Preparation of Sulfobetaine-Grafted PVDF Hollow Fiber Membranes with a Stably Anti-Protein-Fouling Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Composition and Grafting Amount
Membrane code | Grafting amount | Mean pore size of membrane surface | Membrane strength | Protein adsorption | |
---|---|---|---|---|---|
Tensile strength | Elongation ratio | ||||
µg/cm2 | µm | Pa | % | µg/cm2 | |
M0 | – | 0.109 | 3.8 | 48.4 | 21.4 |
MPH-0-2-7 | 153.2 | 0.107 | 3.9 | 65.8 | 15.3 |
MPH-3-2-7 | 244.7 | 0.074 | 4.5 | 116.4 | 2.0 |
MPH-6-1-7 | 618.7 | 0.059 | 4.7 | 124.8 | 0 |
MPH-6-2-7 | 673.2 | 0.048 | 4.7 | 126.4 | 0 |
MPH-6-3-7 | 680.5 | 0.048 | 4.8 | 126.8 | 0 |
MPH-6-2-4 | 304.1 | 0.067 | 3.9 | 103.9 | 3.2 |
MPH-6-2-10 | 688.0 | 0.049 | 4.8 | 127.9 | 0 |
MEA-0-2-7 | 101.3 | 0.107 | 3.7 | 35.2 | 15.0 |
MEA-3-2-7 | 186.9 | 0.108 | 4.9 | 37.5 | 15.6 |
MEA-6-1-7 | 172.5 | 0.108 | 4.0 | 46.1 | 15.5 |
MEA-6-2-7 | 225.7 | 0.089 | 4.4 | 48.1 | 5.1 |
MEA-6-3-7 | 227.1 | 0.088 | 4.6 | 48.6 | 5.0 |
MEA-6-2-4 | 205.2 | 0.090 | 4.3 | 47.0 | 6.5 |
MEA-6-2-10 | 240.7 | 0.087 | 4.8 | 48.0 | 4.2 |
Sulfobetaine monomer | Molecular structure | Molecular weight | Melting point (°C) | εr (20–30 °C) |
---|---|---|---|---|
MPDSAH | 292.39 | 190 | 28.18 | |
MEDSA | 279.35 | 150~155 | 7.03 |
2.2. Morphological Mechanical Properties
2.3. Thermal and Hydrophilic Characterization
2.4. Protein Adsorption
2.5. Anti-Protein-Fouling Performance
2.5.1. Cyclic Filtration of BSA Solution
Membrane | RFR1 (%) | RF1/IRF1 (%) | RFR2 (%) | RF2/IRF2 (%) | R (%) |
---|---|---|---|---|---|
M0 | 78.2 | 1.2 | 53.7 | 0.6 | 18.5 |
M0 * | 71.7 | 1.1 | 44.2 | 1.0 | 20.3 |
MPH-6-2-7 | 94.2 | 5.5 | 90.3 | 5.6 | 60.2 |
MPH-6-2-7 * | 98.4 | 23.9 | 96.1 | 16.3 | 70.8 |
MPH-6-2-7 ** | 91.5 | 4.7 | 88.6 | 4.6 | 59.8 |
MEA-6-2-7 | 78.4 | 2.1 | 77.3 | 4 | 49.5 |
MEA-6-2-7 * | 79.4 | 2.5 | 64 | 4.2 | 51.3 |
MEA-6-2-7 ** | 78 | 1.8 | 57.2 | 1.2 | 49.5 |
2.5.2. Cyclic Filtration of BSA Solution with NaCl
2.6. Stability
3. Experimental Section
3.1. Materials
3.2. Preparation of PolyMPDSAH-g-PVDF and PolyMEDSA-g-PVDF Membrane
3.2.1. ATRP Initiated Directly from PVDF Membrane Outside Surface
3.3.2. Ce (IV)-Induced Graft Copolymerization on the PVDF Membrane
Membrane code | Membrane | MBAA (mol/L) | Sulfobetaine concentration | CAN (mol/L) | |
---|---|---|---|---|---|
MPDSAH (mol/L) | MEDSA (mol/L) | ||||
M0 | PVDF | – | – | – | – |
MPH-0-2-7 | polyMPDSAH-g-PVDF | 0 | 0.2 | – | 0.07 |
MPH-3-2-7 | polyMPDSAH-g-PVDF | 0.03 | 0.2 | – | 0.07 |
MPH-6-1-7 | polyMPDSAH-g-PVDF | 0.06 | 0.1 | – | 0.07 |
MPH-6-2-7 | polyMPDSAH-g-PVDF | 0.06 | 0.2 | – | 0.07 |
MPH-6-3-7 | polyMPDSAH-g-PVDF | 0.06 | 0.3 | – | 0.07 |
MPH-6-2-4 | polyMPDSAH-g-PVDF | 0.06 | 0.2 | – | 0.04 |
MPH-6-2-10 | polyMPDSAH-g-PVDF | 0.06 | 0.2 | – | 0.10 |
MEA-0-2-7 | polyMEDSA-g-PVDF | 0 | – | 0.2 | 0.07 |
MEA-3-2-7 | polyMEDSA-g-PVDF | 0.03 | – | 0.2 | 0.07 |
MEA-6-1-7 | polyMEDSA-g-PVDF | 0.06 | – | 0.1 | 0.07 |
MEA-6-2-7 | polyMEDSA-g-PVDF | 0.06 | – | 0.2 | 0.07 |
MEA-6-3-7 | polyMEDSA-g-PVDF | 0.06 | – | 0.3 | 0.07 |
MEA-6-2-4 | polyMEDSA-g-PVDF | 0.06 | – | 0.2 | 0.04 |
MEA-6-2-10 | polyMEDSA-g-PVDF | 0.06 | – | 0.2 | 0.10 |
3.3. Membrane Characterization
3.4. Anti-Fouling Performance
3.5. Stability Test
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, J.; Li, D.W.; Lin, Y.K.; Wang, X.L.; Tian, F.; Wang, Z. Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl ketone diluent via thermally induced phase separation. J. Appl. Polym. Sci. 2008, 110, 341–347. [Google Scholar] [CrossRef]
