Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs
Abstract
:1. Introduction
2. Structural Topology and Internalization of NPRA
2.1. Ligand-Mediated Internalization
2.2. Down-Regulation and Metabolic Degradation
2.3. Inactivation or Desensitization
2.4. Role for microRNA Interference and Endocytosis
2.5. Clathrin Versus Caveolae-Mediated Trafficking of Membrane Receptors
3. Internalization and Trafficking of NPRB
4. Role of C-Terminus Domain and Small Peptide Sequence Motifs in the Internalization of Membrane Receptors
Membrane Receptor/Protein | Signal Motifs (1-Letter Code) | Amino Acids (3-Letter Code) | Reference |
---|---|---|---|
Acetylcholine transporter | DSLL | Asp-Ser-leu-Leu | [180] |
Beta-amyloid precursor protein | YENPTY | (Tyr-Glu-Asn-Pro-Thr-Tyr) | [181] |
CD3 Chains | [DE]xxxL[LI] | (Asp-Glu-x-x-x-Leu-Iso) | [182] |
CD-Mannose-6-phosphate receptor | YKYSKV | (Tyr-Lys-Tyr-Ser-Lys-Val) | [183] |
CI-Mannose-6-phosphate receptor | YSKV | (Tyr-Ser-Lys-Val) | [184] |
GC-A/natriuretic peptide receptor-A | GDAY | (Gly-Asp-Ala-Tyr) | [26] |
Integrin | NPxY | (Asn-Pro-x-Tyr) | [185] |
Insulin-like growth factor receptor | YxxPhi | (Tyr-x-x-Leu) | [183,184] |
LDL receptor | FDNPVY | (Phe-Asp-Asn-Pro-Val-Tyr) | [186] |
LH receptor | GTALL | (Gly-Thr-Ala-Leu-Leu) | [187] |
LDL-related receptor | YATL | (Tyr-Ala-Thr-Leu) | [188] |
Mannose phosphate receptor | FENTLY | (Phe-Glu-Asn-Thr-Leu-Tyr) | [183,184] |
Platelet activating factor receptor | [YF]xNPx[YF] | (Tyr-Phe-x-Asn-Pro-Tyr-Phe) | [189] |
Protease-activated receptor-1 | YKKL | (Tys-Lys-Lys-Leu) | [190] |
P2x receptor (ATP-gated ion channel) | YEQGL | (Tyr-Glu-Gln-Gly-Leu) | [191] |
Transferrin receptor | YTRF/Q | (Tyr-Thr-Arg-Phe/Leu) | [183,184] |
T-cell receptor | YQPL | (Tyr-Gln-Pro-Leu) | [184] |
Glutamate receptor | YWL | (Tyr-x-Leu) | [192] |
4.1. GDAY Motif and Internalization of Membrane Receptors
4.2. NPXY Motif and Internalization of Membrane Receptors
Signal Motifs | Amino Acid Sequence | NPRA Sequence | Reference |
---|---|---|---|
DPxxY | Asp220-Phe221-x-x-Try224 | Ligand-binding domain | [5] |
YTKL | Try224-Thr225-Lys226-Leu227 | Ligand-binding domain | [5] |
YVFF | Try264-Val265-Phe266-Phe267 | Ligand-binding domain | [5] |
NPxY | Asn315-Pro316-x-Phe318 | Ligand-binding domain | [5] |
YLEF | Try317-Leu318-Glu319-Phe220 | Ligand-binding domain | [5] |
KKFN | Lys331-Lys332-Phe333-Asn334 | Ligand-binding domain | [5] |
DGLLL | Asp351-Gly352-Leu353-Leu354-Leu355 | Ligand-binding domain | [5] |
YLKI | Phe390-Leu391-Lys392-Ile393 | Ligand-binding domain | [5] |
YWPL | Phe437-Met438-Pro439-Leu440 | Ligand-binding domain | [5] |
YGSL | Phe536-Gly537-Ser538-Leu539 | Protein-KHD | [5] |
SLL | Ser538-Leu539-Leu540 | Protein-KHD | [5] |
KKLW | Lys694-Lys695-Leu696-Trp697 | Protein-KHD | [5] |
FQQI | Phe790-Gln791-Gln792-Ile793 | Protein-KHD | [5] |
YQIL | Tyr846-Gln847-Ile848-Leu849 | Protein-KHD | [5] |
YTCF | Tyr901-Thr902-Cys903-Phe904 | GC Catalytic domain | [5] |
GDAY | Gly920-Asp921-Ala922-Try923 | GC Catalytic domain | [5,26] |
YMVV | Tyr923-Met924-Val925-Val926 | GC Catalytic domain | [5] |
YCLF | Tyr998-Cys999-Leu1000-Phe1001 | GC Catalytic domain | [5] |
YWLL | Tyr1045-Trp1046-Leu1047-Leu1048 | GC Catalytic domain | [5] |
4.3. Dileucine Motifs and Endocytosis of Membrane Receptors
4.4. YXXphi-Type Signal-Sequence Motifs and Internalization of Membrane Receptors
5. Conclusions
Acknowledgments
Conflicts of Interest
Definitions
ANP | atrial natriuretic peptide |
BNP | brain natriuretic peptide |
CNP | C-Type natriuretic peptide |
GC-A/NPRA | guanylyl cyclase/natriuretic peptide receptor-A |
GC-B/NPRB | guanylyl cyclase/natriuretic peptide receptor-B |
NPRC | natriuretic peptide clearance receptor |
KHD | kinase homology domain |
GC | guanylyl cyclase |
EGF | epidermal growth factor |
HEK-293cells | human embryonic kidney-293 cells |
Npr1 | guanylyl cyclase/natriuretic peptide receptor-A gene |
miRNA | microRNA |
pCMV | plasmid with cytomegallovirus promoter |
TGF-βR | transforming growth factor-beta receptor |
Dab-1/2 | disabled-1/2 |
AP-1-5 | adaptor protein-1-5 |
PTB | phosphotyrosine binding |
LDL | low density lipoprotein |
GABA | γ -aminobutyric acid |
ARF | ADP-ribosylation factor |
TGN | trans-Golgi network |
GGA | Golgi-localizing gamma-adaptor |
References
- De Bold, A.J. Atrial natriuretic factor: A hormone produced by the heart. Science 1985, 230, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.R.; Gardner, D.G.; Samson, W.K. Natriuretic peptides. N. Engl. J. Med. 1998, 339, 321–328. [Google Scholar] [PubMed]
- Pandey, K.N. Emerging roles of antriuretic peptides and their receptors in pathophysiology of hypertension and cardiovascular regulation. J. Am. Soc. Hypert. 2008, 2, 210–226. [Google Scholar] [CrossRef]
- Garbers, D.L. Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell 1992, 71, 1–4. [Google Scholar] [CrossRef]
- Pandey, K.N.; Singh, S. Molecular cloning and expression of murine guanylate cyclase/atrial natriuretic factor receptor cdna. J. Biol. Chem. 1990, 265, 12342–12348. [Google Scholar] [PubMed]
- Koller, K.J.; de Sauvage, F.J.; Lowe, D.G.; Goeddel, D.V. Conservation of the kinaselike regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Mol. Cell. Biol. 1992, 12, 2581–2590. [Google Scholar] [PubMed]
- Fuller, F.; Porter, J.G.; Arfsten, A.E.; Miller, J.; Schilling, J.W.; Scarborough, R.M.; Lewicki, J.A.; Schenk, D.B. Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cdna clones. J. Biol. Chem. 1988, 263, 9395–9401. [Google Scholar] [PubMed]
- Maack, T.; Suzuki, M.; Almeida, F.A.; Nussenzveig, D.; Scarborough, R.M.; McEnroe, G.A.; Lewicki, J.A. Physiological role of silent receptors of atrial natriuretic factor. Science 1987, 238, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Cartledge, W.A.; Lincoln, T.M.; Pandey, K.N. Expression of guanylyl cyclase-A/Atrial natriuretic peptide receptor blocks the activation of protein kinase C in vascular smooth muscle cells. Role of cGMP and cGMP-dependent protein kinase. Hypertension 1997, 29, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Lucas, K.A.; Pitari, G.M.; Kazerounian, S.; Ruiz-Stewart, I.; Park, J.; Schulz, S.; Chepenik, K.P.; Waldman, S.A. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev. 2000, 52, 375–414. [Google Scholar] [PubMed]
- Schulz, S. C-type natriuretic peptide and guanylyl cyclase B receptor. Peptides 2005, 26, 1024–1034. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, I.; Tokudome, T.; Nakao, K.; Kangawa, K. Natriuretic peptide system: An overview of studies using genetically engineered animal models. FEBS J. 2011, 278, 1830–1841. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N. The functional genomics of guanylyl cyclase/natriuretic peptide receptor-A: Perspectives and paradigms. FEBS J. 2011, 278, 1792–1807. [Google Scholar] [CrossRef] [PubMed]
- Volpe, M.; Rubattu, S.; Burnett, J., Jr. Natriuretic peptides in cardiovascular diseases: Current use and perspectives. Eur. Heart J. 2014, 35, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Oliver, P.M.; Fox, J.E.; Kim, R.; Rockman, H.A.; Kim, H.S.; Reddick, R.L.; Pandey, K.N.; Milgram, S.L.; Smithies, O.; Maeda, N. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc. Natl. Acad. Sci. USA 1997, 94, 14730–14735. [Google Scholar] [CrossRef] [PubMed]
