A Brief Review on the Resistance-in-Series Model in Membrane Bioreactors (MBRs)
Abstract
:1. Introduction: General Overview
2. Analysis of Fouling Mechanisms
3. Fouling Analysis with the RIS Model
- “True/main resistances”, referred to the intrinsic membrane resistance (Rm), cake resistance (Rc) and blocking resistance (Rp); the latter in particular is associated to internal fouling due to biofouling (on which the first approach was based) as well as to the inclusion within the pores of recalcitrant and inorganic compounds (as originally defined by Jiang et al. [89]);
- “estimated resistances”, such as the resistance of the fouled membrane due to irreversible fouling (Rbw), represented by the sum of Rm and the irreversible resistance (due to pore blocking, Rirb, and/or cake, Rirc), the resistance due to the reversible clogging of pores (Rreb) and the reversible resistance of the cake (Rrec).
4. Features of the Superficial Deposition and Role of Physical Cleaning
- Attachment/adhesion forces: mainly derived from permeate filtration and superficial electrostatic interaction;
- detachment forces: caused by turbulence induced by aeration, retro-fluxes (particle back-transport due to the cross-flow velocity) and permeate backwashing, if any.
- salt content, whereby the permeability significantly decreases with an increase in the electrolytic concentration;
- superficial potential of the particles that determines an intraparticle rejection that improves the cake layer permeability, under specific conditions;
- size and morphology of the deposited particles that cause a minimum value of permeability, under specific conditions;
- permeate flux that is inversely proportional to the cake layer compressibility.
5. RIS Model Application during the “Manual Water Cleaning”
- The permeate flux and transmembrane pressure were initially measured during normal operation, before the cleaning action. On the basis of these values, the total resistance to filtration can be evaluated, according to Equation (12):
- Afterwards, the membrane was extracted from the bioreactor and physically cleaned through three operations in the following order. Firstly, membrane rinsing with tap water at 0.4–0.5 bar for 15 min, gently rubbing the membrane surface (or the membrane fibers in the case of hollow fiber modules). Thereafter, membrane cleaning was conducted in pure water by means of membrane shaking, either mechanical (for small membrane modules used in bench scale plants) or manual (for bigger modules used for pilot plant applications). Finally, 5 min of rinsing with ultrapure water (at low pressure, <0.2 bar).
- Subsequently, the cleaned membrane was immersed in clean water and subjected to normal filtration (with the same operational flux and eventually with ordinary backwashing, if any) in order to measure the resistance to filtration in clean water, according to Equation (13):
- The cleaned membrane was then immersed in the bioreactor and subjected to normal operational conditions (with the same fluxes and eventually ordinary backwashing). It is worth noting that the mixed liquor was the same as that at the beginning. On the basis of J2 and TMP2, it was possible to evaluate the total resistance to filtration, according to Equation (14):
6. Future Perspectives for the Improvement of the “Manual Water Washing” Technique Adopted for Fouling Evaluation
- improve the overall efficiency, thus reducing the negative effects due to subsequent actions either chemical (aggressive action of chemicals) or physical (ultrasonic cavitation);
- reduce water, chemicals and energy consumption;
- minimize waste production and therefore negative impacts on the environment.
7. Conclusions
Funding
Conflicts of Interest
References
- Judd, S. The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Treatment, 2nd ed.; Elsevier: Oxford, UK, 2011; ISBN 9780080967677/9780080966823. [Google Scholar]
- Nguyen, S.T.; Roddick, F.A.; Harris, J.L. Membrane foulants and fouling mechanisms in microfiltration and ultrafiltration of an activated sludge effluent. Water Sci. Technol. Water Supply 2010, 62, 1975–1983. [Google Scholar] [CrossRef] [PubMed]
- Mutamim, N.S.A.; Noor, Z.Z.; Hassan, M.A.A.; Yuniarto, A.; Olsson, G. Membrane bioreactor: Applications and limitations in treating high strength industrial wastewater. Chem. Eng. J. 2013, 225, 109–119. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, M.; Wang, F.; Meng, F.; Liao, B.Q.; Hong, H.; Chen, J.; Gao, W. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. J. Membr. Sci. 2014, 460, 110–125. [Google Scholar] [CrossRef]
- Kimura, K.; Uchida, H. Intensive membrane cleaning for MBRs equipped with flat-sheet ceramic membranes: Controlling negative effects of chemical reagents used for membrane cleaning. Water Res. 2019, 150, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Mutamim, N.S.A.; Noor, Z.Z.; Hassan, M.A.A.; Olsson, G. Application of membrane bioreactor technology in treating high strength industrial wastewater: A performance review. Desalination 2012, 305, 1–11. [Google Scholar] [CrossRef]
- Naessens, W.; Maere, T.; Nopens, I. Critical review of membrane bioreactor models—Part 1: Biokinetic and filtration models. Bioresour. Technol. 2012, 122, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, M.; Wang, F.; Hong, H.; Wang, A.; Wang, J.; Weng, X.; Lin, H. Membrane fouling in a submerged membrane bioreactor: Effect of pH and its implications. Bioresour. Technol. 2014, 152, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Bottino, A.; Capannelli, G.; Comite, A.; Mangano, R. Critical flux in submerged membrane bioreactors for municipal wastewater treatment. Desalination 2009, 245, 748–753. [Google Scholar] [CrossRef]
- Field, R. Fundamentals of fouling. In Membranes for Water Treatment; Peinemann, K.V., Nunes, S.P., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; Volume 4, pp. 1–22. [Google Scholar]