- Li, Q.; Xu, Z.L.; Yu, L.Y. Effects of mixed solvents and PVDF types on performances of PVDF microporous membranes. J. Appl. Polym. Sci. 2010, 115, 2277–2287. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Chang, Y.; Higuchi, A.; Chen, W.Y.; Ruaan, R.C. Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property. J. Membr. Sci. 2009, 339, 151–159. [Google Scholar] [CrossRef]
- Cho, W.K.; Kong, B.Y.; Choi, I.S. Highly efficient non-biofouling coating of zwitterionic polymers: Poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl) ammonium hydroxide). Langmuir 2007, 23, 5678–5682. [Google Scholar] [CrossRef]
- Seo, J.H.; Matsuno, R.; Konno, T.; Takai, M.; Ishihara, K. Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling—Deswelling methods with phospholipids moiety containing ABA-type block copolymers. Biomaterials 2008, 29, 1367–1376. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef]
- Rana, D.; Kim, Y.; Matsuura, T.; Arafat, H.A. Development of antifouling thin-film-composite membranes for seawater desalination. J. Membr. Sci. 2011, 367, 110–118. [Google Scholar] [CrossRef]
- Kim, Y.; Rana, D.; Matsuura, T.; Chung, W.-J. Towards antibiofouling ultrafiltration membranes by blending silver containing surface modifying macromolecules. Chem. Commun. 2012, 48, 693–695. [Google Scholar] [CrossRef]
- Rana, D.; Scheier, B.; Narbaitz, R.M.; Matsuura, T.; Tabe, S.; Jasim, S.Y.; Khulbe, K.C. Comparison of cellulose acetate (CA) membrane and novel CA membranes containing surface modifying macromolecules to remove pharmaceutical and personal care product micropollutants from drinking water. J. Membr. Sci. 2012, 409–410, 346–354. [Google Scholar]
- Mohd Norddin, M.N.A.; Rana, D.; Ismail, A.F.; Matsuura, T.; Sudirman, R.; Jaafar, J. Study on synthesis and physical properties of charge surface modifying macromolecules with different end-capping materials for membrane applications. J. Ind. Eng. Chem. 2012, 18, 2016–2013. [Google Scholar] [CrossRef]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.R.M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Yuan, J.; Mao, C.; Zhou, J.; Shen, J.; Lin, S.C.; Zhu, W.; Fang, J.L. Chemical grafting of sulfobetaine onto poly(ether urethane) surface for improving blood compatibility. Polym. Int. 2003, 52, 1869–1875. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, Z.; Chen, S.F.; Bryers, J.D.; Jiang, S.Y. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28, 4192–4199. [Google Scholar] [CrossRef]
- Liu, P.S.; Chen, Q.; Wu, S.S.; Shen, J.; Lin, S.C. Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion. J. Membr. Sci. 2010, 350, 387–394. [Google Scholar] [CrossRef]
- Yang, Y.F.; Li, Y.; Li, Q.L.; Wan, L.S.; Xu, Z.K. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. J. Membr. Sci. 2010, 362, 255–264. [Google Scholar] [CrossRef]
- Shan, B.; Yan, H.; Shen, J.; Lin, S.C. Ozone-induced grafting of a sulfoammonium zwitterionic polymer onto low-density polyethylene film for improving hemocompatibility. J. Appl. Polym. Sci. 2006, 101, 3697–3703. [Google Scholar] [CrossRef]
- Liu, P.S.; Chen, Q.; Liu, X.; Yuan, B.; Wu, S.S.; Shen, J.; Lin, S.C. Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility. Biomacromolecules 2009, 10, 2809–2816. [Google Scholar] [CrossRef]
