Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling
Abstract
:1. Introduction
2. Factors Causing Membrane Fouling
2.1. Hydrophilicity/Hydrophobicity of NOM
Fraction | Organic compounds |
---|---|
Hydrophobic (VHA and SHA) | |
Acid | Soil fulvic acids, C5–C9 aliphatic carboxylic acids,1- and 2-ring aromatic carboxylic acids, 1- and 2-ring phenols |
Base | 1- and 2-ring aromatics (except pyridine), proteinaceoussubstances |
Neutral | Mixture of hydrocarbons, >C5 aliphatic alcohols, amides, aldehydes, ketones, esters, >C9 aliphaticcarboxylic acids and amines, >3 ring aromatic carboxylic acids and amines |
Hydrophilic (CHA and NEU) | |
Acid | Mixtures of hydroxy acids, C5 aliphatic carboxylic acids, Polyfunctional carboxylic acids |
Base | Pyridine, amphoteric proteinaceous material (i.e., aliphatic amino acids, amino sugars, C9 aliphatic amines, peptides, and proteins) |
Neutral | <C5 aliphatic alcohols, polyfunctional alcohols, short-chain aliphatic amines, amides, aldehydes, ketones, esters; cyclic amides, polysaccharides, and carbohydrates |
2.2. Molecular Size of Organics
2.3. Brief Summary
3. Pretreatment
3.1. Coagulation Pretreatment
3.2. Adsorption Pretreatment
3.3. Oxidation Pretreatment
3.4. Other Pretreatments
3.5. Brief Summary
4. Hydrophilic Modification of Membrane
Commercial membranes | Hydrophobicity/hydrophilicity | Roughness | Flux decline |
---|---|---|---|
Polysulphone (PSf) | Hydrophobicity | More rough | Largest |
Polyethersulphone (PES) | Hydrophobicity | Smoother | Less large |
Regenerated cellulose (RC) | Hydrophilicity | Similar roughness to PSf | Smaller |
4.1. Plasma Modification
4.2. Radiation Grafting Modification
4.3. Surface Coating Modification
4.4. Blending Modification
4.5. Brief Summary
- (1)
- The plasma modification is clean, effective, and pollution-free, but this kind of modification needs vacuum equipment. As such, it is unsuited for large-scale operation.
- (2)
- The high-energy radiation has strength on its high use ratio of energy and its security. However, it is too powerful to control the reaction on the surface, which easily affects its original property.
- (3)
- Coating hydrophilic substances on the membrane surface can further strengthen the modification effect and improve the membrane flux. Despite this advantage, the coating layer is easily sloughed off. As a result, the flux of pure water will firstly increase greatly and then decline gradually.
Polymer | Morphology | Membrane process | ||
---|---|---|---|---|
Barrier type | Cross-section | Barrier thickness (µm) | ||
Cellulose acetates | Nonporous | Anisotropic | ~0.1 | GS, RO |
Mesoporous | Anisotropic | ~0.1 | UF | |
Macroporous | Isotropic | 50–300 | MF | |
Polyacrylonitrile | Mesoporous | Anisotropic | ~0.1 | UF |
Polyetherimides | Mesoporous | Anisotropic | ~0.1 | UF |
Polyethersulfones | Mesoporous | Anisotropic | ~0.1 | UF |
Macroporous | Isotropic | 50–300 | MF | |
Polyethylene terephthalate | Macroporous | Isotropic track-etched | 6–35 | MF |
Polyphenylene oxide | Nonporous | Anisotropic | ~0.1 | GS |
Poly(styrene-co-divinylbenzene), sulfonated or aminated | Nonporous | Isotropic | 100–500 | ED |
Polytetrafluoroethylene | Macroporous | Isotropic | 50–500 | MF |
Nonporous | Isotropic | ~0.1 | GS | |
Polyamide, aliphatic | Macroporous | Isotropic | 100–500 | MF |
Polyamide, aromatic | Mesoporous | Anisotropic | ~0.1 | UF |
Polyamide, aromatic, in situ synthesized | Nonporous | Anisotropic/composite | ~0.05 | RO, NF |
Polycarbonates, aromatic | Nonporous | Anisotropic | ~0.1 | GS |
Macroporous | Isotropic track-etched | 6–35 | MF | |
Polyether, aliphatic crosslinked, in situ synthesized | Nonporous | Anisotropic/composite | ~0.05 | RO, NF |
Polyethylene | Macroporous | Isotropic | 50–500 | MF |
Polyimides | Nonporous | Anisotropic | ~0.1 | GS, NF |
Polypropylene | Macroporous | Isotropic | 50–500 | MF |
Polysiloxanes | Nonporous | Anisotropic/composite | ~0.1 < 1–10 | GS PV, NF (organophilic) |
Polysulfones | Nonporous | Anisotropic | ~0.1 | GS |
Mesoporous | Anisotropic | ~0.1 | UF | |
Polyvinyl alcohol, crosslinked | Nonporous | Anisotropic/composite | <1-10 | PV (hydrophilic) |
Polyvinylidenefluoride | Mesoporous | Anisotropic | ~0.1 | UF |
Macroporous | Isotropic | 50–300 | MF |
5. Perspectives of Further Research
- (1)
- Mechanisms of impacts of coagulation, PAC adsorption, and ozone oxidation on membrane fouling and membrane filtration flux should be further studied to provide fundamental information and theoretical guidance for the understanding of membrane fouling mechanisms and the controlling of membrane fouling.
