Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)
Abstract
:1. Introduction
2. Design Considerations
2.1. Plant Capacity and Configurations
2.2. FO/PRO Operating Conditions and Considerations
Design Conditions | Values | Units | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Coastal Seawater Desalination Plant | ||||||||||
Feed Flow Rate | 172,800 | m3/day | ||||||||
Recovery [4] | 50% | – | ||||||||
Product Flow Rate | 86,400 | m3/day | ||||||||
Energy for Water Treatment [4,5,6] | 2 | kWh/m3 | ||||||||
Energy for Pretreatment & Brine Disposal [4,5,6] | 1 | kWh/m3 | ||||||||
Specific Energy Consumption | 3 | kWh/m3 | ||||||||
Water Reuse Plant | ||||||||||
Feed Flow Rate | 345,600 | m3/day | ||||||||
Recovery [4] | 75% | – | ||||||||
Product Flow Rate | 259,200 | m3/day | ||||||||
Energy for Water Treatment [18] | 0.60 | kWh/m3 | ||||||||
Energy for Pretreatment & Brine Disposal [19] | 0.19 | kWh/m3 | ||||||||
Specific Energy Consumption | 0.79 | kWh/m3 | ||||||||
Pressure Retarded Osmosis (PRO) | ||||||||||
(a) Draw: Seawater; Feed: Water Reuse Brine | ||||||||||
Flux [21] | 18 | LMH | ||||||||
Power Density | 5 | W/m2 | ||||||||
Nominal Membrane Surface Area of 8 Inch Spiral Wound Modules | 18.13 | m2 | ||||||||
(b) Draw: Seawater Brine; Feed: Concentrated Water Reuse Brine | ||||||||||
Flux [21] | 15.84 | LMH | ||||||||
Power Density | 8.8 | W/m2 | ||||||||
Nominal Membrane Surface Area of 8 Inch Spiral Wound Modules | 18.13 | m2 | ||||||||
Forward Osmosis (FO) | ||||||||||
(a) Draw: Seawater; Feed: Water Reuse Brine | ||||||||||
Flux [21,22,23] | 25 | LMH | ||||||||
Nominal Membrane Surface Area of 8 Inch Spiral Wound Modules | 18.13 | m2 | ||||||||
Energy Recovery Devices (ERDs) [24,25] | ||||||||||
Isobaric Efficiency | 95% | – | ||||||||
Non-isobaric Efficiency | 70% | – |
2.3. Membrane Fouling and Post Treatment Improvements
2.4. Decision Matrix
3. Hybrid Process Configurations
3.1. Various Configurations
3.2. Summary of Energy Consumption
4. Results and Discussion
4.1. Summary of Comparison
Weighing Factors | Baseline | Configurations | ||
---|---|---|---|---|
SWRO/Newater | B–PRO 1 | B–FO 1 | B–Mixer 1 | |
Overall Energy Consumption 3 (kWh/m3) | 4 | 1 | 2 | 2 |
Membrane Fouling Tendency 1 | 3 | 1 a | 1 a | 4 a |
Total Capital Cost ** (US$/m3) | 3 | 4 | 2 | 1 |
Space Footprint 2 | 1 | 4 | 3 | 2 |
4.2. Sensitivity Analysis of Hybrid Process
4.3. Further Improvements
5. Conclusions
Appendix A (Glossary of Terms)
- Water reuse plants: Water reclamation plants utilizing brackish water reverse osmosis membranes.
- SWRO plants: Seawater desalination plants utilizing seawater reverse osmosis membranes.
- Product water: Water that permeates in either a SWRO plant or a water reuse plant.
- Water reuse feed: the feed source used for a water reuse plant.
- Water reuse brine: the retentate for a water reuse plant.
- Seawater feed: the feed source used for a SWRO plant.
- Seawater brine: the retentate for a water reuse plant.
- Specific Energy Consumption: Amount of energy required to produce unit volume of product water.
- Impaired water: Water reuse brine when used in the Hybrid Process configuration to dilute the feed source of SWRO plants or seawater feed.
- Impaired water brine: The retentate from the hybrid process involving Forward Osmosis (FO) and Pressure Retarded Osmosis (PRO) utilizing impaired water.