- Shen, L.G.; Lei, Q.; Chen, J.R.; Hong, H.C.; He, Y.M.; Lin, H.J. Membrane fouling in a submerged membrane bioreactor: Impacts of floc Size. Chem. Eng. J. 2015, 269, 328–334. [Google Scholar] [CrossRef]
- Fane, A.; Fell, C. A review of fouling and fouling control in ultrafiltration. Desalination 1987, 62, 117–136. [Google Scholar] [CrossRef]
- Belfort, G.; Davis, R.H.; Zydney, A.L. The behaviour of suspensions and macromolecular solutions in crossflow microfiltration. J. Membr. Sci. 1994, 96, 1–58. [Google Scholar] [CrossRef]
- Chan, R.; Chen, V. Characterization of protein fouling on membranes: Opportunities and challenges. J. Membr. Sci. 2004, 242, 169–188. [Google Scholar] [CrossRef]
- Van den Broeck, R.; Krzeminski, P.; Van Dierdonck, J.; Gins, G.; Lousada-Ferreira, M.; Van Impe, J.; van der Graaf, J.; Smets, I.; van Lier, J. Activated sludge characteristics affecting sludge filterability in municipal and industrial MBRs: Unraveling correlations using multi-component regression analysis. J. Membr. Sci. 2011, 378, 330–338. [Google Scholar] [CrossRef]
- Martin-Garcia, I.; Monsalvo, V.; Pidou, M.; Le-Clech, P.; Judd, S.J.; McAdam, E.J.; Jefferson, B. Impact of membrane configuration on fouling in anaerobic membrane bioreactors. J. Membr. Sci. 2011, 382, 41–49. [Google Scholar] [CrossRef]
- Khan, S.J.; Ilyas, S.; Rehman, Z.U. Impact of nitrogen loading rates on treatment performance of domestic wastewater and fouling propensity in submerged membrane bioreactor (MBR). Bioresour. Technol. 2013, 141, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Kochkodan, V.; Johnson, D.J.; Hilal, N. Polymeric membranes: Surface modification for minimizing (bio)colloidal fouling. Adv. Colloid Interface Sci. 2014, 206, 116–140. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Liang, H.; Zhou, J.; Nan, J.; Shao, S.; Zhang, J.; Li, G. Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from Microcystis aeruginosa: Effects of membrane pore size and surface hydrophobicity. J. Membr. Sci. 2014, 449, 58–66. [Google Scholar] [CrossRef]
- Zhang, M.; Liao, B.Q.; Zhou, X.; He, Y.; Hong, H.; Lin, H.; Chen, J. Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. Bioresour. Technol. 2015, 175, 59–67. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Tang, S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Res. 2009, 43, 2504–2512. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, L.; Zhang, S.; Cao, C.; Zhang, S. Correlating membrane fouling with sludge characteristics in membrane bioreactors: An especial interest in EPS and sludge morphology analysis. Bioresour. Technol. 2011, 102, 8820–8827. [Google Scholar] [CrossRef]
- Deng, L.; Guo, W.; Ngo, H.H.; Zhang, J.; Liang, S.; Xia, S.; Zhang, Z.; Li, J. A comparison study on membrane fouling in a sponge-submerged membrane bioreactor and a conventional membrane bioreactor. Bioresour. Technol. 2014, 165, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Pollice, A.; Brookes, A.; Jefferson, B.; Judd, S. Sub-critical flux fouling in membrane bioreactors—A review of recent literature. Desalination 2005, 174, 221–230. [Google Scholar] [CrossRef]
- Reid, E.; Liu, X.; Judd, S.J. Sludge characteristics and membrane fouling in full scale submerged membrane bioreactors. Desalination 2008, 219, 240–249. [Google Scholar] [CrossRef]
- Navaratna, D.; Jegatheesan, V. Implications of short and long term critical flux experiments for laboratory-scale MBR operations. Bioresour. Technol. 2011, 102, 5361–5369. [Google Scholar] [CrossRef]
- Shi, X.; Tal, G.; Hankins, N.P.; Gitis, V. Fouling and cleaning of ultrafiltration membranes: A review. J. Water Proc. Eng. 2014, 1, 121–138. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, K.; Mo, Y.; Liang, P.; Shen, Y.; Zhu, N.; Huang, X. Seasonal characteristics of supernatant organics and its effect on membrane fouling in a full-scale membrane bioreactor. J. Membr. Sci. 2014, 453, 168–174. [Google Scholar] [CrossRef]
- Hong, S.P.; Bae, T.H.; Tak, T.M.; Hong, S.; Randall, A. Fouling control in activated sludge submerged hollow fiber membrane bioreactors. Desalination 2002, 143, 219–228. [Google Scholar] [CrossRef]
- Le-Clech, P.; Jefferson, B.; Judd, S.J. Impact of aeration, solid concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. J. Membr. Sci. 2003, 218, 117–129. [Google Scholar] [CrossRef]
- Yamamoto, K.; Hiasa, M.; Mahmood, T.; Matsuo, T. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Sci. Technol. 1989, 21, 43–54. [Google Scholar] [CrossRef]
- Nagaoka, H.; Ueda, S.; Miya, A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Sci. Technol. 1996, 34, 165–172. [Google Scholar] [CrossRef]
- Ognier, S.; Wisniewski, C.; Grasmick, A. Influence of macromolecule adsorption during filtration of a membrane bioreactor mixed liquor suspension. J. Membr. Sci. 2002, 209, 27–37. [Google Scholar] [CrossRef]
- Hong, H.; Zhang, M.; He, Y.; Chen, J.; Lin, H. Fouling mechanisms of gel layer in a submerged membrane bioreactor. Bioresour. Technol. 2014, 166, 295–302. [Google Scholar] [CrossRef]
- Wisniewski, C.; Grasmick, A. Floc size distribution in a membrane bioreactor and consequences for membrane fouling. Colloids Surf. A Physicochem. Eng. Aspects 1998, 138, 403–411. [Google Scholar] [CrossRef]
- Defrance, J.; Jaffrin, M.; Gupta, B.; Paullier, P.; Ginestet, P. Contribution of various constituents of activated sludge to membrane fouling. Bioresour. Technol. 2000, 73, 105–112. [Google Scholar] [CrossRef]
- Bouhabila, E.H.; Aim, R.B.; Buisson, H. Fouling characterization in membrane bioreactors. Sep. Purif. Technol. 2001, 22–23, 123–132. [Google Scholar] [CrossRef]
- Choo, K.H.; Lee, C.H. Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor. Water Res. 1996, 30, 1771–1780. [Google Scholar] [CrossRef]