- (2)
- Developing a new pretreatment technology can improve effluent quality and control membrane fouling economically and environmentally.
- (3)
- Seek for the best feed conditions and membrane operation states to optimize operation effects.
- (4)
- Accelerate the development of membrane modules with high filtration flux and low membrane blocking.
- (5)
- Continue to develop functional polymer membrane materials. According to the knowledge of membrane separation mechanisms, the synthesis of various functional polymer molecules to produce homogenous membrane should be further carried out and the relationship between molecular structure and separation quality should also be studied quantitatively.
Acknowledgements
Conflicts of Interest
References
- Qin, H.C.; Guo, J.T.; Li, W.Y.; Jiang, F.C.; Chen, J. Research progress on pretreatment of the effects on membrane fouling. Technol. Water Treat. 2011, 37, 1–5. [Google Scholar]
- Wan, B.L.; Wang, H.J. Theories and Applications of New Technology in Water Treatment; Chemical Industry Press: Beijing, China, 2006. [Google Scholar]
- Dong, B.Z.; Cao, D.W.; Chen, Y. Membrane Advanced Treatment Technology of Drinking Water; Chemical Industry Press: Beijing, China, 2006. [Google Scholar]
- Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.L.; Han, Z.S.; Li, G.B. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011, 272, 1–8. [Google Scholar] [CrossRef]
- Lee, N.; Amy, G.; Croue, J.P.; Buisson, H. Morphological analyses of natural organic matter (NOM) fouling of low-pressure membranes (MF/UF). J. Membr. Sci. 2005, 261, 7–16. [Google Scholar] [CrossRef]
- Kaiya, Y.; Itoh, Y.; Fujita, K.; Takizawa, S. Study on fouling materials in the membrane treatment process for potable water. Desalination 1996, 106, 71–77. [Google Scholar]
- Amy, G. Fundamental understanding of organic matter fouling of membranes. Desalination 2008, 231, 44–51. [Google Scholar] [CrossRef]
- Lim, S.M.; Chiang, K.; Amal, R.; Fabris, R.; Chow, C.; Drikas, M. A study on the removal of humic acid using advanced oxidation processes. Sep. Sci. Technol. 2007, 42, 1391–1404. [Google Scholar] [CrossRef]
- Buchanan, W.; Roddick, F.; Porter, N.; Drikas, M. Fractionation of UV and VUV pretreated natural organic matter from drinking water. Environ. Sci. Technol. 2005, 39, 4647–4654. [Google Scholar] [CrossRef]
- Carroll, T.; King, S.; Gray, S.R.; Bolto, B.A.; Booker, N.A. The fouling of microfiltration membranes by NOM after coagulation treatment. Water Res. 2000, 34, 2861–2868. [Google Scholar] [CrossRef]
- Fan, L.H.; Harris, J.L.; Roddick, F.A.; Booker, N.A. Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res. 2001, 35, 4455–4463. [Google Scholar] [CrossRef]
- Gray, S.R.; Ritchie, C.B.; Tran, T.; Bolto, B.A. Effect of NOM characteristics and membrane type on microfiltration performance. Water Res. 2007, 41, 3833–3841. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, B.Z.; Gao, N.Y.; Fan, J.C. Effect of coagulation pretreatment on fouling of an ultrafiltration membrane. Desalination 2007, 204, 181–188. [Google Scholar] [CrossRef]
- Lankes, U.; Luedemann, H.D.; Frimmel, F.H. Search for basic relationships between “molecular size” and “chemical structure” of aquatic natural organic matter—Answers from C-13 and N-15 CPMAS NMR spectroscopy. Water Res. 2008, 42, 1051–1060. [Google Scholar] [CrossRef]
- Lee, N.; Amy, G.; Lozier, J. Understanding natural organic matter fouling in low-pressure membrane filtration. Desalination 2005, 178, 85–93. [Google Scholar] [CrossRef]