- Industrial water: non-potable water used for industrial purposes.
- Outfall: a pipeline or tunnel that discharges seawater or water reuse brine to the sea.
- Outfall height: the height a brine plume must reach to ensure proper dispersal of brine.
Appendix B (PRO State-of-the-Art)
Appendix C (Capital Cost Simulation)
C.1. Capital Cost Calculations
C.2. RO Data Calculations
Membrane Element | SWC4+ |
---|---|
Membrane Active Area | 400 ft2 (37.1 m2) |
Membrane Polymer | Composite Polyamide |
Configuration | 8–inch Spiral Wound |
Permeate Flow | 6500 gpd (24.6 m3/day) |
Salt Rejection | 99.8% |
Max. Applied Pressure | 1200 psig (8.27 MPa) |
Max. Feed Flow | 75 GPM (17.0 m3/h) |
Minimum Concentrate/Permeate Flow | 5:1 |
Max. Pressure Drop per Element | 10 psi |
Maximum Feed Water SDI (15 mins) | 5.0 |
C.3. Breakdown of Capital Cost Calculations
Capital Cost and Space Footprint | Baseline | Configurations | |||||
SWRO | PRO 1 3 | (% change) | FO 1 4 | (% change) | Mixer 1 5 | (% change) | |
Capital Cost of Pumps (US$/m3) | |||||||
High Pressure Pumps | 0.030 | 0.037 | (25%) | 0.022 | (−25%) | 0.022 | (−25%) |
Capital Cost of ERDs 6 (US$/m3) | |||||||
Isobaric | 0.0035 | 0.0035 | 0.0035 | 0.0035 | |||
Non-isobaric (Water Reuse ERD only for PRO 2) | – | 0.0003 | 0.0003 | 0.0003 | |||
0.0035 | 0.0038 | (8.6%) | 0.0038 | (8.6%) | 0.0038 | (8.6%) | |
Capital Cost of Membranes 7 (US$/m3) | |||||||
0.021 | 0.045 | (112%) | 0.041 | (92%) | 0.030 | (41%) | |
Capital Cost of Intakes and Pre-treatment (US$/m3) | |||||||
0.027 | 0.013 | (−50%) | 0.013 | (−50%) | 0.013 | (−50%) | |
Capital Cost of Brine Disposal (US$/m3) | |||||||
0.015 | 0.0073 | (−50%) | 0.0073 | (−50%) | 0.0073 | (−50%) | |
Total Capital Cost ** (US$/m3) | |||||||
0.096 | 0.1066 | (11%) | 0.0874 | (−8.7%) | 0.0765 | (−20%) | |
Space Footprint | |||||||
8′′ spiral wound elements 1 | 5,405 | 11,460 | (112%) | 10,380 | (92%) | 7,600 | (41%) |
SWRO intake/outfall and Water Reuse Outfall 2 | 4 m3/s | 2 m3/s | (−50%) | 2 m3/s | (−50%) | 2 m3/s | (−50%) |
Appendix D (Energy Consumption)
Breakdown of Specific Energy Consumption | Baseline | Configuration-PRO 1 | Configuration-FO 1 | Configuration-Mixer 1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Water Re-use | SWRO | Water Re-use | SWRO | Water Re-use | SWRO | Water Re-use | SWRO | |||
Volume of Product Water (m3/s) | 3 | 1 | 3 | 1.0 | 3 | 1.0 | 3 | 1.0 | ||
Volume of Total Feed Water 1 (m3/s) | 4 | 2 | 4 | 1.0 | 4 | 1.0 | 4 | 1.0 | ||
Pressurized Feed Water (m3/s) | 4 | 2 | 4 | 1.5 | 4 | 1.5 | 4 | 1.5 | ||
Volume of Brine (m3/s) | 1 | 1 | 1 | 1 | 1 | |||||
Concentration of Brine (M NaCl) | 0.04 | 1 | 0.54 | 0.54 | 0.52 | |||||
Energy Consumption (kWh/m3) | ||||||||||
Entire system for water recovery | 0.60 | 2 | 0.60 | 1.50 | 0.60 | 1.50 | 0.60 | 1.50 | ||
Pre-treatment/Brine Disposal | 0.19 | 1 | 0.19 | 0.50 a | 0.19 | 0.50 a | 0.194 | 0.50 a | ||
Energy Recovery from PRO 2 (kWh/m3) | N.A. | 0.23 | 0.09 | 0.09 | ||||||
Specific Energy Consumption (kWh/m3) | ||||||||||
In terms of Product Water | 1.35 | 1.04 | 1.07 | 1.07 |
Conflict of Interest
Acknowledgements
References
- Kraas, F. Megacities and global change: Key priorities. Geogr. J. 2007, 173, 79–82. [Google Scholar] [CrossRef]
- Pearce, G.K. UF/MF pre-treatment to RO in seawater and wastewater reuse applications: A comparison of energy costs. Desalination 2008, 222, 66–73. [Google Scholar] [CrossRef]
- Global Water Intelligence–GWI, New Revenue Stream Springs Up: Water Reuse Market set for Explosive Growth. In Municipal Water Reuse Markets 2010; Media Analytics Ltd.: Oxford, UK, 2009.
