari, M.; Devereaux, P.; Swiontkowski, M.F.; Tornetta III, P.; Obremskey, W.; Koval, K.J.; Nork, S.; Sprague, S.; Schemitsch, E.H.; Guyatt, G.H. Internal fixation compared with arthroplasty for displaced fractures of the femoral neck: A meta-analysis. JBJS 2003, 85, 1673–1681. [Google Scholar] [CrossRef] [PubMed]
- de Luise, C.; Brimacombe, M.; Pedersen, L.; Sørensen, H.T. Comorbidity and mortality following hip fracture: A population-based cohort study. Aging Clin. Exp. Res. 2008, 20, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Campion, G.; Melton, L., 3rd. Hip fractures in the elderly: A world-wide projection. Osteoporos. Int. 1992, 2, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Zidén, L.; Wenestam, C.-G.; Hansson-Scherman, M. A life-breaking event: Early experiences of the consequences of a hip fracture for elderly people. Clin. Rehab. 2008, 22, 801–811. [Google Scholar]
- Magaziner, J.; Hawkes, W.; Hebel, J.R.; Zimmerman, S.I.; Fox, K.M.; Dolan, M.; Felsenthal, G.; Kenzora, J. Recovery from hip fracture in eight areas of function. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M498–M507. [Google Scholar] [CrossRef]
- Handoll, H.H.; Cameron, I.D.; Mak, J.C.; Finnegan, T.P. Multidisciplinary rehabilitation for older people with hip fractures. Cochrane Database Syst. Rev. 2009, 4. [Google Scholar] [CrossRef] [Green Version]
- Koval, K.J.; Skovron, M.L.; Aharonoff, G.B.; Meadows, S.E.; Zuckerman, J.D. Ambulatory ability after hip fracture. A prospective study in geriatric patients. Clin. Orthop. Rel. Res. 1995, 310, 150–159. [Google Scholar]
- Lau, T.-W.; Fang, C.; Leung, F. The effectiveness of a geriatric hip fracture clinical pathway in reducing hospital and rehabilitation length of stay and improving short-term mortality rates. Geriatr. Orthop. Surg. Rehab. 2013, 4, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Beaupre, L.A.; Cinats, J.G.; Senthilselvan, A.; Scharfenberger, A.; Johnston, D.W.; Saunders, L.D. Does standardized rehabilitation and discharge planning improve functional recovery in elderly patients with hip fracture? Arch. Phys. Med. Rehab. 2005, 86, 2231–2239. [Google Scholar] [CrossRef]
- Lee, S.Y.; Beom, J.; Kim, B.R.; Lim, S.-K.; Lim, J.-Y. Comparative effectiveness of fragility fracture integrated rehabilitation management for elderly individuals after hip fracture surgery: A study protocol for a multicenter randomized controlled trial. Medicine 2018, 97, e10763. [Google Scholar] [CrossRef]
- Lee, S.Y.; Beom, J. Letter to the editor: Specific and stepwise postoperative rehabilitation program is needed in the elderly after hip fracture surgery. Ann. Geriatr. Med. Res. 2017, 20, 233–234. [Google Scholar] [CrossRef]