- Weis, A.; Bird, M.R.; Nystrom, M.; Wright, C. The influence of morphology, hydrophobicity and charge upon the long-term performance of ultrafiltration membranes fouled with spent sulphite liquor. Desalination 2005, 175, 73–85. [Google Scholar] [CrossRef]
- Lee, N.H.; Amy, G.; Croue, J.P.; Buisson, H. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Res. 2004, 38, 4511–4523. [Google Scholar] [CrossRef]
- Li, C.W.; Chen, Y.S. Fouling of UF membrane by humic substance: Effects of molecular weight and powder-activated carbon (PAC) pre-treatment. Desalination 2004, 170, 59–67. [Google Scholar] [CrossRef]
- Yoon, Y.M.; Amy, G.; Cho, J.W.; Her, N. Effects of retained natural organic matter (NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration. Desalination 2005, 173, 209–221. [Google Scholar] [CrossRef]
- Yamamura, H.; Kimura, K.; Watanabe, Y. Mechanism involved in the evolution of physically irreversible fouling in microfiltration and ultrafiltration membranes used for drinking water treatment. Environ. Sci. Technol. 2007, 41, 6789–6794. [Google Scholar] [CrossRef]
- Cho, J.W.; Amy, G.; Pellegrino, J. Membrane filtration of natural organic matter: Comparison of flux decline, NOM rejection, and foulants during filtration with three UF membranes. Desalination 2000, 127, 283–298. [Google Scholar] [CrossRef]
- Liang, H.; Gong, W.; Chen, J.; Li, G. Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment. Desalination 2008, 220, 267–272. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.C. Ultrafiltration with in-line coagulation for the removal of natural humic acid and membrane fouling mechanism. J. Environ. Sci. China 2006, 18, 880–884. [Google Scholar] [CrossRef]
- Kimura, K.; Hane, Y.; Watanabe, Y. Effect of pre-coagulation on mitigatingirreversible fouling during ultrafiltration of a surface water. Water Sci Technol 2005, 51, 93–100. [Google Scholar]
- Dong, B.Z.; Feng, J.; Chen, Y.; Gao, N.Y. Effect of Properties of organics on ultrafiltration membrane flux. J. Tongji Univ. 2007, 35, 356–360. [Google Scholar]
- Suzuki, T.; Watanabe, Y.; Ozawa, G. Performance of a hybrid MF membrane system combining activated carbon adsorption and biological oxidation. Water Sci. Technol. Water Supply 2001, 1, 253–259. [Google Scholar]
- Sun, D.D.; Zhang, Q.X. Study on the pretreatment of UF membrane and the cleaning in processing domestic wastewater. Chem. Equip. Technol. 2003, 24, 10–13. [Google Scholar]
- Gai, X.J.; Kim, H.S. The role of powdered activated carbon in enhancing the performance of membrane systems for water treatment. Desalination 2008, 225, 288–300. [Google Scholar] [CrossRef]
- Ma, C.; Yu, S.L.; Shi, W.X.; Tian, W.D.; Heijman, S.G.J.; Rietveld, L.C. High concentration powdered activated carbon-membrane bioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature. Bioresour. Technol. 2012, 113, 136–142. [Google Scholar] [CrossRef]
- Lin, C.F.; Liu, S.H.; Hao, O.J. Effect of functional groups of humic substances on UF performance. Water Res. 2001, 35, 2395–2402. [Google Scholar] [CrossRef]
- Da Silva, F.V.; Yamaguchi, N.U.; Lovato, G.A.; da Silva, F.A.; Reis, M.H.M.; de Amorim, M.; Tavares, C.R.G.; Bergamasco, R. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality. Environ. Technol. 2012, 33, 711–716. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Wang, J.; Klibanov, A.M. One-step, painting-like coating procedures to make surfaces highly and permanently bactericidal. Biotechnol. Progr. 2006, 22, 584–589. [Google Scholar] [CrossRef]
- Milovic, N.M.; Wang, J.; Lewis, K.; Klibanov, A.M. Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol. Bioeng. 2005, 90, 715–722. [Google Scholar] [CrossRef]