- Desalination Committee, Seawater Desalination Power Consumption, White Paper; WaterReuse Association: Alexandra, VA, USA, 2011; p. 11.
- Shaffer, D.L.; Yip, N.Y.; Gilron, J.; Elimelech, M. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. J. Membr. Sci. 2012, 415–416, 1–8. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Sim, S.T.V.; Tang, C.-Y.; Krantz, W.B.; Fane, A.G. Pressure Retarded Osmosis for Marina Barrage and Sustainable Brine Disposal. In Singapore-Netherlands Water Challenge 2011/2012, Singapore, 19 April 2012.
- Feinberg, B.; Ramon, G.; Hoek, E.M.V. A thermodynamic analysis of osmotic energy recovery at a reverse osmosis desalination plant. Environ. Sci. Technol. 2013, 47, 2982–2989. [Google Scholar]
- Cath, T.Y. Osmotically and thermally driven membrane processes for enhancement of water recovery in desalination process. Desalin. Water Treat. 2010, 15, 279–286. [Google Scholar] [CrossRef]
- Bamaga, O.A.; Yokochi, A.; Zabara, B.; Babaqi, A.S. Hybrid FO/RO desalination system: Preliminary assessment of osmotic energy recovery and designs of new FO membrane module configurations. Desalination 2011, 258, 153–159. [Google Scholar]
- Sharqawy, M.H.; Zubair, S.M.; Lienhard, V.J.H. Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis. Energy 2011, 36, 6617–6626. [Google Scholar] [CrossRef]
- Knutson, C. Discussion of “Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis [Energy (2011) 36: 6617–6626]”. Energy 2012, 46, 688–690. [Google Scholar] [CrossRef]
- Sharqawy, M.H.; Zubair, S.M.; Lienhard, V.J.H. Rebuttal to “Discussion of ‘Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis’ [Energy (2011) 36: 6617–6626]”. Energy 2012, 46, 691–693. [Google Scholar] [CrossRef]
- Li, W.; Krantz, W.B.; Cornelissen, E.R.; Post, J.W.; Verliefde, A.R.D.; Tang, C.-Y. A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Appl. Energ. 2013, 104, 592–602. [Google Scholar] [CrossRef]
- Côté, P.; Masini, M.; Mourato, D. Comparison of membrane options for water reuse and reclamation. Desalination 2004, 167, 1–11. [Google Scholar] [CrossRef]
- Qin, J.-J.; Oo, M.H.; Wai, M.N.; Lee, H.; Hong, S.P.; Kim, J.E.; Xing, Y.; Zhang, M. Pilot study for reclamation of secondary treated sewage effluent. Desalination 2004, 171, 299–305. [Google Scholar]
- National Research Foundation. Factsheet on EWI’s Challenge Request-for-Proposal on Achieving ≥93% Water Recovery from Membrane Bioreactor Filtrate, Research, Innovation and Technology Administration (RITA) System. 2012. Available online: https://rita.nrf.gov.sg/ewi/ChallengeRFP1201/default.aspx (accessed on 7 February 2013).