- Vellaichamy, E.; Khurana, M.L.; Fink, J.; Pandey, K.N. Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylyl cyclase/natriuretic peptide receptor A. J. Biol. Chem. 2005, 280, 19230–19242. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Periyasamy, R.; Das, S.; Neerukonda, S.; Mani, I.; Pandey, K.N. All-trans retinoic acid and sodium butyrate enhance natriuretic peptide receptor a gene transcription: Role of histone modification. Mol. Pharmacol. 2014, 85, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Das, S.; Pandey, K.N. Interactive roles of NPR1 gene-dosage and salt diets on cardiac angiotensin ii, aldosterone and pro-inflammatory cytokines levels in mutant mice. J. Hypertens. 2013, 31, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca(2+) release, and activation of protein kinase C. Front. Mol. Neurosci. 2014, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N. Stoichiometric analysis of internalization, recycling, and redistribution of photoaffinity-labeled guanylate cyclase/atrial natriuretic factor receptors in cultured murine Leydig tumor cells. J. Biol. Chem. 1993, 268, 4382–4390. [Google Scholar] [PubMed]
- Pandey, K.N. Biology of natriuretic peptides and their receptors. Peptides 2005, 26, 901–932. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N. Functional roles of short sequence motifs in the endocytosis of membrane receptors. Front. Biosci. 2009, 14, 5339–5360. [Google Scholar] [CrossRef]
- Pandey, K.N.; Kumar, R.; Li, M.; Nguyen, H. Functional domains and expression of truncated atrial natriuretic peptide receptor-A: The carboxyl-terminal regions direct the receptor internalization and sequestration in COS-7 cells. Mol. Pharmacol. 2000, 57, 259–267. [Google Scholar] [PubMed]
- Pandey, K.N. Small peptide recognition sequence for intracellular sorting. Curr. Opin. Biotechnol. 2010, 21, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N.; Nguyen, H.T.; Sharma, G.D.; Shi, S.J.; Kriegel, A.M. Ligand-regulated internalization, trafficking, and down-regulation of guanylyl cyclase/atrial natriuretic peptide receptor-A in human embryonic kidney 293 cells. J. Biol. Chem. 2002, 277, 4618–4627. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N.; Nguyen, H.T.; Garg, R.; Khurana, M.L.; Fink, J. Internalization and trafficking of guanylyl (guanylate) cyclase/natriuretic peptide receptor A is regulated by an acidic tyrosine-based cytoplasmic motif gday. Biochem. J. 2005, 388, 103–113. [Google Scholar] [PubMed]
- Bonifacino, J.S.; Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 2003, 72, 395–447. [Google Scholar] [CrossRef] [PubMed]
- Kirchhausen, T. Single-handed recognition of a sorting traffic motif by the GGA proteins. Nat. Struct. Biol. 2002, 9, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Dupre, D.J.; Hebert, T.E. Biosynthesis and trafficking of seven transmembrane receptor signalling complexes. Cell Signal. 2006, 18, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Pelkmans, L.; Fava, E.; Grabner, H.; Hannus, M.; Habermann, B.; Krausz, E.; Zerial, M. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 2005, 436, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Sorkin, A.; von Zastrow, M. Endocytosis and signalling: Intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 2009, 10, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Traub, L.M. Clathrin couture: Fashioning distinctive membrane coats at the cell surface. PLoS Biol. 2009, 7, e1000192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozik, P.; Francis, R.W.; Seaman, M.N.; Robinson, M.S. A screen for endocytic motifs. Traffic 2010, 11, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Mardones, G.A.; Burgos, P.V.; Lin, Y.; Kloer, D.P.; Magadan, J.G.; Hurley, J.H.; Bonifacino, J.S. Structural basis for the recognition of tyrosine-based sorting signals by the μ3a subunit of the AP-3 adaptor complex. J. Biol. Chem. 2013, 288, 9563–9571. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N. Kinetic analysis of internalization, recycling and redistribution of atrial natriuretic factor-receptor complex in cultured vascular smooth-muscle cells. Ligand-dependent receptor down-regulation. Biochem. J. 1992, 288, 55–61. [Google Scholar] [PubMed]
- Brothers, S.P.; Janovick, J.A.; Maya-Nunez, G.; Cornea, A.; Han, X.B.; Conn, P.M. Conserved mammalian gonadotropin-releasing hormone receptor carboxyl terminal amino acids regulate ligand binding, effector coupling and internalization. Mol. Cell. Endocrinol. 2002, 190, 19–27. [Google Scholar] [CrossRef]
- Stolt, P.C.; Bock, H.H. Modulation of lipoprotein receptor functions by intracellular adaptor proteins. Cell Signal. 2006, 18, 1560–1571. [Google Scholar] [CrossRef] [PubMed]
- Davey, N.E.; van Roey, K.; Weatheritt, R.J.; Toedt, G.; Uyar, B.; Altenberg, B.; Budd, A.; Diella, F.; Dinkel, H.; Gibson, T.J. Attributes of short linear motifs. Mol. BioSyst. 2012, 8, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Farias, G.G.; Cuitino, L.; Guo, X.; Ren, X.; Jarnik, M.; Mattera, R.; Bonifacino, J.S. Signal-mediated, AP-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons. Neuron 2012, 75, 810–823. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.T.; Owen, D.J. Endocytic sorting of transmembrane protein cargo. Curr. Opin. Cell Biol. 2011, 23, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Saftig, P.; Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol. 2009, 10, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Traub, L.M. Tickets to ride: Selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 2009, 10, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Traub, L.M.; Bonifacino, J.S. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 2013, 5, a016790. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, P.P.; von Zastrow, M. Endocytosis, signaling, and beyond. Cold Spring Harb. Perspect. Biol. 2014, 6, a016865. [Google Scholar]
- Reider, A.; Wendland, B. Endocytic adaptors—Social networking at the plasma membrane. J. Cell Sci. 2011, 124, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- McMahon, H.T.; Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2011, 12, 517–533. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.E.; Padilla, B.E.; Hasdemir, B.; Cottrell, G.S.; Bunnett, N.W. Endosomes: A legitimate platform for the signaling train. Proc. Natl. Acad. Sci. USA 2009, 106, 17615–17622. [Google Scholar] [CrossRef] [PubMed]
- Sorkina, T.; Hoover, B.R.; Zahniser, N.R.; Sorkin, A. Constitutive and protein kinase C-induced internalization of the dopamine transporter is mediated by a clathrin-dependent mechanism. Traffic 2005, 6, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.D.; Donaldson, J.G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 2009, 10, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.P.; Aguet, F.; Danuser, G.; Schmid, S.L. Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J. Cell Biol. 2010, 191, 1381–1393. [Google Scholar] [CrossRef] [PubMed]
- Mettlen, M.; Loerke, D.; Yarar, D.; Danuser, G.; Schmid, S.L. Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J. Cell Biol. 2010, 188, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Morcavallo, A.; Stefanello, M.; Iozzo, R.V.; Belfiore, A.; Morrione, A. Ligand-mediated endocytosis and trafficking of the insulin-like growth factor receptor I and insulin receptor modulate receptor function. Front. Endocrinol. 2014, 5, 220. [Google Scholar] [CrossRef] [PubMed]
- Kirchhausen, T.; Owen, D.; Harrison, S.C. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol. 2014, 6, a016725. [Google Scholar] [CrossRef] [PubMed]
- Chinkers, M.; Garbers, D.L.; Chang, M.S.; Lowe, D.G.; Chin, H.M.; Goeddel, D.V.; Schulz, S. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 1989, 338, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.G.; Chang, M.-S.; Hellmis, R.; Chen, E.; Singh, S.; Garbers, D.L.; Goeddel, D.V. Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J. 1989, 8, 1377–1384. [Google Scholar] [PubMed]