- Yu, H.J.; Cao, Y.M.; Kang, G.D.; Liu, J.H.; Li, M.; Yuan, Q. Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization. J. Membr. Sci. 2009, 342, 6–13. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Wee, K.H.; Bai, R. Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. J. Membr. Sci. 2010, 362, 326–333. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, B.; Bi, Q.Y.; Wang, X.L. Surface modification of PVDF membranes with sulfobetaine polymers for a stably anti-protein-fouling performance. J. Appl. Polym. Sci. 2012, 125, 4015–4027. [Google Scholar] [CrossRef]
- Liu, Q.F.; Lee, C.H.; Kim, H. Performance evaluation of alkaline treated poly(vinylidene fluoride) membranes. Sep. Sci. Technol. 2010, 45, 1209–1215. [Google Scholar] [CrossRef]
- Li, Q.; Bi, Q.Y.; Zhou, B.; Wang, X.L. Zwitterionic sulfobetaine-grafted poly(vinylidene fiuoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization. Appl. Surf. Sci. 2012, 258, 4707–4717. [Google Scholar] [CrossRef]
- Li, Q.; Bi, Q.Y.; Liu, T.Y.; Wang, X.L. Resistance to protein and oil fouling of sulfobetaine-grafted poly(vinylidene fluoride) hollow fiber membrane and the electrolyte-responsive behavior in NaCl solution. Appl. Surf. Sci. 2012, 258, 7480–7489. [Google Scholar] [CrossRef]
- Moad, G.; Solomon, D.H. The Chemistry of Radical Polymerization; Pergamon: Oxford, UK, 1995. [Google Scholar]
- Roach, P.; Farrar, D.; Perry, C.C. Interpretation of protein adsorption: Surface-induced conformational changes. J. Am. Chem. Soc. 2005, 127, 8168–8173. [Google Scholar] [CrossRef]
- Cheng, N.; Brown, A.A.; Azzaroni, O.; Huck, W.T.S. Thickness-dependent properties of polyzwitterionic brushes. Macromolecules 2008, 41, 6317–6321. [Google Scholar] [CrossRef]
- Li, Q.; Bi, Q.Y.; Lin, H.H.; Bian, L.X.; Wang, X.L. A novel ultrafiltration (UF) membrane with controllable selectivity for protein separation. J. Membr. Sci. 2013, 427, 155–167. [Google Scholar] [CrossRef]
- Susanto, H.; Ulbricht, M. Photografted thin polymer hydrogel layers on PES ultrafiltration membranes: Characterization, stability, and influence on separation performance. Langmuir 2007, 23, 7818–7830. [Google Scholar] [CrossRef]
- Rouaix, S.; Causeserand, C.; Aimar, P. Experimental study of the effects of hypochlorite on polysulfone membrane properties. J. Membr. Sci. 2006, 277, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Zalipsky, S. Functionalized poly(ethylene glycols) for preparation of biologically relevant conjugates. Bioconjug. Chem. 1995, 6, 150–165. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, Q.; Lin, H.-H.; Wang, X.-L. Preparation of Sulfobetaine-Grafted PVDF Hollow Fiber Membranes with a Stably Anti-Protein-Fouling Performance. Membranes 2014, 4, 181-199. https://doi.org/10.3390/membranes4020181
Li Q, Lin H-H, Wang X-L. Preparation of Sulfobetaine-Grafted PVDF Hollow Fiber Membranes with a Stably Anti-Protein-Fouling Performance. Membranes. 2014; 4(2):181-199. https://doi.org/10.3390/membranes4020181
Chicago/Turabian StyleLi, Qian, Han-Han Lin, and Xiao-Lin Wang. 2014. "Preparation of Sulfobetaine-Grafted PVDF Hollow Fiber Membranes with a Stably Anti-Protein-Fouling Performance" Membranes 4, no. 2: 181-199. https://doi.org/10.3390/membranes4020181
APA StyleLi, Q., Lin, H. -H., & Wang, X. -L. (2014). Preparation of Sulfobetaine-Grafted PVDF Hollow Fiber Membranes with a Stably Anti-Protein-Fouling Performance. Membranes, 4(2), 181-199. https://doi.org/10.3390/membranes4020181