- De Velasquez, M.T.O.; Monje-Ramirez, I.; Paredes, J.F.M. Effect of ozone in UF-membrane flux and dissolved organic matter of secondary effluent. Ozone-Sci. Eng. 2013, 35, 208–216. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Liu, Y.; Duan, W. Ozonation pretreatment for ultrafiltration of the secondary effluent. J. Membr. Sci. 2007, 287, 187–191. [Google Scholar] [CrossRef]
- You, S.H.; Tseng, D.H.; Hsu, W.C. Effect and mechanism of ultrafiltration membrane fouling removal by ozonation. Desalination 2007, 202, 224–230. [Google Scholar] [CrossRef]
- Oh, B.S.; Jang, H.Y.; Hwang, T.M.; Kang, J.W. Role of ozone for reducing fouling due to pharmaceuticals in MF (microfiltration) process. J. Membr. Sci. 2007, 289, 178–186. [Google Scholar] [CrossRef]
- Kabsch-Korbutowicz, M.; Bilyk, A.; Molczan, M. The effect of feed water pretreatment on ultrafiltration membrane performance. Polish J. Environ. Stud. 2006, 15, 719–725. [Google Scholar]
- Huang, H.O.; Cho, H.H.; Schwab, K.J.; Jacangelo, J.G. Effects of magnetic ion exchange pretreatment on low pressure membrane filtration of natural surface water. Water Res. 2012, 46, 5483–5490. [Google Scholar] [CrossRef]
- Nagaoka, H.; Yamanishi, S.; Miya, A. Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system. Water Sci. Technol. 1998, 38, 497–504. [Google Scholar] [CrossRef]
- Khan, M.M.T.; Takizawa, S.; Lewandowski, Z.; Rahman, M.H.; Komatsu, K.; Nelson, S.E.; Kurisu, F.; Camper, A.K.; Katayama, H.; Ohgaki, S. Combined effects of EPS and HRT enhanced biofouling on a submerged and hybrid PAC-MF membrane bioreactor. Water Res. 2013, 47, 747–757. [Google Scholar] [CrossRef]
- Jeong, S.; Naidu, G.; Vigneswaran, S. Submerged membrane adsorption bioreactor as a pretreatment in seawater desalination for biofouling control. Bioresour. Technol. 2013, 141, 57–64. [Google Scholar] [CrossRef]
- Suarez, J.; Villa, J.; Salgado, B. Experience with integrated ultrafiltration/reverse osmosis systems in industrial applications in Spain. Desalin. Water Treat. 2013, 51, 423–431. [Google Scholar] [CrossRef]
- Song, Y.F.; Su, B.W.; Gao, X.L.; Gao, C.J. The performance of polyamide nanofiltration membrane for long-term operation in an integrated membrane seawater pretreatment system. Desalination 2012, 296, 30–36. [Google Scholar] [CrossRef]
- Yu, H.; Li, J.; Wang, Y.; Yang, C. Research on reliability of ultrafiltration in integrated MBR-UF-RO system for municipal wastewater reuse in power plant. Technol. Water Treat. 2011, 37, 75. [Google Scholar]
- Tian, J.Y.; Ernst, M.; Cui, F.Y.; Jekel, M. KMnO4 pre-oxidation combined with FeCl3 coagulation for UF membrane fouling control. Desalination 2013, 320, 40–48. [Google Scholar] [CrossRef]
- Wang, J.H.; Qing, Y.; Qing, C. Surface electrokinetic behavior of PVDF hollow fiber ultrafiltration membrane modified by low-temperature plasma method. Environ. Sci. Manag. 2009, 34, 54–57. [Google Scholar]
- Kim, E.S.; Kim, Y.J.; Yu, Q.S.; Deng, B.L. Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF). J. Membr. Sci. 2009, 344, 71–81. [Google Scholar] [CrossRef]
- Yang, N.Z.; Wang, Y.T.; Guo, M.Y.; Zhang, A.H. PAN ultrafiltration membrane surface modification by low temperature plasma treatment with oxygen. J. Northwest Inst. Text. Sci. Technol. 2000, 14, 314–317. [Google Scholar]
- Shim, J.K.; Na, H.S.; Lee, Y.M.; Huh, H.; Nho, Y.C. Surface modification of polypropylene membranes by gamma-ray induced graft copolymerization and their solute permeation characteristics. J. Membr. Sci. 2001, 190, 215–226. [Google Scholar] [CrossRef]
- Higuchi, A.; Shirano, K.; Harashima, M.; Yoon, B.O.; Hara, M.; Hattori, M.; Imamura, K. Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 2002, 23, 2659–2666. [Google Scholar] [CrossRef]