- Schulz, S.; Singh, S.; Bellet, R.A.; Singh, G.; Tubb, D.J.; Chin, H.; Garbers, D.L. The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 1989, 58, 1155–1162. [Google Scholar] [CrossRef]
- Garg, R.; Oliver, P.M.; Maeda, N.; Pandey, K.N. Genomic structure, organization, and promoter region analysis of murine guanylyl cyclase/atrial natriuretic peptide receptor-A gene. Gene 2002, 291, 123–133. [Google Scholar] [CrossRef]
- Anand-Srivastava, M.B.; Trachte, G.J. Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol. Rev. 1993, 45, 455–497. [Google Scholar] [PubMed]
- Foster, D.C.; Garbers, D.L. Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A. J. Biol. Chem. 1998, 273, 16311–16318. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K. Evolution of the membrane guanylate cyclase transduction system. Mol. Cell. Bioch. 2002, 230, 3–30. [Google Scholar] [CrossRef]
- Khurana, M.L.; Pandey, K.N. Receptor-mediated stimulatory effect of atrial natriuretic factor, brain natriuretic peptide, and C-type natriuretic peptide on testosterone production in purified mouse leydig cells: Activation of cholesterol side-chain cleavage enzyme. Endocrinology 1993, 133, 2141–2149. [Google Scholar] [PubMed]
- Drewett, J.G.; Garbers, D.L. The family of guanylyl cyclase receptors and their ligands. Endocr. Rev. 1994, 15, 135–162. [Google Scholar] [CrossRef] [PubMed]
- Duda, T.; Goraczniak, R.M.; Sharma, R.K. Core sequence of ATP regulatory module in receptor guanylate cyclases. FEBS Lett. 1993, 315, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Koller, K.J.; Lipari, M.T.; Goeddel, D.V. Proper glycosylation and phosphorylation of the type a natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J. Biol. Chem. 1993, 268, 5997–6003. [Google Scholar] [PubMed]
- Goraczniak, R.M.; Duda, T.; Sharma, R.K. A structural motif that defines the ATP-regulatory module of guanylate cyclase in atrial natriuretic factor signalling. Biochem. J. 1992, 282, 533–537. [Google Scholar] [PubMed]
- Burczynska, B.; Duda, T.; Sharma, R.K. ATP signaling site in the arm domain of atrial natriuretic factor receptor guanylate cyclase. Mol. Cell. Biochem 2007, 301, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Chinkers, M.; Singh, S.; Garbers, D.L. Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J. Biol. Chem. 1991, 266, 4088–4093. [Google Scholar] [PubMed]
- Liu, Y.; Ruoho, E.R.; Rao, V.D.; Hurley, J.H. Catalytic mechanism of the adenylyl cyclase modeling and mutational analysis. Proc. Natl. Acad. Sci. USA 1997, 94, 13414–13419. [Google Scholar] [CrossRef] [PubMed]
- Sunahara, R.K.; Beuve, A.; Tesmer, J.J.G.; Sprang, S.R.; Garbers, D.L.; Gilman, A.G. Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclase. J. Biol. Chem. 1998, 273, 16332–16338. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.L.; Hurley, J.H.; Miller, T.R.; Hurley, J.B. Two amino acid substitutions convert a guanylyl cyclase, Ret GC-1 into an adenylyl cyclase. Proc. Natl. Acad. Sci. USA 1998, 95, 5993–5997. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N.; Nguyen, H.T.; Li, M.; Boyle, J.W. Natriuretic peptide receptor-A negatively regulates mitogen-activated protein kinase and proliferation of mesangial cells: Role of cGMP-dependent protein kinase. Biochem. Biophys. Res. Commun. 2000, 271, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Labrecque, J.; McNicoll, N.; Marquis, M.; de Lean, A. A disulfide-bridged mutant of natriuretic peptide receptor-A displays constitutive activity. Role of receptor dimerization in signal transduction. J. Biol. Chem. 1999, 274, 9752–9759. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.M.; Chinkers, M. Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 1995, 34, 4696–4701. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.B.; Garbers, D.L. Two eye guanylyl cyclase are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J. Biol. Chem. 1997, 272, 13738–13742. [Google Scholar] [CrossRef] [PubMed]
- Van den Akker, F.; Zang, X.; Miyagi, H.; Huo, X.; Misono, K.S.; Yee, V.C. Structure of the dimerized hormone-binding domain of a guanylyl cyclase-coupled receptor. Nature 2000, 406, 101–104. [Google Scholar] [PubMed]
- Misono, K.S.; Ogawa, H.; Qiu, Y.; Ogata, C.M. Structural studies of the natriuretic peptide receptor: A novel hormone-induced rotation mechanism for transmembrane signal transduction. Peptides 2005, 26, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N. Ligand-mediated endocytosis and intracellular sequestration of guanylyl cyclase/natriuretic peptide receptors: Role of GDAY motif. Mol. Cell. Biochem. 2010, 334, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Ogawa, H.; Miyagi, M.; Misono, K.S. Constitutive activation and uncoupling of the atrial natriuretic peptide receptor by mutations at the dimer interface: Role of the dimer structure in signaling. J. Biol. Chem. 2004, 279, 6115–6123. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Chow, D.; Martick, M.M.; Garcia, K.C. Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 2001, 293, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- He, X.L.; Dukkipati, A.; Wang, X.; Garcia, K.C. A new paradigm for hormone recognition and allosteric receptor activation revealed from structural studies of NPR-C. Peptides 2005, 26, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Van den Akker, F. Structural insights into the ligand binding domains of membrane bound guanylyl cyclases and natriuretic peptide receptors. J. Mol. Biol. 2001, 311, 923–937. [Google Scholar] [CrossRef] [PubMed]
- De Lean, A.; McNicoll, N.; Labrecque, J. Natriuretic peptide receptor a activation stabilizes a membrane-distal dimer interface. J. Biol. Chem. 2003, 278, 11159–11166. [Google Scholar] [CrossRef] [PubMed]
- Rathinavelu, A.; Isom, G.E. Differential internalization and processing of atrial-natriuretic-factor B and C receptor in PC12 cells. Biochem. J. 1991, 276, 493–497. [Google Scholar] [PubMed]
- Pandey, K.N.; Inagami, T.; Misono, K.S. Atrial natriuretic factor receptor on cultured leydig tumor cells: Ligand binding and photoaffinity labeling. Biochemistry 1986, 25, 8467–8472. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N.; Pavlou, S.N.; Inagami, T. Identification and characterization of three distinct atrial natriuretic factor receptors. Evidence for tissue-specific heterogeneity of receptor subtypes in vascular smooth muscle, kidney tubular epithelium, and Leydig tumor cells by ligand binding, photoaffinity labeling, and tryptic proteolysis. J. Biol. Chem. 1988, 263, 13406–13413. [Google Scholar] [PubMed]
- Pandey, K.N. Dynamics of internalization and sequestration of guanylyl cyclase/atrial natriuretic peptide receptor-A. Can. J. Physiol. Pharmacol. 2001, 79, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Cahill, P.A.; Redmond, E.M.; Keenan, A.K. Vascular atrial natriuretic factor receptor subtypes are not independently regulated by atrial peptides. J. Biol. Chem. 1990, 265, 21896–21906. [Google Scholar] [PubMed]
- Cohen, D.; Koh, G.Y.; Nikonova, L.N.; Porter, J.G.; Maack, T. Molecular determinants of the clearance function of type-C receptor of natriuretic peptides. J. Biol. Chem. 1996, 271, 9863–9869. [Google Scholar] [PubMed]
- Hirata, Y.; Takata, S.; Tomita, M.; Takaichi, S. Binding, internalization, and degradation of atrial natriuretic peptide in cultured vascular smooth muscle cells of rat. Biochem. Biophys. Res. Commun. 1985, 132, 976–984. [Google Scholar] [CrossRef]