- Singh, N.A.; Quine, S.; Clemson, L.M.; Williams, E.J.; Williamson, D.A.; Stavrinos, T.M.; Grady, J.N.; Perry, T.J.; Lloyd, B.D.; Smith, E.U. Effects of high-intensity progressive resistance training and targeted multidisciplinary treatment of frailty on mortality and nursing home admissions after hip fracture: A randomized controlled trial. J. Am. Med. Dir. Assoc. 2012, 13, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Yoon, B.-H.; Beom, J.; Ha, Y.-C.; Lim, J.-Y. Effect of lower-limb progressive resistance exercise after hip fracture surgery: A systematic review and meta-analysis of randomized controlled studies. J. Am. Med. Dir. Assoc. 2017, 18, 1096.e19–1096.e26. [Google Scholar] [CrossRef] [PubMed]
- Prestmo, A.; Hagen, G.; Sletvold, O.; Helbostad, J.L.; Thingstad, P.; Taraldsen, K.; Lydersen, S.; Halsteinli, V.; Saltnes, T.; Lamb, S.E. Comprehensive geriatric care for patients with hip fractures: A prospective, randomised, controlled trial. Lancet 2015, 385, 1623–1633. [Google Scholar] [CrossRef] [Green Version]
- Copanitsanou, P. Community rehabilitation interventions after hip fracture: Pragmatic evidence-based practice recommendations. Int. J. Orthop. Trauma Nurs. 2019, 35, 100712. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, X.; Zhang, S. Effect of home-based rehabilitation for hip fracture: A meta-analysis of randomized controlled trials. J. Rehab. Med. 2018, 50, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Oh, K.-J.; Kim, B.-K.; Ahn, B.-M. Discharge Destination Following Surgically Treated for Intertrochanteric Fracture of in Patients over 70-Year Old. Osteoporos. Sarcopenia 2018, 4, 71. [Google Scholar] [CrossRef]
- Holden, M.K.; Gill, K.M.; Magliozzi, M.R.; Nathan, J.; Piehl-Baker, L. Clinical gait assessment in the neurologically impaired: Reliability and meaningfulness. Phys. Ther. 1984, 64, 35–40. [Google Scholar] [CrossRef]
- Mehrholz, J.; Wagner, K.; Rutte, K.; Meiβner, D.; Pohl, M. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch. Phys. Med. Rehab. 2007, 88, 1314–1319. [Google Scholar] [CrossRef]
- Kidd, D.; Stewart, G.; Baldry, J.; Johnson, J.; Rossiter, D.; Petruckevitch, A.; Thompson, A. The Functional Independence Measure: A comparative validity and reliability study. Disabil. Rehab. 1995, 17, 10–14. [Google Scholar] [CrossRef]
- Lennon, S.; Johnson, L. The modified rivermead mobility index: Validity and reliability. Disabil. Rehab. 2000, 22, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Steffen, T.M.; Hacker, T.A.; Mollinger, L. Age-and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed up & Go Test, and gait speeds. Phys. Ther. 2002, 82, 128–137. [Google Scholar] [PubMed] [Green Version]