- Hai, F.I.; Yamamoto, K.; Fukushi, K. Different fouling modes of submerged hollow-fiber and flat-sheet membranes induced by high strength wastewater with concurrent biofouling. Desalination 2005, 180, 89–97. [Google Scholar] [CrossRef]
- Badani, Z.; Ait-Amar, H.; Si-Salah, A.; Brik, M.; Fuchs, W. Treatment of textile wastewater by membrane bioreactor and reuse. Desalination 2005, 185, 411–417. [Google Scholar] [CrossRef]
- Yao, W.; Wang, Z.; Song, P. The cake layer formation in the early stage of filtration in MBR: Mechanism and model. J. Membr. Sci. 2018, 559, 75–86. [Google Scholar] [CrossRef]
- Jiang, T.; Myngheer, S.; Pauw, D.J.; Spanjers, H.; Nopens, I.; Kennedy, M.D.; Amy, G.; Vanrolleghem, P.A. Modelling the production and degradation of soluble microbial products (SMP) in membrane bioreactors (MBR). Water Res. 2008, 20, 4955–4964. [Google Scholar] [CrossRef]
- Domínguez, L.; Cases, V.; Birek, C.; Rodríguez, M.; Prats, D. Influence of organic loading rate on the performance of ultrafiltration and microfiltration membrane bioreactors at high sludge retention time. Chem. Eng. J. 2012, 181–182, 132–143. [Google Scholar] [CrossRef]
- Xiao, K.; Shen, Y.X.; Liang, S.L.P.; Wang, X.M.; Huang, X. A systematic analysis of fouling evolution and irreversibility behaviors of MBR supernatant hydrophilic/hydrophobic fractions during microfiltration. J. Membr. Sci. 2014, 467, 206–216. [Google Scholar] [CrossRef]
- Fallah, N.; Bonakdarpour, B.; Nasernejad, B.; Moghadam, M.R.A. Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT). J. Hazard. Mater. 2010, 178, 718–724. [Google Scholar] [CrossRef]
- Tian, Y.; Su, X. Relation between the stability of activated sludge flocs and membrane fouling in MBR: Under different SRTs. Bioresour. Technol. 2012, 118, 477–482. [Google Scholar] [CrossRef]
- Farias, E.L.; Howe, K.J.; Thomson, B.M. Effect of membrane bioreactor solids retention time on reverse osmosis membrane fouling for wastewater reuse. Water Res. 2014, 49, 53–61. [Google Scholar] [CrossRef]
- Ozdemir, B.; Saatci, A.; Yenigun, O. Evaluation of cake filtration biological reactors (CFBR) vs. membrane biological reactors (MBR) in a pilot scale plant. Desalination 2012, 288, 135–144. [Google Scholar] [CrossRef]
- Wu, B.; Kitade, T.; Chong, T.H.; Uemura, T.; Fane, A.G. Role of initially formed cake layers on limiting membrane fouling in membrane bioreactors. Bioresour. Technol. 2012, 118, 589–593. [Google Scholar] [CrossRef]
- Zhang, M.; Peng, W.; Chen, J.; He, Y.; Ding, L.; Wang, A.; Lin, H.; Hong, H.; Zhang, Y.; Yu, H. A new insight into membrane fouling mechanism in submerged membrane bioreactor: Osmotic pressure during cake layer filtration. Water Res. 2013, 47, 2777–2786. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, J.; Jiang, T.; Gao, D.; Zhang, S.; Li, H.; Yang, F. A novel approach to evaluate the permeability of cake layer during cross-flow filtration in the flocculants added membrane bioreactors. Bioresour. Technol. 2011, 102, 11121–11131. [Google Scholar] [CrossRef]
- Diez, V.; Ezquerra, D.; Cabezas, J.L.; García, A.; Ramos, C. A modified method for evaluation of critical flux, fouling rate and in situ determination of resistance and compressibility in MBR under different fouling conditions. J. Membr. Sci. 2014, 453, 1–11. [Google Scholar] [CrossRef]
- Choi, S.; Yoon, J.; Haam, S.; Jung, J.; Kim, J.; Kim, W. Modeling of the permeate flux during microfiltration of BSA-adsorbed microspheres in a stirred cell. J. Colloid Interface Sci. 2000, 228, 270–278. [Google Scholar] [CrossRef]
- Psoch, C.; Schiewer, S. Direct filtration of natural and simulated river water with air sparging and sponge ball application for fouling control. Desalination 2006, 197, 190–204. [Google Scholar] [CrossRef]
- Di Bella, G.; Durante, F.; Torregrossa, T.; Viviani, G. Start-up with or without inoculum? Analysis of a SMBR pilot plant. Desalination 2010, 260, 79–90. [Google Scholar] [CrossRef]
- Di Bella, G.; Di Trapani, D.; Torregrossa, M.; Viviani, G. Performance of a MBR pilot plant treating high strength wastewater subject to salinity increase: Analysis of biomass activity and fouling behaviour. Bioresour. Technol. 2013, 147, 414–618. [Google Scholar] [CrossRef]
- Di Bella, G.; Di Trapani, D.; Judd, S. Fouling mechanism elucidation in membrane bioreactors by bespoke physical cleaning. Sep. Purif. Technol. 2018, 199, 124–133. [Google Scholar] [CrossRef]
- Tragardh, G. Membrane cleaning. Desalination 1989, 71, 325–335. [Google Scholar] [CrossRef]
- Le-Clech, P.; Chen, V.; Fane, T. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284, 17–53. [Google Scholar] [CrossRef]
- Gao, W.; Liang, H.; Ma, J.; Han, M.; Lin, H.; Chen, Z.; Han, Z.S.; Bai, L.G. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011, 272, 1–8. [Google Scholar] [CrossRef]
- Chen, J.; Kim, S.; Ting, Y. Optimization of membrane physical and chemical cleaning by a statistically designed approach. J. Membr. Sci. 2003, 219, 27–45. [Google Scholar] [CrossRef]
- Lin, J.C.T.; Lee, D.J.; Huang, C. Membrane fouling mitigation: Membrane cleaning. Sep. Sci. Technol. 2010, 45, 858–872. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Che Lah, N.F.; Ismail, S.; Ooi, B.S. Membrane antifouling methods and alternatives: Ultrasound approach. Sep. Purif. Rev. 2012, 41, 318–346. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, F.; He, X.; Zhou, Z.; Huang, L.N.; Liang, S. Optimisation and performance of NaClO-assisted maintenance cleaning for fouling control in membrane bioreactors. Water Res. 2014, 53, 1–11. [Google Scholar] [CrossRef]
- Chang, I.S.; Lee, C.H. Membrane filtration characteristics in membrane-coupled activated sludge system—The effect of physiological states of activated sludge on membrane fouling. Desalination 1998, 120, 221–233. [Google Scholar] [CrossRef]