- Murthy, K.K.; Thibault, G.; Cantin, M. Binding and intracellular degradation of atrial natriuretic factor by cultured vascular smooth muscle cells. Mol. Cell. Endocrinol. 1989, 67, 195–206. [Google Scholar] [CrossRef]
- Napier, M.; Arcuri, K.; Vandlen, R. Binding and internalization of atrial natriuretic factor by high-affinity receptors in A10 smooth muscle cells. Arch. Biochem. Biophys. 1986, 248, 516–522. [Google Scholar] [CrossRef]
- Nussenzveig, D.R.; Lewicki, J.A.; Maack, T. Cellular mechanisms of the clearance function of type-C receptors of atrial natriuretic factor. J. Biol. Chem. 1990, 265, 20952–20958. [Google Scholar] [PubMed]
- Pandey, K.N. Intracellular trafficking and metabolic turnover of ligand-bound guanylyl cyclase/atrial natriuretic peptide receptor-A into subcellular compartments. Mol. Cell. Biochem. 2002, 230, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N. Internalization and trafficking of guanylyl cyclase/natriuretic peptide receptor-A. Peptides 2005, 26, 985–1000. [Google Scholar] [CrossRef] [PubMed]
- Dickey, D.M.; Flora, D.R.; Potter, L.R. Antibody tracking demonstrates cell type-specific and ligand-independent internalization of guanylyl cyclase A and natriuretic peptide receptor C. Mol. Pharmacol. 2011, 80, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, G.; Cohen, S. 125I-labeled human epidermal growth factor: Binding, internalization, and degradation in human fibroblasts. J. Cell. Biol. 1976, 71, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Maxifeld, F.R.; Willingram, M.C.; Davis, P.J.; Pastan, I. Amines inhibit the clustering of alpha 2-macroglobulin and EGF on the fibroblast cell surface. Nature 1979, 227, 661–663. [Google Scholar] [CrossRef]
- Ganzalez-Noriega, A.; Grubb, A.; Talkad, J.T.; Sly, W.S. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J. Cell. Biol. 1980, 85, 839–852. [Google Scholar] [CrossRef]
- Tietze, C.; Schlesinger, P.; Stahl, P. Mannose-specific endocytosis receptor of alveolar macrophages: Demonstration of two functionally distinct intracellular pools of receptor and their roles in receptor recycling. J. Cell. Biol. 1982, 92, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Van Leuvan, F.; Cassiman, J.J.; van den Berghe, H. Primary amines inhibit recycling of α2 m receptors in fibroblasts. Cell 1980, 20, 37–43. [Google Scholar] [CrossRef]
- Backer, J.M.; Kahn, C.R.; White, M.F. Tyrosine phosphorylation of the insulin receptor is not required for receptor internalization: Studies in 2,4-dinitrophenol-treated cells. Pro. Natl. Acad. Sci. USA 1989, 86, 3201–3213. [Google Scholar] [CrossRef]
- Smith, R.M.; Jarett, L. Differences in adenosine triphosphate dependency of receptor-mediated endocytosis of α2 macroglobulin and insulin correlate with separate routes of ligand-receptor complex internalization. Endocrinology 1990, 126, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.S.; Anderson, R.G.W.; Goldstein, J.L. Recycling receptors: The round-trip itinerary of migrant membrane proteins. Cell 1983, 32, 663–667. [Google Scholar] [CrossRef]
- Elster, L.; Hansen, G.H.; Belhage, B.O.; Fritschy, J.M.; Mohler, H.; Schousboe, A. Differential distribution of gaba receptor subunits in soma and processes of cerebellular granule cells: Effects of maturation and a GABA agonist. J. Dev. Neurosci. 1995, 13, 417–428. [Google Scholar] [CrossRef]
- Barnes, E.M. Intracellular trafficking of GABAA receptors. Int. Rev. Neurobiol. 1996, 39, 53–76. [Google Scholar] [CrossRef]
- Miranda, J.D.; Barnes, E.M. Repression of γ-aminobutyric acid type a receptor a 1 polypeptide biosynthesis requires chronic agonist exposure. J. Biol. Chem. 1997, 272, 16288–16294. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, R.J. G protein-coupled receptors. J. Biol. Chem. 1998, 273, 18677–18680. [Google Scholar] [CrossRef] [PubMed]
- Flora, D.R.; Potter, L.R. Prolonged atrial natriuretic peptide exposure stimulates guanylyl cyclase-A degradation. Endocrinology 2010, 151, 2769–2776. [Google Scholar] [CrossRef] [PubMed]
- Tsao, P.; Cao, T.; von Zastrow, M. Role of endocytosis in mediating down-regulation of G-protein-coupled receptor. Trends Pharmacol. Sci. 2001, 22, 91–96. [Google Scholar] [CrossRef]
- Brown, M.S.; Goldstein, J.L. Receptor-mediated endocytosis: Insights from the lipoprotein receptor system. Proc. Natl. Acad. Sci. USA 1979, 76, 3330–3337. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.J.; Goldstein, J.L.; Brown, M.S. Npxy, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein. J. Biol. Chem. 1990, 265, 3116–3123. [Google Scholar]
- Berhanu, P. Internalized insulin-receptor complexes are unidirectionally translocated to chloroquine-senstitive degradative sites. J. Biol. Chem. 1988, 263, 5961–5969. [Google Scholar] [PubMed]
- Garza, L.A.; Birnbaum, M.J. Insulin-responsive aminopeptidease trafficking in 3T3-L1 adipocytes. J. Biol. Chem. 2000, 275, 2560–2567. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S. Dual pathways for the intracellular processing of insulin: Relationship between retroendocytosis of intact hormone and the recycling of insulin receptors. J. Biol.Chem. 1985, 260, 13524–13531. [Google Scholar] [PubMed]
- Ashworth, R.; Yu, R.; Nelson, E.J.; Dermer, S.; Gershengorn, M.C. Visualization of the thyrotropin-releasing hormone receptor and its ligand during endocytosis and recycling. Proc. Natl. Acad. Sci. USA 1995, 92, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Hartford, J.; Bridges, K.; Ashwell, G.; Klausner, R.D. Intracellular dissociation of receptor-bound asialoglycoproteins in cultured hepatocytes. J. Biol. Chem. 1983, 258, 3191–3197. [Google Scholar]
- Dunn, W.A.; Hubbard, A.L. Receptor-mediated endocytosis of epidermal growth factor by hepatocytes in the perfused rat liver: Ligand and receptor dynamics. J. Biol. Chem. 1984, 249, 5153–5162. [Google Scholar] [CrossRef]
- Marshall, S.; Green, A.; Olefsky, J.M. Evidence for recycling of insulin receptors in isolated rat adipocytes. J. Biol. Chem. 1981, 256, 11464–11470. [Google Scholar] [PubMed]
- Well, A.; Wellsh, J.B.; Lazer, C.S.; Wiley, H.S.; Rosenfeld, M.G. Ligand-induced transformation by a noninternalizing epidermal growth factor receptor. Science 1990, 247, 962–964. [Google Scholar] [CrossRef]
- Sorkin, A.; Westermark, B.; Heldin, C.H.; Claesson-Welsh, L. Effect of receptor kinase inactivation on the rat of internalization and degradation of PDGF and the PDGF beta-receptor. J. Cell. Biol. 1991, 112, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Sorkin, A.; von Zastrow, M. Signal transduction and endocytosis close encounters of many kinds. Nat. Rev. Mol. Cell. Biol. 2002, 3, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Burwen, S.J.; Barker, M.E.; Goldman, I.S.; Hradek, G.T.; Raper, S.E.; Jones, A.L. Transport of epidermal growth factor by rat liver: Evidence for a nonlysosomal pathway. J. Cell. Biol. 1984, 99, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.-M.; Kullberg, D.W. Diacytosis of 125I-asialoorosomucoid by rat hepatocytes: A non-lysosomal pathway insensitive to inhbibition by inhibitors of ligand degradation. Biochim. Biophys. Acta 1984, 805, 268–276. [Google Scholar] [CrossRef]
- Potter, L.R.; Garbers, D.L. Protein kinase C-dependent desensitization of the atrial natriuretic peptide receptor is mediated by dephosphorylation. J. Biol. Chem. 1994, 269, 14636–14642. [Google Scholar] [PubMed]
- Potter, L.R.; Hunter, T. Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor. J. Biol. Chem. 1998, 273, 15533–15539. [Google Scholar] [CrossRef] [PubMed]