- Qin, J.-J.; Oo, M.H.; Lee, H.; Kolkman, R. Dead-end filtration for pretreatment of RO in reclamation of municipal wastewater effluent. J. Membr. Sci. 2004, 243, 107–113. [Google Scholar] [CrossRef]
- Saito, K.; Irie, M.; Zaitsu, S.; Sakai, H.; Hayashi, H.; Tanioka, A. Power generation with salinity gradient by pressure retarded osmosis using concentrated brine from SWRO system and treated sewage as pure water. Desalin. Water Treat. 2012, 4, 114–121. [Google Scholar]
- Chou, S.; Wang, R.; Shi, L.; She, Q.; Tang, C.-Y.; Fane, A.G. Thin-film composite hollow fibre membranes for pressure retarded osmosis (PRO) process with high power density. J. Membr. Sci. 2012, 389, 25–33. [Google Scholar] [CrossRef]
- Qi, S.; Qiu, C.Q.; Zhao, Y.; Tang, C.-Y. Double-skinned forward osmosis membranes based on layer-by-layer assembly–FO performance and fouling behaviour. J. Membr. Sci. 2012, 405–406, 20–29. [Google Scholar] [CrossRef]
- Ma, N.; Wei, J.; Liao, R.; Tang, C.-Y. Zeolite-polyamide thin film composite membranes: Towards enhanced performance for forward osmosis. J. Membr. Sci. 2012, 405–406, 149–157. [Google Scholar] [CrossRef]
- Farooque, A.M.; Jamaluddin, A.T.M.; Al-Reweli, A.R.; Jalaluddin, P.A.M.; Al-Mobeyed, S.M.; Qasim, A.H. Parametric analyses of energy consumption and losses in SWCC SWRO plants utilizing energy recovery devices. Desalination 2008, 219, 137–159. [Google Scholar] [CrossRef]
- Stover, R.L. Seawater reverse osmosis with isobaric energy recovery devices. Desalination 2007, 203, 168–175. [Google Scholar] [CrossRef]
- Stover, R.L.; Martin, J. Reverse osmosis and osmotic power generation with isobaric energy recovery. Desalin. Water Treat. 2010, 15, 267–270. [Google Scholar] [CrossRef]
- Arkhangelsky, E.; Wicaksana, F.; Chou, S.; Al-Rabiah, A.A.; Al-Zahrani, S.M.; Wang, R. Effects of scaling and cleaning on the performance of forward osmosis hollow fiber membranes. J. Membr. Sci. 2012, 415–416, 101–108. [Google Scholar] [CrossRef]
- Tang, C.-Y.; She, Q.; Ma, N.; Wei, J.; Sim, S.T.V.; Fane, A.G. Reinforced Membranes for Producing Osmotic Power in Pressure Retarded Osmosis. U.S. Provisional Patent 61/683,475, 15 August 2012. [Google Scholar]
- Kurihara, M.; Hanakawa, M. Mega-ton Water System: Japanese national research and development project on seawater desalination and wastewater reclamation. Desalination 2013, 308, 131–137. [Google Scholar] [CrossRef]
- Saliby, I.E.; Okour, Y.; Shon, H.K.; Kandasamy, J.; Kim, I.S. Desalination plants in Australia, review and facts. Desalination 2009, 247, 1–14. [Google Scholar] [CrossRef]
- Department of Climate Change and Energy Efficiency, Australian Government. Clean energy legislation: the way ahead. 2012. Available online: http://www.climatechange.gov.au/en/government/Carbon%20Pricing%20Policy/legislation.aspx (accessed on 7 February 2013).