- Meng, F.G.; Zhang, H.M.; Li, Y.S.; Zhang, X.W.; Yang, F.L.; Xiao, J.N. Cake layer morphology in microfiltration of activated sludge wastewater based on fractal analysis. Sep. Purif. Technol. 2005, 44, 250–257. [Google Scholar] [CrossRef]
- Reid, E.; Liu, X.; Judd, S.J. Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor. J. Membr. Sci. 2006, 283, 164–171. [Google Scholar] [CrossRef]
- Wu, J.; Le-Clech, P.; Stuetz, R.M.; Fane, A.G.; Chen, V. Novel filtration mode for fouling limitation in membrane bioreactors. Water Res. 2008, 42, 3677–3684. [Google Scholar] [CrossRef]
- Sarioglu, M.; Insel, G.; Orhon, D. Dynamic in-series resistance modeling and analysis of a submerged membrane bioreactor using a novel filtration mode. Desalination 2012, 285, 285–294. [Google Scholar] [CrossRef]
- Choi, M.; Zhang, K.; Dionysiou, D.D.; Oerther, D.B.; Sorial, G.A. Influence of cross-flow velocity on membrane performance during filtration of biological suspension. J. Membr. Sci. 2005, 248, 189–199. [Google Scholar] [CrossRef]
- Busch, J.; Cruse, A.; Marquardt, W. Modeling submerged hollow-fiber membrane filtration for wastewater treatment. J. Membr. Sci. 2007, 288, 94–111. [Google Scholar] [CrossRef]
- Hwang, B.K.; Lee, W.N.; Park, P.K.; Lee, C.H.; Chang, I.S. Effect of membrane fouling reducer on cake structure and membrane permeability in membrane bioreactor. J. Membr. Sci. 2007, 288, 149–156. [Google Scholar] [CrossRef]
- Mannina, G.; Di Bella, G. Comparing two start-up strategies for MBRs: Experimental study and mathematical modelling. Biochem. Eng. J. 2012, 68, 91–103. [Google Scholar] [CrossRef]
- Di Bella, G.; Durante, F.; Torregrossa, T.; Viviani, G. The role of fouling mechanisms in a submerged membrane bioreactor during the start-up. Desalination 2006, 200, 722–724. [Google Scholar] [CrossRef]
- Di Bella, G.; Durante, F.; Torregrossa, T.; Viviani, G.; Mercurio, P.; Cicala, A. The role of fouling mechanisms in a membrane bioreactor. Water Sci. Technol. 2007, 55, 455–464. [Google Scholar] [CrossRef]
- Di Trapani, D.; Di Bella, G.; Mannina, G.; Torregrossa, M.; Viviani, G. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: Influence of wastewater salinity variation. Bioresour. Technol. 2014, 162, 60–69. [Google Scholar] [CrossRef]
- Di Trapani, D.; Di Bella, G.; Mannina, G.; Torregrossa, M.; Viviani, G. Effect of C/N shock variation on the performances of a moving bed membrane bioreactor. Bioresour. Technol. 2015, 189, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Broeckmann, A.; Wintgens, T.; Schätfer, A.I. Removal and fouling mechanisms in nanofiltration of polysaccharide solutions. Desalination 2005, 178, 149–159. [Google Scholar] [CrossRef]
- Drews, A. Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures. J. Membr. Sci. 2010, 363, 1–28. [Google Scholar] [CrossRef]
- Pessoa de Amorim, M.T.; Ramos, I.R. Control of irreversible fouling by application of dynamic membrane. Desalination 2006, 192, 63–67. [Google Scholar] [CrossRef]
- Broeckmann, A.; Busch, J.; Wintgens, T.; Marquardt, W. Modeling of pore blocking and cake layer formation in membrane filtration for wastewater treatment. Desalination 2006, 189, 97–109. [Google Scholar] [CrossRef]
- Katsoufidou, K.; Yiantsios, S.G.; Karabelas, A.J. A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modelling. J. Membr. Sci. 2005, 266, 40–50. [Google Scholar] [CrossRef]
- Chu, H.P.; Li, X.Y. Membrane Fouling in a Membrane Bioreactor (MBR): Sludge Cake Formation and Fouling Characteristics; Wiley InterScience: New York, NY, USA, 30 March 2015; Available online: www.interscience.wiley.com (accessed on 3 December 2018).
- Tu, S.C.; Ravindran, V.; Pirbazari, M. A pore diffusion transport model for forecasting the performance of membrane processes. J. Membr. Sci. 2005, 265, 29–50. [Google Scholar] [CrossRef]
- Ye, D.; Saadat-Sanei, S.; Bérubé, P.R. Pulse bubble sparging for the control of hydraulically reversible fouling in submerged hollow fiber membrane systems. Sep. Purif. Technol. 2014, 123, 153–163. [Google Scholar] [CrossRef]
- Choi, H.; Zhang, K.; Dionysiou, D.D.; Oerther, D.B.; Sorial, G.A. Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment. Sep. Purif. Technol. 2005, 45, 68–78. [Google Scholar] [CrossRef]
- Judd, S. The MBR Book. Principles and Applications of Membrane Bioreactors in Water and Wastewaters Treatment; Elsevier: Oxford, UK, 2006; ISBN 9781856174817. [Google Scholar]
- Huyskens, C.; Brauns, E.; Vanhoof, E.; De Wever, H. A new method for the evaluation of the reversible and irreversible fouling propensity of MBR mixed liquor. J. Membr. Sci. 2008, 323, 185–192. [Google Scholar] [CrossRef]
- Jiang, T.; Kennedy, M.D.; van der Meer, W.G.J.; Vanrolleghem, P.A.; Schippers, J.C. The role of blocking and cake filtration in MBR fouling. Desalination 2003, 157, 335–343. [Google Scholar] [CrossRef]
- Huyskens, C.; Lenaerts, S.; Brauns, E.; Diels, L.; De Wever, H. Study of (ir)reversible fouling in MBRs under various operating conditions using new online fouling sensor. Sep. Purif. Technol. 2011, 81, 208–215. [Google Scholar] [CrossRef]
- Khan, S.J.; Visvanathan, C.; Jegatheesan, V. Prediction of membrane fouling in MBR systems using empirically estimated specific cake resistance. Bioresour. Technol. 2009, 100, 6133–6136. [Google Scholar] [CrossRef]
- Grace, H.P. Resistance and compressibility of filter cakes. Chem. Eng. Prog. 1956, 49, 303–313. [Google Scholar]
- Stephenson, T.; Brindle, K.; Judd, S.; Jefferson, B. Membrane Bioreactor for Wastewater Treatment; IWA Publishing: London, UK, 2000; ISBN 9781900222075. [Google Scholar]
- Field, R.W.; Pearce, G.K. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Adv. Colloid Interface Sci. 2011, 164, 38–44. [Google Scholar] [CrossRef]
- Lee, S.J.; Dilaver, M.; Park, P.-K.; Kim, J.H. Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. J. Membr. Sci. 2013, 432, 97–105. [Google Scholar] [CrossRef]