- Duda, T.; Yadav, P.; Jankowska, A.; Venkataraman, V.; Sharma, R.K. Three dimensional atomic model and experimental validation for the ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol. Cell. Biochem. 2001, 217, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Larose, L.; Rondeau, J.J.; Ong, H.; de Lean, A. Phosphorylation of atrial natriuretic factor R1 receptor by serine/threonine protein kinases. Evidence for receptor regulation. Mol. Cell. Biochem. 1992, 115, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N. Stimulation of protein phosphorylation by atrial natriuretic factor in plasma membranes of bovine adrenal cortical cells. Biochem. Biophys. Res. Commun. 1989, 163, 988–994. [Google Scholar] [CrossRef]
- Sharma, R.K.; Duda, T. Plasma membrane guanylate cyclase: A multimodule transduction system. Adv. Exp. Med. Biol. 1997, 407, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.Y.; Chang, D.C.; Miller, J.D.; Lin, S.L. The microRNA: Overview of the RNA gene that modulates gene functions. Methods Mol. Biol. 2006, 342, 1–18. [Google Scholar] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef] [PubMed]
- Bohnsack, M.T.; Czaplinski, K.; Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004, 10, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Yi, R.; Qin, Y.; Macara, I.G.; Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17, 3011–3016. [Google Scholar] [CrossRef] [PubMed]
- Cullen, B.R. Derivation and function of small interfering rnas and microRNAs. Virus Res. 2004, 102, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Boden, D.; Pusch, O.; Silbermann, R.; Lee, F.; Tucker, L.; Ramratnam, B. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res. 2004, 32, 1154–1158. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wagner, E.J.; Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mrnas when expressed in human cells. Mol. Cell 2002, 9, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- McManus, M.T.; Petersen, C.P.; Haines, B.B.; Chen, J.; Sharp, P.A. Gene silencing using micro-RNA designed hairpins. RNA 2002, 8, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Somanna, N.K.; Pandey, A.C.; Arise, K.K.; Nguyen, V.; Pandey, K.N. Functional silencing of guanylyl cyclase/natriuretic peptide receptor-A by microrna interference: Analysis of receptor endocytosis. Int. J. Biochem. Mol. Biol. 2013, 4, 41–53. [Google Scholar] [PubMed]
- Conner, S.D.; Schmid, S.L. Regulated portals of entry into the cell. Nature 2003, 422, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Antonescu, C.N.; Foti, M.; Sauvonnet, N.; Klip, A. Ready, set, internalize: Mechanisms and regulation of GLUT4 endocytosis. Biosci. Rep. 2009, 29, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ungewickell, E.J.; Hinrichsen, L. Endocytosis: Clathrin-mediated membrane budding. Curr. Opin. Cell Biol. 2007, 19, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Farias, G.G.; Canagarajah, B.J.; Bonifacino, J.S.; Hurley, J.H. Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 2013, 152, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Sauvonnet, N.; Dujeancourt, A.; Dautry-Varsat, A. Cortactin and dynamin are required for the clathrin-independent endocytosis of gammac cytokine receptor. J. Cell Biol. 2005, 168, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, X.; Puertollano, R.; Bonifacino, J.S.; Eisenberg, E.; Greene, L.E. Adaptor and clathrin exchange at the plasma membrane and trans-Golgi network. Mol. Biol. Cell 2003, 14, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, M.; Piddini, E.; Vincent, J.P. Endocytosis: A positive or a negative influence on wnt signalling? Traffic 2008, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- McMahon, H.T.; Boucrot, E. Membrane curvature at a glance. J. Cell Sci. 2015, 128, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- McMahon, H.T.; Mills, I.G. Cop and clathrin-coated vesicle budding: Different pathways, common approaches. Curr. Opin. Cell Biol. 2004, 16, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Von Zastrow, M.; Sorkin, A. Signaling on the endocytic pathway. Curr. Opin. Cell Biol. 2007, 19, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Somanna, N.K.; Arise, K.K.; Pandey, K.N. Analysis of natriuretic peptide receptor A internalization by ribonucleic acid interference. J. Am. Investig. Med. 2007, 55, S262. [Google Scholar]
- Mani, I.; Garg, R.; Pandey, K.N. Immunofluorescence visualization of the internalization and subcellular trafficking of guanylyl cyclase/natriuretic peptide receptor-A in subcellular compartments. In Prceedings of the American Society for Cell Biology Annual Meeting, New Orleans, LA, USA, 14–18 December 2013.
- Foti, M.; Porcheron, G.; Fournier, M.; Maeder, C.; Carpentier, J.L. The neck of caveolae is a distinct plasma membrane subdomain that concentrates insulin receptors in 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA 2007, 104, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Parton, R.G.; Simons, K. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 2007, 8, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Richter, T.; Floetenmeyer, M.; Ferguson, C.; Galea, J.; Goh, J.; Lindsay, M.R.; Morgan, G.P.; Marsh, B.J.; Parton, R.G. High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola-cytoskeleton interactions. Traffic 2008, 9, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.I.; Krizman-Genda, E.; Robinson, M.B. Caveolin-1 regulates the delivery and endocytosis of the glutamate transporter, excitatory amino acid carrier 1. J. Biol. Chem. 2007, 282, 29855–29865. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Brown, J.C.; Cheng, Z.; Holicky, E.L.; Marks, D.L.; Pagano, R.E. The glycosphingolipid, lactosylceramide, regulates beta1-integrin clustering and endocytosis. Cancer Res. 2005, 65, 8233–8241. [Google Scholar] [CrossRef] [PubMed]
- Sigismund, S.; Woelk, T.; Puri, C.; Maspero, E.; Tacchetti, C.; Transidico, P.; di Fiore, P.P.; Polo, S. Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl. Acad. Sci. USA 2005, 102, 2760–2765. [Google Scholar] [CrossRef] [PubMed]
- Drab, M.; Verkade, P.; Elger, M.; Kasper, M.; Lohn, M.; Lauterbach, B.; Menne, J.; Lindschau, C.; Mende, F.; Luft, F.C.; et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001, 293, 2449–2452. [Google Scholar] [CrossRef] [PubMed]
- Simons, K.; Gerl, M.J. Revitalizing membrane rafts: New tools and insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gassner, B.; Borner, S.; Nikolaev, V.O.; Schlegel, N.; Waschke, J.; Steinbronn, N.; Strasser, R.; Kuhn, M. Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway. Cardiovasc. Res. 2012, 93, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Bastiani, M.; Parton, R.G. Caveolae at a glance. J. Cell Sci. 2010, 123, 3831–3836. [Google Scholar] [CrossRef] [PubMed]
- Doyle, D.D.; Ambler, S.K.; Upshaw-Earley, J.; Bastawrous, A.; Goings, G.E.; Page, E. Type b atrial natriuretic peptide receptor in cardiac myocyte caveolae. Circ. Res. 1997, 81, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, Y.T.; Panneerselvam, M.; Kawaraguchi, Y.; Tsutsumi, Y.M.; Ali, S.S.; Balijepalli, R.C.; Murray, F.; Head, B.P.; Niesman, I.R.; Rieg, T.; et al. Cardiac-specific overexpression of caveolin-3 attenuates cardiac hypertrophy and increases natriuretic peptide expression and signaling. J. Am. Coll. Cardiol. 2011, 57, 2273–2283. [Google Scholar] [CrossRef] [PubMed]
- Moren, B.; Shah, C.; Howes, M.T.; Schieber, N.L.; McMahon, H.T.; Parton, R.G.; Daumke, O.; Lundmark, R. EHD2 regulates caveolar dynamics via atp-driven targeting and oligomerization. Mol. Biol. Cell 2012, 23, 1316–1329. [Google Scholar] [CrossRef] [PubMed]