- Higuchi, A.; Sugiyama, K.; Yoon, B.O.; Sakurai, M.; Hara, M.; Sumita, M.; Sugawara, S.; Shirai, T. Serum protein adsorption and platelet adhesion on pluronic (TM)-adsorbed polysulfone membranes. Biomaterials 2003, 24, 3235–3245. [Google Scholar] [CrossRef]
- Revanur, R.; McCloskey, B.; Breitenkamp, K.; Freeman, B.D.; Emrick, T. Reactive amphiphilic graft copolymer coatings applied to poly(vinylidene fluoride) ultrafiltration membranes. Macromolecules 2007, 40, 3624–3630. [Google Scholar] [CrossRef]
- Hyun, J.; Jang, H.; Kim, K.; Na, K.; Tak, T. Restriction of biofouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains. J. Membr. Sci. 2006, 282, 52–59. [Google Scholar] [CrossRef]
- Lewis, K.; Klibanov, A.M. Surpassing nature: Rational design of sterile-surface materials. Trends Biotechnol. 2005, 23, 343–348. [Google Scholar] [CrossRef]
- Klibanov, A.M. Permanently microbicidal materials coatings. J. Mater. Chem 2007, 17, 2479–2482. [Google Scholar] [CrossRef]
- Berndt, E.; Behnke, S.; Dannehl, A.; Gajda, A.; Wingender, J.; Ulbricht, M. Functional coatings for anti-biofouling applications by surface segregation of block copolymer additives. Polymer 2010, 51, 5910–5920. [Google Scholar] [CrossRef]
- Therien-Aubin, H.; Chen, L.; Ober, C.K. Fouling-resistant polymer brush coatings. Polymer 2011, 52, 5419–5425. [Google Scholar] [CrossRef]
- Sagle, A.C.; Ju, H.; Freeman, B.D.; Sharma, M.M. PEG-based hydrogel membrane coatings. Polymer 2009, 50, 756–766. [Google Scholar] [CrossRef]
- Xing, D.M.; Wu, G.Y.; Hu, J.J. Study on the modified PVC UF membrane (II)—Study on the performance of the blend modified membrane. Membr. Sci. Technol. 1996, 16, 45–50. [Google Scholar]
- Cherdron, H.; Haubs, M.; Herold, F.; Schneller, A.; Herrmannschonherr, O.; Wagener, R. Miscible blends of polybenzimidazole and polyaramides with polyvinylpyrrolidone. J. Appl. Polym. Sci. 1994, 53, 507–512. [Google Scholar] [CrossRef]
- Damodar, R.A.; You, S.J.; Chou, H.H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. 2009, 172, 1321–1328. [Google Scholar] [CrossRef]
- Li, J.H.; Xu, Y.Y.; Zhu, L.P.; Wang, J.H.; Du, C.H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. Membr. Sci. 2009, 326, 659–666. [Google Scholar] [CrossRef]
- Oh, S.J.; Kim, N.; Lee, Y.T. Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement. J. Membr. Sci. 2009, 345, 13–20. [Google Scholar] [CrossRef]
- Yu, L.Y.; Shen, H.M.; Xu, Z.L. PVDF-TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol-gel method and blending method. J. Appl. Polym. Sci. 2009, 113, 1763–1772. [Google Scholar] [CrossRef]
- Wei, Y.; Chu, H.Q.; Dong, B.Z.; Li, X.; Xia, S.J.; Qiang, Z.M. Effect of TiO2 nanowire addition on PVDF ultrafiltration membrane performance. Desalination 2011, 272, 90–97. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sun, W.; Liu, J.; Chu, H.; Dong, B. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling. Membranes 2013, 3, 226-241. https://doi.org/10.3390/membranes3030226
Sun W, Liu J, Chu H, Dong B. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling. Membranes. 2013; 3(3):226-241. https://doi.org/10.3390/membranes3030226
Chicago/Turabian StyleSun, Wen, Junxia Liu, Huaqiang Chu, and Bingzhi Dong. 2013. "Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling" Membranes 3, no. 3: 226-241. https://doi.org/10.3390/membranes3030226
APA StyleSun, W., Liu, J., Chu, H., & Dong, B. (2013). Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling. Membranes, 3(3), 226-241. https://doi.org/10.3390/membranes3030226