- Fortunato, L.; Pathak, N.; Rehman, Z.U.; Shon, H.; Leiknes, T. Real-time monitoring of membrane fouling development during early stages of activated sludge membrane bioreactor operation. Process Saf. Environ. Prot. 2018, 120, 313–320. [Google Scholar] [CrossRef]
- Bowen, W.R.; Calvo, J.I.; Hernandez, A. Steps of membrane blocking in flux decline during protein microfiltration. J. Membr. Sci. 1995, 101, 153–165. [Google Scholar] [CrossRef]
- Hermia, J. Mathematical Models and Design Methods in Solid-Liquid Separation; Rushton, A., Ed.; Springer: Dordrecht, The Netherlands, 1985; pp. 83–89. ISBN 978-94-009-5091-7. [Google Scholar]
- Liu, Y.-J.; Sun, D.D. Particles size-associated membrane fouling in microfiltration of denitrifying granules supernatant. Chem. Eng. J. 2012, 181–182, 494–500. [Google Scholar] [CrossRef]
- Nataraj, S.; Schomäcker, R.; Kraume, M.; Mishra, I.M.; Drews, A. Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. J. Membr. Sci. 2008, 308, 152–161. [Google Scholar] [CrossRef]
- Meng, S.; Liu, Y. Alginate block fractions and their effects on membrane fouling. Water Res. 2013, 47, 6618–6627. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, W.; Tang, B.; Ding, J.; Zheng, Y.; Zhang, Z. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning. Bioresour. Technol. 2018, 250, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.Y.; Kim, A.S. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination 2007, 212, 261–281. [Google Scholar] [CrossRef]
- Liu, R.; Huang, X.; Sun, Y.F.; Qian, Y. Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor. Proc. Biochem. 2003, 39, 157–163. [Google Scholar] [CrossRef]
- Patsios, S.I.; Goudolas, T.B.; Kastrinakis, E.G.; Nychas, S.G.; Karabelas, A.J. A novel method for rheological characterization of biofouling layers developing in Membrane Bioreactors (MBR). J. Membr. Sci. 2015, 482, 13–24. [Google Scholar] [CrossRef]
- Zhou, L.; Ye, B.; Xia, S. Structural characteristics of cake layer in membrane bioreactor with chromate exposure. Ecotoxicol. Environ. Saf. 2019, 169, 583–589. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, H.; Li, Y.; Zhang, X.; Yang, F. Application of fractal permeation model to investigate membrane fouling in membrane bioreactor. J. Membr. Sci. 2005, 262, 107–116. [Google Scholar] [CrossRef]
- Kaye, B.H. A Random Walk Through Fractal Dimensions; VCH: New York, NY, USA, 1994; Chapter 6; ISBN 13 978-3527290789. [Google Scholar]
- Yu, B.M.; Liu, W. Fractal analysis of permeability for porous media. AIChE J. 2004, 50, 46–57. [Google Scholar] [CrossRef]
- Li, X.; Wang, X. Modelling of membrane fouling in a submerged membrane bioreactor. J. Membr. Sci. 2006, 278, 151–161. [Google Scholar] [CrossRef]
- Mannina, G.; Di Bella, G.; Viviani, G. An integrated model for biological and physical processes in membrane bioreactors (MBR). J. Membr. Sci. 2011, 376, 56–69. [Google Scholar] [CrossRef]
- Chang, I.S.; Field, R.; Cui, Z.F. Limitations of resistance-in-series model for fouling analysis in membrane bioreactors: A cautionary note. Desalin. Water Treat. 2009, 8, 31–36. [Google Scholar] [CrossRef]
- Christensen, M.L.; Niesse, W.; Sørensen, N.B.; Hansen, S.H.; Jørgensen, M.K.; Nielsen, P.H. Sludge fractionation as a method to study and predict fouling in MBR systems. Sep. Purif. Technol. 2018, 194, 329–337. [Google Scholar] [CrossRef]
- Chang, I.S.; Lee, C.H.; Ahn, K.H. Membrane filtration characteristics in membrane coupled activated sludge system: The effect of floc structure on membrane fouling. Sep. Sci. Technol. 1999, 34, 1743–1758. [Google Scholar] [CrossRef]
- Lee, W.; Kang, S.; Shin, H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. J. Membr. Sci. 2003, 216, 217–227. [Google Scholar] [CrossRef]
- Wintgens, T.; Rosen, J.; Melin, T.; Brepols, C.; Drensla, K.; Engelhardt, N. Modelling of a membrane bioreactor system for municipal wastewater treatment. J. Membr. Sci. 2003, 216, 55–65. [Google Scholar] [CrossRef]
- Ye, Y.; Le-Clech, P.; Chen, V.; Fane, A.G. Evolution of fouling during crossflow filtration of model EPS solutions. J. Membr. Sci. 2005, 264, 190–199. [Google Scholar] [CrossRef]
- Ludwig, T.; Gaida, D.; Keysers, C.; Pinnekamp, J.; Bongards, M.; Kern, P.; Wolf, C.; Sousa Brito, A.L. An advanced simulation model for membrane bioreactors: Development, calibration and validation. In Proceedings of the 6th IWA Specialist Conference on Membrane Technology for Water & Wastewater Treatment, Aachen, Germany, 4–7 October 2011. [Google Scholar]
- Jeison, D.; van Lier, J.B. Bio-layer management in anaerobic membrane bioreactors for wastewater treatment. Water Sci. Technol. 2006, 54, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Villarroel, R.; Delgado, S.; González, E.; Morales, M. Physical cleaning initiation controlled by transmembrane pressure set-point in a submerged membrane bioreactor. Sep. Purif. Technol. 2013, 104, 55–63. [Google Scholar] [CrossRef]
- Xiao, K.; Sun, J.; Mo, Y.; Fang, Z.; Liang, P.; Huang, X.; Ma, J.; Ma, B. Effect of membrane pore morphology on microfiltration organic fouling: PTFE/PVDF blend membranes compared with PVDF membranes. Desalination 2014, 343, 217–225. [Google Scholar] [CrossRef]
- Poorasgari, E.; Bugge, T.V.; Christensen, M.L.; Jørgensen, M.K. Compressibility of fouling layers in membrane bioreactors. J. Membr. Sci. 2015, 475, 65–70. [Google Scholar] [CrossRef]
- Lee, M.; Kim, J. Analysis of local fouling in a pilot-scale submerged hollow-fiber membrane system for drinking water treatment by membrane autopsy. Sep. Purif. Technol. 2012, 95, 227–234. [Google Scholar] [CrossRef]
- Minehara, H.; Dan, K.; Ito, Y.; Takabatake, H.; Henmi, M. Quantitative evaluation of fouling resistance of PVDF/PMMA-g-PEO polymer blend membranes for membrane bioreactor. J. Membr. Sci. 2014, 466, 211–219. [Google Scholar] [CrossRef]