- Shah, C.; Hegde, B.G.; Moren, B.; Behrmann, E.; Mielke, T.; Moenke, G.; Spahn, C.M.; Lundmark, R.; Daumke, O.; Langen, R. Structural insights into membrane interaction and caveolar targeting of dynamin-like EHD2. Structure 2014, 22, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Praefcke, G.J.; McMahon, H.T. The dynamin superfamily: Universal membrane tubulation and fission molecules? Nat. Rev. Mol. Cell Biol. 2004, 5, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Daumke, O.; Lundmark, R.; Vallis, Y.; Martens, S.; Butler, P.J.; McMahon, H.T. Architectural and mechanistic insights into an EHD atpase involved in membrane remodelling. Nature 2007, 449, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Hommelgaard, A.M.; Roepstorff, K.; Vilhardt, F.; Torgersen, M.L.; Sandvig, K.; van Deurs, B. Caveolae: Stable membrane domains with a potential for internalization. Traffic 2005, 6, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, P.; Roepstorff, K.; Stahlhut, M.; van Deurs, B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 2002, 13, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Renard, H.F.; Simunovic, M.; Lemiere, J.; Boucrot, E.; Garcia-Castillo, M.D.; Arumugam, S.; Chambon, V.; Lamaze, C.; Wunder, C.; Kenworthy, A.K.; et al. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 2015, 517, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Boucrot, E.; Ferreira, A.P.; Almeida-Souza, L.; Debard, S.; Vallis, Y.; Howard, G.; Bertot, L.; Sauvonnet, N.; McMahon, H.T. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 2015, 517, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Brackmann, M.; Schuchmann, S.; Anand, R.; Braunewell, K.H. Neuronal Ca2+ sensor protein VILIP-1 affects cGMP signalling of guanylyl cyclase B by regulating clathrin-dependent receptor recycling in hippocampal neurons. J. Cell Sci. 2005, 118, 2495–2505. [Google Scholar] [CrossRef] [PubMed]
- Haft, C.R.; Klausner, R.D.; Taylor, S.I. Involvement of dileucine motifs in the internalization and degradation of the insulin receptors. J. Biol. Chem. 1994, 269, 26286–26294. [Google Scholar] [PubMed]
- Huang, Z.; Chen, Y.; Nissenson, R.A. The cytoplasmic tail of the G-protein-coupled receptor for parathyroid hormone and parathyroid hormone-related protein contains positive and negative signals for endocytosis. J. Biol. Chem. 1995, 270, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Perez, H.D.; Holmes, R.; Vilander, L.R.; Adams, R.R.; Manzana, W.; Jolley, D.; Andrews, W.H. Formyl peptide receptor chimeras define domains involved in ligand binding. J. Biol. Chem. 1993, 268, 2292–2295. [Google Scholar] [PubMed]
- Sorkin, A.; Mohammadi, M.; Huang, J.; Slessinger, J. Internalization of fibroblast growth factor receptor is inhibited by a point mutation at tyrosine 766. J. Biol. Chem. 1994, 269, 17056–17061. [Google Scholar]
- Kirchhausen, T. Adaptors for clathrin-mediated traffic. Annu. Rev. Cell. Dev. Biol. 1999, 15, 705–732. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, S.; Balla, S.; Huang, C.H.; Thapar, V.; Gryk, M.; Maciejewski, M.; Schiller, M. High-performance exact algorithms for motif search. J. Clin. Monit. Comput. 2005, 19, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Letourneur, F.; Klausner, R.D. A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 1992, 69, 1143–1157. [Google Scholar] [CrossRef]
- Herz, J.; Bock, H.H. Lipoprotein receptors in the nervous system. Annu. Rev. Biochem. 2002, 71, 405–434. [Google Scholar] [CrossRef] [PubMed]
- Doray, B.; Bruns, K.; Ghosh, P.; Kornfeld, S.A. Autoinhibition of the ligand-binding site of GGA1/3 VHS domains by an internal acidic cluster-dileucine motif. Proc. Natl. Acad. Sci. USA 2002, 99, 8072–8077. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Gierasch, L.M. The npxy internalization signal of the LDL receptor adopts a reverse-turn conformation. Cell 1991, 67, 1195–1201. [Google Scholar] [CrossRef]
- Ktistakis, N.T.; Thomas, D.; Roth, M.G. Characteristics of the tyrosine recognition signal for internalization of transmembrane surface glycoproteins. J. Cell Biol. 1990, 111, 1393–1407. [Google Scholar] [CrossRef] [PubMed]
- Bogdanovic, O.; Delfino-Machin, M.; Nicolas-Perez, M.; Gavilan, M.P.; Gago-Rodrigues, I.; Fernandez-Minan, A.; Lillo, C.; Rios, R.M.; Wittbrodt, J.; Martinez-Morales, J.R. Numb/Numbl-Opo antagonism controls retinal epithelium morphogenesis by regulating integrin endocytosis. Dev. Cell 2012, 23, 782–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, C.G.; Lehrman, M.A.; Russell, D.W.; Anderson, R.G.; Brown, M.S.; Goldstein, J.L. The J.D. Mutation in familial hypercholesterolemia: Amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell 1986, 45, 15–24. [Google Scholar] [CrossRef]
- Kishi, M.; Liu, X.; Hirakawa, T.; Reczek, D.; Bretscher, A.; Ascoli, M. Identification of two distinct structural motifs that, when added to the C-terminal tail of the rat LH receptor, redirect the internalized hormone-receptor complex from a degradation to a recycling pathway. Mol. Endocrinol. 2001, 15, 1624–1635. [Google Scholar] [CrossRef] [PubMed]
- Thies, R.S.; Webster, N.J.; McClain, D.A. A domain of the insulin receptor required for endocytosis in rat fibroblasts. J. Biol. Chem. 1990, 265, 10132–10137. [Google Scholar] [PubMed]
- Mulkearns, E.E.; Cooper, J.A. FCH domain only-2 organizes clathrin-coated structures and interacts with Disabled-2 for low-density lipoprotein receptor endocytosis. Mol. Biol. Cell 2012, 23, 1330–1342. [Google Scholar] [CrossRef] [PubMed]
- Traub, L.M. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J. Cell Biol. 2003, 163, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Levitan, E.S.; Takimoto, K. Surface expression of Kv1 voltage-gated K+ channels is governed by a C-terminal motif. Trends Cardiovasc. Med. 2000, 10, 317–320. [Google Scholar] [CrossRef]
- Colgan, L.; Liu, H.; Huang, S.Y.; Liu, Y.J. Dileucine motif is sufficient for internalization and synaptic vesicle targeting of vesicular acetylcholine transporter. Traffic 2007, 8, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Nussenzveig, D.R.; Heinflink, M.; Gershengorn, M.C. Agonist-stimulated internalization of the thyrotropin-releasing hormone receptor is dependent on two domains in the receptor carboxyl terminus. J. Biol. Chem. 1993, 268, 2389–2392. [Google Scholar] [PubMed]
- Rajagopalan, M.; Neidigh, J.L.; McClain, D.A. Amino acid sequences Gly-Pro-Leu-Tyr and Asn-Pro-Glu-Tyr in the submembranous domain of the insulin receptor are required for normal endocytosis. J. Biol. Chem. 1991, 266, 23068–23073. [Google Scholar] [PubMed]
- Singh, S.; D'Mello, V.; van Bergen en Henegouwen, P.; Birge, R.B. A NPxy-independent beta5 integrin activation signal regulates phagocytosis of apoptotic cells. Biochem. Biophys. Res. Commun. 2007, 364, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Maginnis, M.S.; Mainou, B.A.; Derdowski, A.; Johnson, E.M.; Zent, R.; Dermody, T.S. Npxy motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry. J. Virol. 2008, 82, 3181–3191. [Google Scholar] [CrossRef] [PubMed]
- Uhlik, M.T.; Temple, B.; Bencharit, S.; Kimple, A.J.; Siderovski, D.P.; Johnson, G.L. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J. Mol. Biol. 2005, 345, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Madshus, I.H.; Stang, E. Internalization and intracellular sorting of the EGF receptor: A model for understanding the mechanisms of receptor trafficking. J. Cell Sci. 2009, 122, 3433–3439. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.S.; Folsch, H. ARH cooperates with AP-1B in the exocytosis of LDLR in polarized epithelial cells. J. Cell Biol. 2011, 193, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Keyel, P.A.; Hawryluk, M.J.; Agostinelli, N.R.; Watkins, S.C.; Traub, L.M. Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J. 2002, 21, 4915–4926. [Google Scholar] [CrossRef] [PubMed]