- Smith, P.S.; Hembree, J.A.; Thompson, M.E. Berg Balance Scale and Functional Reach: Determining the best clinical tool for individuals post acute stroke. Clin. Rehab. 2004, 18, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Wang, Y.-C. Four-meter gait speed: Normative values and reliability determined for adults participating in the nih toolbox study. Arch. Phys. Med. Rehab. 2019, 100, 509–513. [Google Scholar] [CrossRef]
- Kim, T.H.; Jhoo, J.H.; Park, J.H.; Kim, J.L.; Ryu, S.H.; Moon, S.W.; Choo, I.H.; Lee, D.W.; Yoon, J.C.; Do, Y.J. Korean version of mini mental status examination for dementia screening and its’ short form. Psychiatr. Investig. 2010, 7, 102. [Google Scholar] [CrossRef]
- Kim, M.-H.; Cho, Y.-S.; Uhm, W.-S.; Kim, S.; Bae, S.-C. Cross-cultural adaptation and validation of the Korean version of the EQ-5D in patients with rheumatic diseases. Qual. Life Res. 2005, 14, 1401–1406. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index: A simple index of independence useful in scoring improvement in the rehabilitation of the chronically ill. Md. State Med. J. 1965. [Google Scholar]
- Choi, S.U.; Lee, H.S.; Shin, J.H.; Ho, S.H.; Koo, M.J.; Park, K.H.; Yoon, J.A.; Kim, D.M.; Oh, J.E.; Yu, S.H. Stroke Impact Scale 3.0: Reliability and Validity Evaluation of the Korean Version. Ann. Rehab. Med. 2017, 41, 387. [Google Scholar] [CrossRef]
- Fox, K.M.; Hawkes, W.G.; Hebel, J.R.; Felsenthal, G.; Clark, M.; Zimmerman, S.I.; Kenzora, J.E.; Magaziner, J. Mobility after hip fracture predicts health outcomes. J. Am. Geriatr. Soc. 1998, 46, 169–173. [Google Scholar] [CrossRef]
- Whitehead, C.; Miller, M.; Crotty, M. Falls in community-dwelling older persons following hip fracture: Impact on self-efficacy, balance and handicap. Clin. Rehab. 2003, 17, 899–906. [Google Scholar] [CrossRef]
- Mangione, K.K.; Craik, R.L.; Palombaro, K.M.; Tomlinson, S.S.; Hofmann, M.T. Home-Based Leg-Strengthening Exercise Improves Function 1 Year after Hip Fracture: A Randomized Controlled Study. J. Am. Geriatr. Soc. 2010, 58, 1911–1917. [Google Scholar] [CrossRef]
- Di Monaco, M.; Vallero, F.; De Toma, E.; De Lauso, L.; Tappero, R.; Cavanna, A. A single home visit by an occupational therapist reduces the risk of falling after hip fracture in elderly women: A quasi-randomized controlled trial. J. Rehab. Med. 2008, 40, 446–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turunen, K.; Salpakoski, A.; Edgren, J.; Törmäkangas, T.; Arkela, M.; Kallinen, M.; Pesola, M.; Hartikainen, S.; Nikander, R.; Sipilä, S. Physical activity after a hip fracture: Effect of a multicomponent home-based rehabilitation program—A secondary analysis of a randomized controlled trial. Arch. Phys. Med. Rehab. 2017, 98, 981–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuijlaars, I.A.; Sweerts, L.; Nijhuis-van der Sanden, M.W.; van Balen, R.; Staal, J.B.; van Meeteren, N.L.; Hoogeboom, T.J. Effectiveness of supervised home-based exercise therapy compared to a control intervention on functions, activities, and participation in older patients after hip fracture: A systematic review and meta-analysis. Arch. Phys. Med. Rehab. 2019, 100, 101–114.e6. [Google Scholar] [CrossRef]