- Jin, X.; Jawor, A.; Kim, S.; Hoek, E.M.V. Effects of feed water temperature on separation performance and organic fouling of brackish water RO membranes. Desalination 2009, 239, 346–359. [Google Scholar] [CrossRef]
- Thorsen, T.; Holt, T. The potential for power production from salinity gradients by pressure retarded osmosis. J. Membr. Sci. 2009, 335, 103–110. [Google Scholar] [CrossRef]
- Loeb, S. Production of energy from concentrated brines by pressure retarded osmosis. I. Preliminary technical and economic correlations. J. Membr. Sci. 1976, 1, 49–63. [Google Scholar] [CrossRef]
- Loeb, S.; Hessen, F.V.; Shahaf, D. Production of energy from concentrated brines by pressure retarded osmosis. II. Experimental results and projected energy costs. J. Membr. Sci. 1976, 1, 249–269. [Google Scholar] [CrossRef]
- Loeb, S. Energy production at the Dead Sea by pressure-retarded osmosis: Challenge or chimera? Desalination 1998, 120, 247–262. [Google Scholar] [CrossRef]
- Loeb, S. One hundred and thirty benign and renewable megawatts from Great Salt Lake? The possibilities of hydroelectric power by pressure-retarded osmosis. Desalination 2001, 141, 85–91. [Google Scholar]
- Ramon, G.Z.; Feinberg, B.J.; Hoek, E.M.V. Membrane-based production of salinity gradient power. Energy Environ. Sci. 2011, 4, 4423–4434. [Google Scholar] [CrossRef]
- Lee, K.L.; Baker, R.W.; Lonsdale, H.K. Membranes for power generation by pressure-retarded osmosis. J. Membr. Sci. 1981, 8, 141–171. [Google Scholar] [CrossRef]
- Tiraferri, A.; Yip, N.Y.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J. Membr. Sci. 2011, 367, 340–352. [Google Scholar] [CrossRef]
- Wei, J.; Qiu, C.; Tang, C.-Y.; Wang, R.; Fane, A.G. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. J. Membr. Sci. 2011, 372, 292–302. [Google Scholar] [CrossRef]
- McGinnis, R.L.; McCutcheon, J.R.; Elimelech, M. A novel ammonia–carbon dioxide osmotic heat engine for power generation. J. Membr. Sci. 2007, 305, 13–19. [Google Scholar] [CrossRef]
- Achilli, A.; Cath, T.Y.; Childress, A.E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation. J. Membr. Sci. 2009, 343, 42–52. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, X.; Tang, C.-Y.; Fu, Q.S.; Nie, S. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module. J. Membr. Sci. 2010, 348, 298–309. [Google Scholar] [CrossRef]
- Yip, N.Y.; Tiraferri, A.; Phillip, W.A.; Schiffman, J.D.; Hoover, L.A.; Kim, Y.C.; Elimelech, M. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ. Sci. Technol. 2011, 45, 4360–4369. [Google Scholar]
- She, Q.; Jin, X.; Tang, C.-Y. Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute flux diffusion. J. Membr. Sci. 2012, 401–402, 262–273. [Google Scholar] [CrossRef]
- Chou, S.; Shi, L.; Wang, R.; Tang, C.-Y.; Qiu, C.; Fane, A.G. Characteristics and potential applications of a novel forward osmosis hollow fiber membrane. Desalination 2010, 261, 365–372. [Google Scholar]
- Wang, R.; Shi, L.; Tang, C.-Y.; Chou, S.; Qiu, C.; Fane, A.G. Characterization of novel forward osmosis hollow fiber membranes. J. Membr. Sci. 2010, 355, 158–167. [Google Scholar]
- Yip, N.Y.; Tiraferri, A.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M. High performance thin-film composite forward osmosis membrane. Environ. Sci. Technol. 2010, 44, 3812–3818. [Google Scholar] [CrossRef]
- Nijmeijer, K.; Metz, S. Salinity Gradient Energy. In Sustainable Water for the Future: Water Recycling versus Desalination; Escobar, I.C., Schäfer, A.I., Eds.; Elsevier: Amsterdam, the Netherlands and Oxford, UK, 2010; pp. 95–140. [Google Scholar]
- Song, X.; Liu, Z.; Sun, D.D. Energy recovery from concentrated seawater brine by thin-film nanofiber composite pressure retarded osmosis membranes with high power density. Energy Environ. Sci. 2013, 6, 1199–1210. [Google Scholar] [CrossRef]
- Malek, A.; Hawlader, M.N.A.; Ho, J.C. Design and economics of RO seawater desalination. Desalination 1996, 105, 245–261. [Google Scholar] [CrossRef]