- Paing, M.M.; Johnston, C.A.; Siderovski, D.P.; Trejo, J. Clathrin adaptor AP2 regulates thrombin receptor constitutive internalization and endothelial cell resensitization. Mol. Cell. Biol. 2006, 26, 3231–3242. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.P.; Kelly, B.T.; McCoy, A.J.; Gaffry, T.; James, L.C.; Collins, B.M.; Honing, S.; Evans, P.R.; Owen, D.J. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 2010, 141, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.M.; Cooper, J.A. Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic 2001, 2, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Oleinikov, A.V.; Zhao, J.; Makker, S.P. Cytosolic adaptor protein Dab2 is an intracellular ligand of endocytic receptor gp600/megalin. Biochem. J. 2000, 347, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Kibbey, R.G.; Rizo, J.; Gierasch, L.M.; Anderson, R.G. The LDL receptor clustering motif interacts with the clathrin terminal domain in a reverse turn conformation. J. Cell Biol. 1998, 142, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Collawn, J.F.; Kuhn, L.A.; Liu, L.F.; Tainer, J.A.; Trowbridge, I.S. Transplanted LDL and mannose-6-phosphate receptor internalization signals promote high-efficiency endocytosis of the transferrin receptor. EMBO J. 1991, 10, 3247–3253. [Google Scholar] [PubMed]
- Perez, R.G.; Soriano, S.; Hayes, J.D.; Ostaszewski, B.; Xia, W.; Selkoe, D.J.; Chen, X.; Stokin, G.B.; Koo, E.H. Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42. J. Biol. Chem. 1999, 274, 18851–18856. [Google Scholar] [CrossRef] [PubMed]
- Homayouni, R.; Rice, D.S.; Sheldon, M.; Curran, T. Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J. Neurosci. 1999, 19, 7507–7515. [Google Scholar] [PubMed]
- Chen, Z.; Dupre, D.J.; le Gouill, C.; Rola-Pleszczynski, M.; Stankova, J. Agonist-induced internalization of the platelet-activating factor receptor is dependent on arrestins but independent of G-protein activation. Role of the C terminus and the (D/N)PXXY motif. J. Biol. Chem. 2002, 277, 7356–7362. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, G.A.; Chakraborty, S.; Steinhauser, A.L.; Traub, L.M.; Madsen, M. AMN directs endocytosis of the intrinsic factor-vitamin B(12) receptor cubam by engaging ARH or Dab2. Traffic 2010, 11, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Huang, F.; Marusyk, A.; Sorkin, A. Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol. Biol. Cell 2003, 14, 858–870. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, M.H.; Partridge, A.; Shattil, S.J. Integrin regulation. Curr. Opin. Cell Biol. 2005, 17, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Liddington, R.C.; Ginsberg, M.H. Integrin activation takes shape. J. Cell Biol. 2002, 158, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Bouley, R.; Sun, T.X.; Chenard, M.; McLaughlin, M.; McKee, M.; Lin, H.Y.; Brown, D.; Ausiello, D.A. Functional role of the NPxxy motif in internalization of the type 2 vasopressin receptor in LLC-PK1 cells. Am. J. Physiol. Cell Physiol. 2003, 285, C750–C762. [Google Scholar] [CrossRef] [PubMed]
- Lazarovits, J.; Roth, M. A single amino acid change in the cytoplasmic domain allows the influenza virus hemagglutinin to be endocytosed through coated pits. Cell 1988, 53, 743–752. [Google Scholar] [CrossRef]
- Eberle, W.; Sander, C.; Klaus, W.; Schmidt, B.; von Figura, K.; Peters, C. The essential tyrosine of the internalization signal in lysosomal acid phosphatase is part of a beta turn. Cell 1991, 67, 1203–1209. [Google Scholar] [CrossRef]
- Gabilondo, A.M.; Krasel, C.; Lohse, M.J. Mutations of Tyr326 in the beta 2-adrenoceptor disrupt multiple receptor functions. Eur. J. Pharmacol. 1996, 307, 243–250. [Google Scholar] [CrossRef]
- Barak, L.S.; Tiberi, M.; Freedman, N.J.; Kwatra, M.M.; Lefkowitz, R.J.; Caron, M.G. A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated beta 2-adrenergic receptor sequestration. J. Biol. Chem. 1994, 269, 2790–2795. [Google Scholar] [PubMed]
- Collawn, J.F.; Stangel, M.; Kuhn, L.A.; Esekogwu, V.; Jing, S.Q.; Trowbridge, I.S.; Tainer, J.A. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 1990, 63, 1061–1072. [Google Scholar] [CrossRef]
- Donoso, M.; Cancino, J.; Lee, J.; van Kerkhof, P.; Retamal, C.; Bu, G.; Gonzalez, A.; Caceres, A.; Marzolo, M.P. Polarized traffic of LRP1 involves AP1B and SNX17 operating on Y-dependent sorting motifs in different pathways. Mol. Biol. Cell 2009, 20, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Marzolo, M.P.; van Kerkhof, P.; Strous, G.J.; Bu, G. The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J. Biol. Chem. 2000, 275, 17187–17194. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, D.; Marco, S.; Brooks, I.M.; Zandueta, A.; Rao, Y.; Haucke, V.; Wesseling, J.F.; Tavalin, S.J.; Perez-Otano, I. Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing nmda receptors. J. Neurosci. 2013, 33, 4151–4164. [Google Scholar] [CrossRef] [PubMed]
- Geisler, C.; Dietrich, J.; Nielsen, B.L.; Kastrup, J.; Lauritsen, J.P.; Odum, N.; Christensen, M.D. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane. J. Biol. Chem. 1998, 273, 21316–21323. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.F.; Kornfeld, S. A His-Leu-Leu sequence near the carboxyl terminus of the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor is necessary for the lysosomal enzyme sorting function. J. Biol. Chem. 1992, 267, 17110–17115. [Google Scholar] [PubMed]
- Mattera, R.; Boehm, M.; Chaudhuri, R.; Prabhu, Y.; Bonifacino, J.S. Conservation and diversification of dileucine signal recognition by adaptor protein (AP) complex variants. J. Biol. Chem. 2011, 286, 2022–2030. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.M.; Brady, A.E.; Nickols, H.H.; Wang, Q.; Limbird, L.E. Membrane trafficking of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 559–609. [Google Scholar] [CrossRef] [PubMed]
- Restituito, S.; Couve, A.; Bawagan, H.; Jourdain, S.; Pangalos, M.N.; Calver, A.R.; Freeman, K.B.; Moss, S.J. Multiple motifs regulate the trafficking of GABA(B) receptors at distinct checkpoints within the secretory pathway. Mol. Cell. Neurosci. 2005, 28, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, U.; Briese, S.; Leicht, K.; Schurmann, A.; Joost, H.G.; Al-Hasani, H. Endocytosis of the glucose transporter GLUT8 is mediated by interaction of a dileucine motif with the beta2-adaptin subunit of the AP-2 adaptor complex. J. Cell Sci. 2006, 119, 2321–2331. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.L.; Correa, P.L.; Tolentino, J.C.; Manhaes, A.C.; Felix, R.M.; Azevedo, J.C.; Barbirato, G.B.; Mendes, M.H.; Boechat, Y.; Cabral, H.; et al. Value of combining activated brain FDG-PET and cardiac MIBG for the differential diagnosis of dementia: Differentiation of dementia with lewy bodies and alzheimer disease when the diagnoses based on clinical and neuroimaging criteria are difficult. Clin. Nucl. Med. 2008, 33, 398–401. [Google Scholar] [PubMed]