- Xu, Q.; Ye, Y.; Chen, V.; Wen, X. Evaluation of fouling formation and evolution on hollow fibre membrane: Effects of ageing and chemical exposure on biofoulant. Water Res. 2015, 68, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Charfi, A.; Yang, Y.; Harmand, J.; Ben Amar, N.; Heran, M.; Grasmick, A. Soluble microbial products and suspended solids influence in membrane fouling dynamics and interest of punctual relaxation and/or backwashing. J. Membr. Sci. 2015, 475, 156–166. [Google Scholar] [CrossRef]
- Wang, C.; Chen, W.N.; Hua, Q.Y.; Ji, M.; Gao, X. Dynamic fouling behavior and cake layer structure changes in nonwoven membrane bioreactor for bath wastewater treatment. Chem. Eng. J. 2015, 264, 462–469. [Google Scholar] [CrossRef]
- Jermann, D.; Pronk, W.; Boller, M. Mutual influences between natural organic matter and inorganic particles and their combined M. effect on ultrafiltration membrane fouling. Environ. Sci. Technol. 2008, 42, 9129–9136. [Google Scholar] [CrossRef]
- Jermann, D.; Pronk, W.; Kgi, R.; Halbeisen, M.; Boller, M. Influence of interactions between NOM and particles on UF fouling mechanisms. Water Res. 2008, 42, 3870–3878. [Google Scholar] [CrossRef] [PubMed]
- Durante, F.; Di Bella, G.; Torregrossa, M.; Viviani, G. Particle size distribution and biomass growth in a submerged membrane bioreactor. Desalination 2006, 200, 493–495. [Google Scholar] [CrossRef]
- Hughes, D.; Field, R. Crossflow filtration of washed and unwashed yeast suspensions at constant shear under nominally sub-critical conditions. J. Membr. Sci. 2006, 280, 89–98. [Google Scholar] [CrossRef]
- Di Bella, G.; Mannina, G.; Viviani, G. An integrated model for physical-biological wastewater organic removal in a submerged membrane bioreactor: Model development and parameter estimation. J. Membr. Sci. 2008, 322, 1–12. [Google Scholar] [CrossRef]
- Li, Q.; Elimelech, M. Synergistic effects in combined fouling of a loose nanofiltration membrane by colloidal materials and natural organic matter. J. Membr. Sci. 2006, 278, 72–82. [Google Scholar] [CrossRef]
- Bacchin, P.; Aimar, P.; Field, R.W. Critical and sustainable fluxes: Theory, experiments and applications. J. Membr. Sci. 2006, 281, 42–69. [Google Scholar] [CrossRef]
- Jørgensen, M.K.; Bugge, T.V.; Christensen, M.L.; Keiding, K. Modeling approach to determine cake build up and compression in a high-shear membrane bioreactor. J. Membr. Sci. 2012, 409–410, 335–345. [Google Scholar] [CrossRef]
- Sørensen, B.L.; Sørensen, P.B. Structure compression in cake filtration. J. Environ. Eng. ASCE 1997, 123, 345–353. [Google Scholar] [CrossRef]
- Tanaka, T.; Abe, K.I.; Asakawa, H.; Yoshida, H.; Nakanishi, K. Filtration characteristics and structure of cake in crossflow filtration of bacterial suspension. J. Ferment. Bioeng. 1994, 78, 455–461. [Google Scholar] [CrossRef]
- Tanaka, T.; Kamimura, R.; Fujiwara, R.; Nakanishi, K. Cross-flow filtration of yeast broth cultivated in molasses. Biotechnol. Bioeng. 1994, 43, 1094–1101. [Google Scholar] [CrossRef]
- Lee, Y.; Clark, M.M. Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions. J. Membr. Sci. 1988, 149, 181–202. [Google Scholar] [CrossRef]
- Hamachi, M.; Mietton-Peuchot, M. Experimental investigations of cake characteristics in crossflow microfiltration. Chem. Eng. Sci. 1999, 54, 4023–4030. [Google Scholar] [CrossRef]
- Keskinler, B.; Yildiz, E.; Erhan, E.; Dogru, M.; Bayhan, Y.K.; Akay, G. Cross-flow microfiltration of low concentration-nonliving yeast suspensions. J. Membr. Sci. 2004, 233, 59–69. [Google Scholar] [CrossRef]
- Damayanti, A.; Ujang, Z.; Salim, M.R. The influenced of PAC, zeolite, and moringa oleifera as biofouling reducer (BFR) on hybrid membrane bioreactor of palm oil mill effluent (POME). Bioresour. Technol. 2011, 102, 4341–4346. [Google Scholar] [CrossRef] [PubMed]
- Siembida, B.; Cornel, P.; Krause, S.; Zimmermann, B. Effect of mechanical cleaning with granular material on the permeability of submerged membranes in the MBR process. Water Res. 2010, 44, 4037–4046. [Google Scholar] [CrossRef] [PubMed]
- Alresheedi, M.T.; Basu, O.D. Support media impacts on humic acid, cellulose, and kaolin clay in reducing fouling in a submerged hollow fiber membrane system. J. Membr. Sci. 2014, 450, 282–290. [Google Scholar] [CrossRef]
- De Temmerman, L.; Maere, T.; Temmink, H.; Zwijnenburg, A.; Nopens, I. Salt stress in a membrane bioreactor: Dynamics of sludge properties, membrane fouling and remediation through powdered activated carbon dosing. Water Res. 2014, 63, 112–124. [Google Scholar] [CrossRef]
- Pradhan, M.; Vigneswaran, S.; Kandasamy, J. Assessment of fouling behaviour in submerged microfiltration system coupled with flocculation. J. Ind. Eng. Chem. 2015, 21, 254–260. [Google Scholar] [CrossRef]
- Rafiei, B.; Naeimpoor, F.; Mohammadi, T. Bio-filmand bio-entrapped hybridmembrane bioreactors in wastewater treatment: Comparison of membrane fouling and removal efficiency. Desalination 2014, 337, 16–22. [Google Scholar] [CrossRef]
- Panpanit, S.; Visvanathan, C. The role of bentonite addition in UF flux enhancement mechanisms for oil/water emulsion. J. Membr. Sci. 2001, 184, 59–68. [Google Scholar] [CrossRef]
- McCarthy, A.A.; Gilboy, P.; Walsh, P.K.; Foley, G. Characterisation of cake compressibility in dead-end microfiltration of microbial suspension. Chem. Eng. Community 1999, 173, 79–90. [Google Scholar] [CrossRef]
- McCarthy, A.A.; Walsh, P.K.; Foley, G. Characterising the packing and dead-end filter cake compressibility of the polymorphic yeast Kluyveromyces marxianus var. marxianus NRRLy2415. J. Membr. Sci. 2002, 198, 87–94. [Google Scholar] [CrossRef]
- McCarthy, A.A.; Walsh, P.K.; Foley, G. Experimental techniques for quantifying the cake mass, the cake and membrane resistances and the specific cake resistance during crossflow filtration of microbial suspensions. J. Membr. Sci. 2002, 201, 31–45. [Google Scholar] [CrossRef]