- Auais, M.A.; Eilayyan, O.; Mayo, N.E. Extended Exercise Rehabilitation After Hip Fracture Improves Patients’ Physical Function: A Systematic Review and Meta-Analysis. Phys. Ther. 2012, 92, 1437–1451. [Google Scholar] [CrossRef] [Green Version]
- Hoogeboom, T.J.; Oosting, E.; Vriezekolk, J.E.; Veenhof, C.; Siemonsma, P.C.; De Bie, R.A.; Van den Ende, C.H.; Van Meeteren, N.L. Therapeutic validity and effectiveness of preoperative exercise on functional recovery after joint replacement: A systematic review and meta-analysis. PLoS ONE 2012, 7, e38031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portegijs, E.; Kallinen, M.; Rantanen, T.; Heinonen, A.; Sihvonen, S.; Alen, M.; Kiviranta, I.; Sipilä, S. Effects of resistance training on lower-extremity impairments in older people with hip fracture. Arch. Phys. Med. Rehab. 2008, 89, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
Variables | Intervention Group (n = 16) | Control Group (n = 16) | p-Value |
---|---|---|---|
Age (years) | 78.9 ± 6.4 | 79.3 ± 9.4 | 0.956 |
Sex, males/females | 7 (43.8)/9 (56.2) | 3 (18.8)/13 (81.2) | 0.252 |
Height (cm) | 157.3 ± 9.7 | 155.2 ± 7.0 | 0.445 |
Weight (kg) | 53.9 ± 8.9 | 53.1 ± 8.0 | 0.867 |
Fracture side | 1.000 | ||
Right | 8 (50.0) | 8 (50.0) | |
Left | 8 (50.0) | 8 (50.0) | |
Fracture site | 0.598 | ||
Femur neck | 5 (31.3) | 7 (43.8) | |
Intertrochanteric | 7 (43.8) | 7 (43.8) | |
Subtrochanteric | 4 (25.0) | 2 (12.5) | |
Operation type | 0.704 | ||
Bipolar hemiarthroplasty | 0 | 1 (6.3) | |
Total hip replacement arthroplasty | 6 (37.5) | 4 (25.0) | |
Reduction and internal fixation | 10 (62.5) | 11 (68.8) | |
Time from surgery to RM transfer (days) | 11.4 ± 2.4 | 10.4 ± 2.3 | 0.224 |
Hospitalization period at RM (days) | 13.6 ± 2.0 | 15.5 ± 2.3 | 0.021 |
ASA PS Classification | 0.694 | ||
Class II | 11 (68.8) | 12 (75) | |
Class III | 5 (31.2) | 4 (25) |
Variables | Intervention Group (n = 16) | Control Group (n = 16) | p-Value |
---|---|---|---|
Koval’s grade | 7.00 ± 0.00 | 6.94 ± 0.25 | 0.780 |
FAC | 0.00 ± 0.00 | 0.06 ± 0.25 | 0.780 |
FIM locomotion | 1.00 ± 0.00 | 1.06 ± 0.25 | 0.780 |
MRMI | 17.88 ± 5.39 | 16.75 ± 4.47 | 0.867 |
BBS | 27.38 ± 10.03 | 21.50 ± 13.31 | 0.174 |
4MWT (sec) | 24.90 ± 7.80 | 25.72 ± 13.62 | 0.674 |
K-MMSE | 19.38 ± 5.54 | 16.47 ± 5.01 | 0.165 |
EQ-5D | 0.42 ± 0.01 | 0.39 ± 0.05 | 0.208 |
K-MBI | 40.89 ± 3.86 | 38.50 ± 9.85 | 0.569 |
Intervention Group (n = 16) | Control Group (n = 16) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RM-ANOVA | 95% CI | RM-ANOVA | 95% CI | ||||||||