- Park, C.; Park, P.-K.; Mane, P.P.; Hyung, H.; Gandhi, V.; Kim, S.-H.; Kim, J.-H. Stochastic cost estimatation approach for full-scale reverse osmosis desalination plants. J. Membr. Sci. 2010, 364, 52–64. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, S.J.; Kim, Y.S.; Lee, S.; Kim, I.S.; Kim, J.H. Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network. Desalination 2009, 238, 312–332. [Google Scholar] [CrossRef]
- Gille, D. Seawater intakes for desalination plants. Desalination 2003, 156, 249–256. [Google Scholar] [CrossRef]
- Wade, N.M. RO design optimization. Desalination 1987, 64, 3–16. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Hu, Y.D.; Xu, D.M.; Wu, L.Y. Optimum design of reverse osmosis seawater desalination system considering membrane cleaning and replacing. J. Membr. Sci. 2006, 282, 7–13. [Google Scholar] [CrossRef]
- Watson, I.C.; Morin, O.J.J.; Henthorne, L. Desalting Handbook for Planners; United States Department of Interior, Bureau of Reclamation: Denver, CO, USA, 2003. [Google Scholar]
- Moch, I.J.; Querns, W.R.; Steward, D. WT Cost II–Modeling the Capital and Operating Costs of Thermal Desalination Processes Utilizing a Recently Developed Computer Program that Evaluates Membrane Desalting, Electrodialysis, and Ion Exchange Plants; United States Department of Interior, Bureau of Reclamation: Denver, CO, USA, 2008. [Google Scholar]
- Ahmed, M.; Shayya, W.; Hoey, D. Use of evaporation ponds for brine disposal in desalination plants. Desalination 2000, 130, 155–168. [Google Scholar] [CrossRef]
- Stover, R.L. Energy Recovery Devices in Desalination Applications. In Proceedings of the International Water Association (IWA) North American Membrane Research Conference, Amherst, MA, USA, 10–13 August 2008.
Nomenclature
CCT | Total capital cost ($) |
CCSI | Capital cost of seawater intake ($) |
CCPre | Capital cost of pre-treatment ($) |
CCRO | Capital cost of RO system ($) |
CCPost | Capital cost of post-treatment ($) |
CCBD | Capital cost of brine disposal ($) |
CCOC | Capital cost of others including construction and engineering ($) |
CCHPP | Capital cost of high pressure pump ($) |
CCERD | Capital cost of energy recovery device ($) |
CCE | Capital cost of RO element ($) |
CCPV | Capital cost of pressure vessel ($) |
QP | Plant capacity (m3/h) |
QFeed | Total feed flow rate (m3/h) |
QProduct | Total product water flow rate (m3/h) |
QBrine | Total flow rate of brine (m3/h) |
ETotal,Osmotic | Total energy consumption (kWh) |
ESpec | Specific energy consumption (kWh/m3) |
EPRO2 | Energy required to run the second PRO process (kWh) |
EReuse | Energy recovered from the second PRO process for the water reuse process (kWh) |
PFeed | Feed pressure (bar) |
PBrine | Brine pressure (bar) |
NHPP,A | Number of high pressure pumps in category A (dimensionless) |
NHPP,B | Number of high pressure pumps in category B (dimensionless) |
NHPP,C | Number of high pressure pumps in category C (dimensionless) |
NE | Total number of RO elements (dimensionless) |
NPV | Total number of pressure vessels into each of which seven membrane elements can be fitted (dimensionless) |
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sim, V.S.T.; She, Q.; Chong, T.H.; Tang, C.Y.; Fane, A.G.; Krantz, W.B. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO). Membranes 2013, 3, 98-125. https://doi.org/10.3390/membranes3030098
Sim VST, She Q, Chong TH, Tang CY, Fane AG, Krantz WB. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO). Membranes. 2013; 3(3):98-125. https://doi.org/10.3390/membranes3030098
Chicago/Turabian StyleSim, Victor S.T., Qianhong She, Tzyy Haur Chong, Chuyang Y. Tang, Anthony G. Fane, and William B. Krantz. 2013. "Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)" Membranes 3, no. 3: 98-125. https://doi.org/10.3390/membranes3030098
APA StyleSim, V. S. T., She, Q., Chong, T. H., Tang, C. Y., Fane, A. G., & Krantz, W. B. (2013). Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO). Membranes, 3(3), 98-125. https://doi.org/10.3390/membranes3030098