- Janvier, K.; Kato, Y.; Boehm, M.; Rose, J.R.; Martina, J.A.; Kim, B.Y.; Venkatesan, S.; Bonifacino, J.S. Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 gamma-sigma1 and AP-3 delta-sigma3 hemicomplexes. J. Cell Biol. 2003, 163, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.W.; Honing, S.; Rodionov, D.; Dobberstein, B.; von Figura, K.; Bakke, O. The leucine-based sorting motifs in the cytoplasmic domain of the invariant chain are recognized by the clathrin adaptors AP1 and AP2 and their medium chains. J. Biol. Chem. 1999, 274, 36153–36158. [Google Scholar] [CrossRef] [PubMed]
- Kent, H.M.; Evans, P.R.; Schafer, I.B.; Gray, S.R.; Sanderson, C.M.; Luzio, J.P.; Peden, A.A.; Owen, D.J. Structural basis of the intracellular sorting of the SNARE VAMP7 by the AP3 adaptor complex. Dev. Cell 2012, 22, 979–988. [Google Scholar] [CrossRef] [PubMed]
- De Gois, S.; Jeanclos, E.; Morris, M.; Grewal, S.; Varoqui, H.; Erickson, J.D. Identification of endophilins 1 and 3 as selective binding partners for VGLUT1 and their co-localization in neocortical glutamatergic synapses: Implications for vesicular glutamate transporter trafficking and excitatory vesicle formation. Cell. Mol. Neurobiol. 2006, 26, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Voglmaier, S.M.; Kam, K.; Yang, H.; Fortin, D.L.; Hua, Z.; Nicoll, R.A.; Edwards, R.H. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 2006, 51, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Marks, D.L.; Proctor, K.M.; Gould, G.W.; Pagano, R.E. Regulation of caveolar endocytosis by syntaxin 6-dependent delivery of membrane components to the cell surface. Nat. Cell. Biol. 2006, 8, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Collins, B.M.; McCoy, A.J.; Kent, H.M.; Evans, P.R.; Owen, D.J. Molecular architecture and functional model of the endocytic AP2 complex. Cell 2002, 109, 523–535. [Google Scholar] [CrossRef]
- Yao, D.; Ehrlich, M.; Henis, Y.I.; Leof, E.B. Transforming growth factor-beta receptors interact with AP2 by direct binding to beta2 subunit. Mol. Biol. Cell 2002, 13, 4001–4012. [Google Scholar] [CrossRef] [PubMed]
- Doray, B.; Lee, I.; Knisely, J.; Bu, G.; Kornfeld, S. The gamma/sigma1 and alpha/sigma2 hemicomplexes of clathrin adaptors AP-1 and AP-2 harbor the dileucine recognition site. Mol. Biol. Cell 2007, 18, 1887–1896. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.T.; McCoy, A.J.; Spate, K.; Miller, S.E.; Evans, P.R.; Honing, S.; Owen, D.J. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 2008, 456, 976–979. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, J.G.; Jackson, C.L. Arf family g proteins and their regulators: Roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol. 2011, 12, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Hirst, J.; Borner, G.H.; Antrobus, R.; Peden, A.A.; Hodson, N.A.; Sahlender, D.A.; Robinson, M.S. Distinct and overlapping roles for AP-1 and GGAS revealed by the “knocksideways” system. Curr. Biol. 2012, 22, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Boehm, M.; Bonifacino, J.S. Adaptins: The final recount. Mol. Biol. Cell 2001, 12, 2907–2920. [Google Scholar] [CrossRef] [PubMed]
- Bonifacino, J.S. The GGA proteins: Adaptors on the move. Nat. Rev. Mol. Cell Biol. 2004, 5, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Tsacoumangos, A.; Kil, S.J.; Ma, L.; Sonnichsen, F.D.; Carlin, C. A novel dileucine lysosomal-sorting-signal mediates intracellular EGF-receptor retention independently of protein ubiquitylation. J. Cell Sci. 2005, 118, 3959–3971. [Google Scholar] [CrossRef] [PubMed]
- Ortega, B.; Mason, A.K.; Welling, P.A. A tandem di-hydrophobic motif mediates clathrin-dependent endocytosis via direct binding to the AP-2 alphasigma2 subunits. J. Biol. Chem. 2012, 287, 26867–26875. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, J.; Schweizer, A.; Russell, D.; Kornfeld, S. The targeting of lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane. J. Cell Biol. 1996, 132, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Gonzalez, J.M.; Gravotta, D.; Mattera, R.; Diaz, F.; Perez Bay, A.; Roman, A.C.; Schreiner, R.P.; Thuenauer, R.; Bonifacino, J.S.; Rodriguez-Boulan, E. Basolateral sorting of the coxsackie and adenovirus receptor through interaction of a canonical YXXPhi motif with the clathrin adaptors AP-1A and AP-1B. Proc. Natl. Acad. Sci. USA 2012, 109, 3820–3825. [Google Scholar] [CrossRef] [PubMed]
- Hirst, J.; Lindsay, M.R.; Robinson, M.S. Ggas: Roles of the different domains and comparison with AP-1 and clathrin. Mol. Biol. Cell 2001, 12, 3573–3588. [Google Scholar] [CrossRef] [PubMed]
- Parent, J.L.; Labrecque, P.; Driss Rochdi, M.; Benovic, J.L. Role of the differentially spliced carboxyl terminus in thromboxane A2 receptor trafficking: Identification of a distinct motif for tonic internalization. J. Biol. Chem. 2001, 276, 7079–7085. [Google Scholar] [CrossRef] [PubMed]
- Hirst, J.; Barlow, L.D.; Francisco, G.C.; Sahlender, D.A.; Seaman, M.N.; Dacks, J.B.; Robinson, M.S. The fifth adaptor protein complex. PLoS Biol. 2011, 9, e1001170. [Google Scholar] [CrossRef] [PubMed]
- Rous, B.A.; Reaves, B.J.; Ihrke, G.; Briggs, J.A.; Gray, S.R.; Stephens, D.J.; Banting, G.; Luzio, J.P. Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes. Mol. Biol. Cell 2002, 13, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Gough, N.R.; Zweifel, M.E.; Martinez-Augustin, O.; Aguilar, R.C.; Bonifacino, J.S.; Fambrough, D.M. Utilization of the indirect lysosome targeting pathway by lysosome-associated membrane proteins (LAMPs) is influenced largely by the C-terminal residue of their GYXXphi targeting signals. J. Cell Sci. 1999, 112, 4257–4269. [Google Scholar] [PubMed]
- Harter, C.; Mellman, I. Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J. Cell Biol. 1992, 117, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Meiser, A.; Mueller, A.; Wise, E.L.; McDonagh, E.M.; Petit, S.J.; Saran, N.; Clark, P.C.; Williams, T.J.; Pease, J.E. The chemokine receptor CXCR3 is degraded following internalization and is replenished at the cell surface by de novo synthesis of receptor. J. Immunol. 2008, 180, 6713–6724. [Google Scholar] [CrossRef] [PubMed]
- Fountain, S.J.; North, R.A. A C-terminal lysine that controls human P2X4 receptor desensitization. J. Biol. Chem. 2006, 281, 15044–15049. [Google Scholar] [CrossRef] [PubMed]
- Gouyer, V.; Leteurtre, E.; Delmotte, P.; Steelant, W.F.; Krzewinski-Recchi, M.A.; Zanetta, J.P.; Lesuffleur, T.; Trugnan, G.; Delannoy, P.; Huet, G. Differential effect of GalNAcalpha-O-bn on intracellular trafficking in enterocytic HT-29 and Caco-2 cells: Correlation with the glycosyltransferase expression pattern. J. Cell Sci. 2001, 114, 1455–1471. [Google Scholar] [PubMed]
- Sheikh, H.; Isacke, C.M. A di-hydrophobic Leu-Val motif regulates the basolateral localization of CD44 in polarized Madin-Darby canine kidney epithelial cells. J. Biol. Chem. 1996, 271, 12185–12190. [Google Scholar] [CrossRef] [PubMed]
- Sherman, L.; Sleeman, J.; Herrlich, P.; Ponta, H. Hyaluronate receptors: Key players in growth, differentiation, migration and tumor progression. Curr. Opin. Cell Biol. 1994, 6, 726–733. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, K.N. Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs. Membranes 2015, 5, 253-287. https://doi.org/10.3390/membranes5030253
Pandey KN. Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs. Membranes. 2015; 5(3):253-287. https://doi.org/10.3390/membranes5030253
Chicago/Turabian StylePandey, Kailash N. 2015. "Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs" Membranes 5, no. 3: 253-287. https://doi.org/10.3390/membranes5030253
APA StylePandey, K. N. (2015). Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs. Membranes, 5(3), 253-287. https://doi.org/10.3390/membranes5030253