Variables | Time | Mean (SD) | p-Value | a vs. b | a vs. c | b vs. c | Mean (SD) | p-Value | a vs. b | a vs. c | b vs. c |
Koval’s grade | a. Baseline | 7.00 ± 0.00 | <0.001 | 1.11– 2.89 | 4.94– 5.69 | 2.54– 4.08 | 6.94 ± 0.25 | <0.001 | 0.99– 1.76 | 2.92– 4.83 | 1.65– 3.35 |
b. POD 3 wks | 5.00 ± 1.67 | 5.56 ± 0.63 | |||||||||
c. POD 3 mos | 1.69 ± 0.70 | 3.06 ± 1.69 | |||||||||
FAC | a. Baseline | 0.00 ± 0.00 | <0.001 | −4.17– −3.70 | −4.64– −4.11 | −0.71– −0.16 | 0.06 ± 0.25 | <0.001 | −3.43– −2.44 | −4.06– −3.31 | −1.16– −0.34 |
b. POD 3 wks | 3.94 ± 0.44 | 3.00 ± 0.82 | |||||||||
c. POD 3 mos | 4.37 ± 0.50 | 3.75 ± 0.68 | |||||||||
FIM-locomotion | a. Baseline | 1.00 ± 0.00 | <0.001 | −5.31– −4.94 | −5.71– −5.16 | −0.57– −0.06 | 1.07 ± 0.26 | <0.001 | −4.66– −3.46 | −5.21– −4.13 | −1.37– −0.30 |
b. POD 3 wks | 6.13 ± 0.34 | 5.20 ± 0.94 | |||||||||
c. POD 3 mos | 6.44 ± 0.51 | 5.73 ± 0.96 | |||||||||
MRMI | a. Baseline | 17.88 ± 5.39 | <0.001 | −16.87– −14.26 | −21.14– −16.24 | −6.72– −0.47 | 16.80 ± 4.62 | <0.001 | −18.31– −19.94 | −19.94–−14.06 | −2.81– −0.54 |
b. POD 3 wks | 33.44 ± 7.67 | 32.67 ± 3.13 | |||||||||
c. POD 3 mos | 36.56 ± 2.61 | 33.80 ± 3.78 | |||||||||
BBS | a. Baseline | 27.37 ± 10.03 | <0.001 | −20.52– −10.85 | −25.30– −14.32 | −5.82– −2.43 | 20.67 ± 13.34 | <0.001 | −22.55– −13.07 | −26.72– −14.48 | −5.68– 1.54 |
b. POD 3 wks | 43.06 ± 5.58 | 39.20 ± 8.62 | |||||||||
c. POD 3 mos | 47.19 ± 5.70 | 41.27 ± 10.38 | |||||||||
4MWT (sec) | a. Baseline | 24.90 ± 7.80 | <0.001 | 12.54– 21.44 | 14.58– 22.95 | 0.98– 2.70 | 26.83 ± 13.96 | <0.001 | 8.10– 22.27 | 7.87– 24.61 | −1.12– 1.72 |
b. POD 3 wks | 7.91 ± 1.68 | 10.67 ± 7.61 | |||||||||
c. POD 3 mos | 6.13 ± 1.89 | 10.59 ± 9.72 | |||||||||
K-MMSE | a. Baseline | 19.38 ± 5.54 | <0.001 | −4.08– −1.55 | −4.98– −2.01 | −1.94– −0.57 | 16.64 ± 5.15 | <0.001 | −4.45– −0.88 | −5.82– −1.32 | −2.59– −1.01 |
b. POD 3 wks | 22.19 ± 4.36 | 19.43 ± 4.93 | |||||||||
c. POD 3 mos | 22.88 ± 4.40 | 20.21 ± 5.52 | |||||||||
EQ-5D | a. Baseline | 0.42 ± 0.01 | <0.001 | −0.31– −0.28 | −0.38– −0.32 | −0.81– −0.03 | 0.39 ± 0.05 | <0.001 | −0.35– −0.28 | −0.37– −0.31 | −0.07– −0.02 |
b. POD 3 wks | 0.71 ± 0.34 | 0.70 ± 0.05 | |||||||||
c. POD 3 mos | 0.77 ± 0.06 | 0.73 ± 0.05 | |||||||||
K-MBI | a. Baseline | 41.50 ± 4.14 | <0.001 | −45.72– −39.28 | −55.79– −51.21 | −15.36 –−8.04 | 38.33 ± 10.17 | <0.001 | −41.28– −31.35 | −50.00– −38.00 | −12.41 –−1.19 |
b. POD 3 wks | 83.30 ± 7.53 | 75.53 ± 9.23 | |||||||||
c. POD 3 mos | 95.00 ± 3.86 | 82.33 ± 14.51 |
Variables | Time | Mean Difference | 95% CI | p-Value | Bonferroni Correction (p-Value) | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Koval’s grade | a. Baseline | 0.063 | −0.065 | 0.190 | 1 | 1 |
b. POD 3 weeks | −0.563 | −1.475 | 0.350 | 0.555 | 1 | |
c. POD 3 months | −1.375 | −2.311 | −0.419 | 0.006 | 0.018 | |