- Foley, G.; McCarthy, A.A.; Walsh, P.K. Evidence for shape-dependent deposition in crossflow microfiltration of microbial cells. J. Membr. Sci. 2005, 250, 311–313. [Google Scholar] [CrossRef]
- Wu, J.; Le-Clech, P.; Stuetz, R.; Fane, A.; Chen, V. Effects of relaxation and backwashing conditions on fouling in membrane bioreactor. J. Membr. Sci. 2008, 324, 26–32. [Google Scholar] [CrossRef]
- Kim, H.Y.; Yeon, K.M.; Lee, C.H.; Lee, S.; Swaminathan, T. Biofilm structure and extracellular polymeric substances in low and high dissolved oxygen membrane bioreactors. Sep. Sci. Technol. 2006, 41, 1213–1230. [Google Scholar] [CrossRef]
- Blanpain-Avet, P.; Migdal, J.; Bnzech, T. Chemical cleaning of a tubular ceramic microfiltration membrane fouled with a whey protein concentrate suspension—Characterization of hydraulic and chemical cleanliness. J. Membr. Sci. 2009, 337, 153–174. [Google Scholar] [CrossRef]
- Porcelli, N.; Judd, S. Chemical cleaning of potable water membranes: A review. Sep. Purif. Technol. 2010, 71, 137–143. [Google Scholar] [CrossRef]
- Jiang, W.; Wei, Y.; Gao, X.; Gao, C.; Wang, Y. An innovative backwash cleaning technique for NF membrane in groundwater desalination: Fouling reversibility and cleaning without chemical detergent. Desalination 2015, 359, 26–36. [Google Scholar] [CrossRef]
- Strugholtz, S.; Sundaramoorthy, K.; Panglisch, S.; Lerch, A.; Brugger, A.; Gimbel, R. Evaluation of the performance of different chemicals for cleaning capillary membranes. Desalination 2005, 179, 191–202. [Google Scholar] [CrossRef]
- D’Souza, N.M.; Mawson, A.J. Membrane cleaning in the dairy industry: A review. Crit. Rev. Food Sci. Nutr. 2005, 45, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Herbert, H.P.; Fang, M.; Shi, X. Pore fouling of microfiltration membranes by activated sludge. J. Membr. Sci. 2005, 264, 161–166. [Google Scholar] [CrossRef]
- Chang, I.-S.; Bag, S.-O.; Lee, C.-H. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge. Proc. Biochem. 2001, 36, 855–860. [Google Scholar] [CrossRef]
- Meng, F.; Yang, F. Fouling mechanisms of deflocculated sludge, normal sludge, and bulking sludge in membrane bioreactor. J. Membr. Sci. 2007, 305, 48–56. [Google Scholar] [CrossRef]
- Garcia, G.E.; Kanj, J. Two years of membrane bioreactor plant operation experience at the Vejas tribe reservation. In Proceedings of the Water Environment Federation’s 75th Annual Technical Exhibition and Conference, Chicago, IL, USA, 28 September–2 October 2002. [Google Scholar]
- Verberk, J.; van Dijk, H. Research on AirFlush: Distribution of water and air in tubular and capillary membrane modules. Water Sci. Technol. Water Supply 2003, 3, 409–414. [Google Scholar] [CrossRef]
- Howell, J.A.; Chua, H.C.; Arnot, T.C. In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history. J. Membr. Sci. 2004, 242, 13–19. [Google Scholar] [CrossRef]
- Abrahamse, A.; Lipreau, C.; Li, S.; Heijman, S. Removal of divalent cations reduces fouling of ultrafiltration membranes. J. Membr. Sci. 2008, 323, 153–158. [Google Scholar] [CrossRef]
- Liang, H.; Gong, W.; Chen, J.; Li, G. Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment. Desalination 2008, 220, 267–272. [Google Scholar] [CrossRef]
- Li, S.; Heijman, S.; Verberk, J.; Verliefde, A.; Kemperman, A.; van Dijk, J.; Amy, G. Impact of backwash water composition on ultrafiltration fouling control. J. Membr. Sci. 2009, 344, 17–25. [Google Scholar] [CrossRef]
- Hong, S.; Faibish, R.S.; Elimelech, M. Kinetics of permeate flux decline in crossflow membrane filtration of colloidal suspensions. J. Colloid Interface Sci. 1997, 196, 267–277. [Google Scholar] [CrossRef]
- Zsirai, T.; Buzatu, P.; Aerts, P.; Judd, S. Efficacy of relaxation, backflushing, chemical cleaning and clogging removal for an immersed hollow fibre membrane bioreactor. Water Res. 2012, 46, 4499–4507. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, A.; Di Bella, G.; Mannina, G.; Torregrossa, M.; Viviani, G. Biological Nutrient Removal and Fouling Phenomena in a University of Cape Town Membrane Bioreactor Treating High Nitrogen Loads. J. Environ. Eng. 2013, 139, 773–780. [Google Scholar] [CrossRef]
- Cosenza, A.; Di Bella, G.; Mannina, G.; Torregrossa, M. The role of EPS in fouling and foaming phenomena for a membrane bioreactor. Bioresour. Technol. 2013, 147, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Masselin, I.; Chasseray, X.; Durand-Bourlier, L.; Lain, J.M.; PSyzaret, Y.; Lemordant, D. Effect of sonication on polymeric membranes. J. Membr. Sci. 2001, 181, 213–220. [Google Scholar] [CrossRef]
- Muthukumaran, S.; Yang, K.; Seuren, A.; Kentish, S.; Ashokkumar, M.; Stevens, G.; Grieser, F. The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Sep. Purif. Technol. 2004, 39, 99–107. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Nnanna, A.A. Fouling mitigation for hollow-fiber UF membrane by sonication. Desalination 2011, 281, 23–29. [Google Scholar] [CrossRef]
- Maartens, A.; Jacobs, E.; Swart, P. UF of pulp and paper effluent: Membrane fouling-prevention and cleaning. J. Membr. Sci. 2002, 209, 81–92. [Google Scholar] [CrossRef]
- Psoch, C.; Schiewer, S. Resistance analysis for enhanced wastewater membrane filtration. J. Membr. Sci. 2006, 280, 284–297. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications, 2nd ed.; Wiley: Chichester, UK, 2004; ISBN 0-470-85445-6. [Google Scholar]
- Cui, Z.; Taha, T. Enhancement of ultrafiltration using gas sparging: A comparison of different membrane modules. J. Chem. Technol. Biotechnol. 2003, 8, 249–253. [Google Scholar] [CrossRef]
- Psoch, C.; Schiewer, S. Critical flux aspect of air sparging and backflushing on membrane bioreactors. Desalination 2005, 175, 61–71. [Google Scholar] [CrossRef]
- Muthukumaran, S.; Kentish, S.; Lalchandani, S.; Ashokkumar, M.; Mawson, R.; Stevens, G.W.; Grieser, F. The optimisation of ultra-sonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrason. Sonochem. 2005, 12, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Torregrossa, M.; Viviani, G. The role of EPS concentration in MBR foaming: Analysis of a submerged pilot plant. Bioresour. Tecnhol. 2011, 102, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Jeison, D.; van Lier, J.B. Cake formation and consolidation: Main factors governing the applicable flux in anaerobic submerged membrane bioreactors (AnSMBR) treating acidified wastewaters. Sep. Purif. Technol. 2007, 56, 71–78. [Google Scholar] [CrossRef]
- Nittami, T.; Tokunaga, H.; Satoh, A.; Matsumoto, T.K. Influence of surface hydrophilicity on polytetrafluoroethylene flat sheet membrane fouling in a submerged membrane bioreactor using two activated sludges with different characteristics. J. Membr. Sci. 2014, 463, 183–189. [Google Scholar] [CrossRef]
- Qin, L.; Fan, Z.; Xu, L.; Zhang, G.; Wang, G.; Wua, D.; Long, X.; Meng, Q. A submerged membrane bioreactor with pendulum type oscillation (PTO) for oily wastewater treatment: Membrane permeability and fouling control. Bioresour. Technol. 2015, 183, 33–41. [Google Scholar] [CrossRef] [PubMed]
Resistance | Mechanism Description | Main Classification | References |
---|---|---|---|
Rad | Resistance due to adsorption of particles matter onto the membrane | Intermediate blocking | Choi et al. [70,86] Busch et al. [71] |
Rb | Resistance due to blocking phenomenon | Standard blocking | Jiang et al. [89] |
Rc | Resistance due to cake deposition | Cake deposition | Lee et al. [115] Meng et al. [66] Wintgens et al. [116] Chu and Li [85] Ludwig et al. [118] |
Rbw | Resistance due to irreversible fouling of dissolved matter and colloids. | Intermediate blocking | Jiang et al. [89] |
Rirb or Rb | Resistance due to internal irreversible fouling or internal blocking | Complete blocking | Jiang et al. [89] Broeckmann et al. [81] |
Rirc | Resistance due to superficial irreversible deposition | Intermediate blocking | Jiang et al. [89] |
Rreb | Resistance due to superficial reversible fouling or internal blocking | Intermediate blocking | Jiang et al. [89] |
Rrec | Resistance due to internal reversible fouling | Cake deposition | Jiang et al. [89] |
RC,irr | Resistance due to irreversible cake deposition | Intermediate blocking | Jeison and van Lier [119] Di Bella et al. [55] Mannina and Di Bella. [73] Di Bella et al. [56] Di Trapani et al. [76] |
RC,rev | Resistance due to reversible cake deposition | Cake deposition | Di Bella et al. [55] Mannina and Di Bella. [73] Di Bella et al. [56] Di Trapani et al. [76] |
Rco | Resistance do to internal deposition of colloids | Standard blocking | Wisniewski and Grasmick [35] Jiang et al. [89] |
Rcp | Resistance due to concentration by polarization | Intermediate blocking | Choi et al. [70,86] Busch et al. [71] |
Rf | Resistance of “Pore fouling” | Pore blocking | Lee et al. [115] Meng et al. [66] Wintgens et al. [116] Chu and Li [83] Ludwig et al. [118] |
Rp | Resistance due to irreversible pore blocking | Pore blocking | Bowen et al. [97] Chu and Li [83] Li and Wang [110] Broeckmann et al. [81] |
RPB | Resistance due to pore blocking | Pore blocking | Lee et al. [115] Meng et al. [66] Diez et al. [52] |
Rsc | Resistance due to dynamic deposition of reversible biofouling | Intermediate blocking | Chu e Li [83] Li e Wang [110] |
Rsf | Resistance due to persistent deposition of irreversible biofouling | Standard blocking | Chu e Li [83] Li and Wang [110] |
Rrev or Rrf | Resistance due to reversible fouling mechanism | Cake deposition intermediate blocking | Di Bella et al. [55] Mannina et al. [111] Diez et al. [52] |
Rirr or Rif | Resistance due to irreversible fouling mechanism | Pore blocking intermediate blocking | Di Bella et al. [55] Mannina et al. [111] Diez et al. [52] |
Denomination | Description | References |
---|---|---|
Water washing: | Can be performed in two different ways: with a shaker or manual. In the first case, “Shaker water washing”, the fouled membrane is placed in a tank containing a known volume of ultrapure water and shaken at a fixed speed (for a fixed time). In the case of “manual water washing” the membrane surface (or fiber) is rinsed under a stream of pressurized water and gently rub. | Chang et al. [161] Verberk and van Dijk [164] Liang et al. [167] Di Bella et al. [56] Cosenza et al. [171] Di Trapani et al. [76] |
Ultrasonication | The membrane is placed in a container of a known volume containing ultrapure water and then subject to a typical ultrasound washing, similarly to the one used for washing the glassware in the laboratory. The contact time and the power may vary as a function of fouling. | Masselin et al. [173] Herbert et al. [160] Muthukumaran et al. [174] Li et al. [175] Maartens et al. [176] |
Sponge scrubbing | The membrane is cleaned with a “sponge” until the surface of the membrane is apparently clean. This method is often used for a membrane with "flat panels" | Maartens et al. [176] Meng et al. [66] Psoch and Schiewer [177] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Bella, G.; Di Trapani, D. A Brief Review on the Resistance-in-Series Model in Membrane Bioreactors (MBRs). Membranes 2019, 9, 24. https://doi.org/10.3390/membranes9020024
Di Bella G, Di Trapani D. A Brief Review on the Resistance-in-Series Model in Membrane Bioreactors (MBRs). Membranes. 2019; 9(2):24. https://doi.org/10.3390/membranes9020024
Chicago/Turabian StyleDi Bella, Gaetano, and Daniele Di Trapani. 2019. "A Brief Review on the Resistance-in-Series Model in Membrane Bioreactors (MBRs)" Membranes 9, no. 2: 24. https://doi.org/10.3390/membranes9020024
APA StyleDi Bella, G., & Di Trapani, D. (2019). A Brief Review on the Resistance-in-Series Model in Membrane Bioreactors (MBRs). Membranes, 9(2), 24. https://doi.org/10.3390/membranes9020024