FAC | a. Baseline | −0.063 | −0.196 | 0.071 | 1 | 1 |
b. POD 3 weeks | 0.232 | 0.463 | 1.412 | 0.001 | 0.003 | |
c. POD 3 months | 0.625 | 0.193 | 1.057 | 0.007 | 0.021 | |
FIM-locomotion | a. Baseline | −0.063 | −0.190 | 0.065 | 1 | 1 |
b. POD 3 weeks | 1 | 0.481 | 1.519 | <0.001 | <0.001 | |
c. POD 3 months | 0.704 | 0.144 | 1.265 | 0.015 | 0.045 | |
MRMI | a. Baseline | 1.125 | −2.448 | 4.698 | 0.859 | 1 |
b. POD 3 weeks | 1.063 | −3.276 | 5.401 | 0.594 | 1 | |
c. POD 3 months | 2.763 | 0.389 | 5.136 | 0.020 | 0.060 | |
BBS | a. Baseline | 5.875 | −2.663 | 14.413 | 0.174 | 0.522 |
b. POD 3 weeks | 3.75 | −1.373 | 8.873 | 0.180 | 0.540 | |
c. POD 3 months | 5.921 | −0.384 | 12.225 | 0.112 | 0.336 | |
4MWT (sec) | a. Baseline | −0.822 | −1.373 | 8.873 | 0.674 | 1 |
b. POD 3 weeks | −1.591 | −4.676 | 1.494 | 0.462 | 1 | |
c. POD 3 months | −3.167 | −7.123 | 0.790 | 0.030 | 0.090 | |
K-MMSE | a. Baseline | −2.908 | −0.980 | 6.797 | 0.165 | 0.495 |
b. POD 3 weeks | 3.054 | −0.340 | 6.448 | 0.094 | 0.282 | |
c. POD 3 months | 2.661 | −1.050 | 6.372 | 0.188 | 0.564 | |
EQ-5D | a. Baseline | 0.031 | 0.003 | 0.058 | 0.208 | 0.624 |
b. POD 3 weeks | 0.009 | −0.023 | 0.041 | 0.545 | 1 | |
c. POD 3 months | 0.037 | −0.004 | 0.081 | 0.094 | 0.282 | |
K-MBI | a. Baseline | 2.375 | −3.149 | 7.899 | 0.569 | 1 |
b. POD 3 weeks | 8.563 | 2.567 | 14.558 | 0.010 | 0.030 | |
c. POD 3 months | 12.667 | 4.345 | 20.988 | 0.002 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.H.; Kim, B.R.; Nam, K.W.; Lee, S.Y.; Beom, J.; Lee, S.Y.; Suh, M.J.; Lim, J.-Y. Effectiveness of a Home-Based Fragility Fracture Integrated Rehabilitation Management (FIRM) Program in Patients Surgically Treated for Hip Fractures. J. Clin. Med. 2021, 10, 18. https://doi.org/10.3390/jcm10010018
Choi JH, Kim BR, Nam KW, Lee SY, Beom J, Lee SY, Suh MJ, Lim J-Y. Effectiveness of a Home-Based Fragility Fracture Integrated Rehabilitation Management (FIRM) Program in Patients Surgically Treated for Hip Fractures. Journal of Clinical Medicine. 2021; 10(1):18. https://doi.org/10.3390/jcm10010018
Chicago/Turabian StyleChoi, Jun Hwan, Bo Ryun Kim, Kwang Woo Nam, Sang Yoon Lee, Jaewon Beom, So Young Lee, Min Ji Suh, and Jae-Young Lim. 2021. "Effectiveness of a Home-Based Fragility Fracture Integrated Rehabilitation Management (FIRM) Program in Patients Surgically Treated for Hip Fractures" Journal of Clinical Medicine 10, no. 1: 18. https://doi.org/10.3390/jcm10010018
APA StyleChoi, J. H., Kim, B. R., Nam, K. W., Lee, S. Y., Beom, J., Lee, S. Y., Suh, M. J., & Lim, J.-Y. (2021). Effectiveness of a Home-Based Fragility Fracture Integrated Rehabilitation Management (FIRM) Program in Patients Surgically Treated for Hip Fractures. Journal of Clinical Medicine, 10(1), 18. https://doi.org/10.3390/jcm10010018