Fluorine-Free Membranes Consisting of a Blend of S-PVA and PEBAX 1657 for Proton Exchange Membrane Fuel Cells: The Role of Titanium Dioxide Phosphate (TiO2PO4) Nanoparticle Fillers
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Titanium Dioxide Phosphate (TiO2PO4) Nanoparticles
2.3. Preparation of Membranes
2.4. Membrane Characterization
2.4.1. Water Uptake (WU) and Swelling Ratio (SR)
2.4.2. Ion Exchange Capacity (IEC)
2.4.3. TGA Analysis
2.4.4. Scanning Electron Microscopy (SEM)
2.4.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.6. X-Ray Diffraction (XRD)
2.4.7. Mechanical Stability
2.4.8. Chemical Stability
2.4.9. Electrochemical Characterization and MEA Performance
3. Results and Discussion
3.1. Water Uptake Capacity and Swelling Ratios of Prepared Membranes
3.2. Ion Exchange Capacity (IEC) of Prepared Membranes
3.3. Thermogravimetric Analysis (TGA)
3.4. Scanning Electron Microscopy (SEM) Analysis
3.5. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
3.6. X-Ray Diffraction (XRD) Analysis
3.7. Mechanical Properties
3.8. Chemical Stability Test
3.9. Fuel Cell Performance Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Mashhadani, M.H.I.; Salmanzade, K.; Tompos, A.; Selim, A. Promising Fluorine-Free Ion Exchange Membranes Based on a Poly(Ether-Block-Amide) Copolymer and Sulfonated Montmorillonite: Influence of Different Copolymer Segment Ratios. Membranes 2024, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Kazmi, W.W.; Hussain, A.; Khan, M.Z.; Bibi, S.; Saleem, M.; Song, R.H.; Sajid, Z.; Ullah, A.; Khan, M.K. Facile and Low-Temperature Synthesis Approach to Fabricate Sm0.5Sr0.5CoO3−δ Cathode Material for Solid Oxide Fuel Cell. J. Korean Ceram. Soc. 2023, 60, 272–282. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Rowshanzamir, S.; Amjadi, M. Review of the Proton Exchange Membranes for Fuel Cell Applications; Elsevier: Amsterdam, The Netherlands, 2010; Volume 35, pp. 9349–9384. [Google Scholar]
- Baroutaji, A.; Carton, J.G.; Sajjia, M.; Olabi, A.G. Materials in PEM Fuel Cells. In Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Applications of Membrane Technology in the Dairy Industry. In Handbook of Membrane Separations; CRC Press: Boca Raton, FL, USA, 2015; pp. 524–557.
- Selim, A.; Szijjártó, G.P.; Tompos, A. Insights into the Influence of Different Pre-Treatments on Physicochemical Properties of Nafion XL Membrane and Fuel Cell Performance. Polymers 2022, 14, 3385. [Google Scholar] [CrossRef]
- Xu, G.; Dong, X.; Xue, B.; Huang, J.; Wu, J.; Cai, W. Recent Approaches to Achieve High Temperature Operation of Nafion Membranes. Energies 2023, 16, 1565. [Google Scholar] [CrossRef]
- Li, X.; Ye, T.; Meng, X.; He, D.; Li, L.; Song, K.; Jiang, J.; Sun, C. Advances in the Application of Sulfonated Poly(Ether Ether Ketone) (SPEEK) and Its Organic Composite Membranes for Proton Exchange Membrane Fuel Cells (PEMFCs). Polymers 2024, 16, 2840. [Google Scholar] [CrossRef]
- Song, Y.; Guo, Z.; Yin, J.; Liu, M.; Tolj, I.; Grigoriev, S.A.; Ge, M.; Sun, C. Investigations of the Sulfonated Poly(Ether Ether Ketone) Membranes with Various Degrees of Sulfonation by Considering Durability for the Proton Exchange Membrane Fuel Cell (PEMFC) Applications. Polymers 2025, 17, 2181. [Google Scholar] [CrossRef]
- Asghar, M.R.; Zahid, A.; Su, H.; Divya, K.; Anwar, M.T.; Xu, Q. Styrene and Its Derivatives Used in Proton Exchange Membranes and Anion Exchange Membranes for Fuel Cell Applications: A Review. Batteries 2025, 11, 134. [Google Scholar] [CrossRef]
- Ye, Y.-S.; Rick, J.; Hwang, B.-J. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells. Polymers 2012, 4, 913–963. [Google Scholar] [CrossRef]
- Yang, T. Composite Membrane of Sulfonated Poly (Ether Ether Ketone) and Sulfated Poly (Vinyl Alcohol) for Use in Direct Methanol Fuel Cells. J. Memb. Sci. 2009, 342, 221–226. [Google Scholar] [CrossRef]
- Wang, C.; Shen, B.; Xu, C.; Zhao, X.; Li, J. Side-Chain-Type Poly(Arylene Ether Sulfone)s Containing Multiple Quaternary Ammonium Groups as Anion Exchange Membranes. J. Memb. Sci. 2015, 492, 281–288. [Google Scholar] [CrossRef]
- Krishnan, N.N.; Lee, S.; Ghorpade, R.V.; Konovalova, A.; Jang, J.H.; Kim, H.-J.; Han, J.; Henkensmeier, D.; Han, H. Polybenzimidazole (PBI-OO) Based Composite Membranes Using Sulfophenylated TiO2 as Both Filler and Crosslinker, and Their Use in the HT-PEM Fuel Cell. J. Memb. Sci. 2018, 560, 11–20. [Google Scholar] [CrossRef]
- Elakkiya, S.; Arthanareeswaran, G.; Venkatesh, K.; Kweon, J. Enhancement of Fuel Cell Properties in Polyethersulfone and Sulfonated Poly (Ether Ether Ketone) Membranes Using Metal Oxide Nanoparticles for Proton Exchange Membrane Fuel Cell. Int. J. Hydrog. Energy 2018, 43, 21750–21759. [Google Scholar] [CrossRef]
- Wang, C.; Shen, B.; Zhou, Y.; Xu, C.; Chen, W.; Zhao, X.; Li, J. Sulfonated Aromatic Polyamides Containing Nitrile Groups as Proton Exchange Fuel Cell Membranes. Int. J. Hydrogen Energy 2015, 40, 6422–6429. [Google Scholar] [CrossRef]
- Mollá, S.; Compañ, V.; Gimenez, E.; Blazquez, A.; Urdanpilleta, I. Novel Ultrathin Composite Membranes of Nafion/PVA for PEMFCs. Int. J. Hydrogen Energy 2011, 36, 9886–9895. [Google Scholar] [CrossRef]
- Sahin, A. The Development of Speek/Pva/Teos Blend Membrane for Proton Exchange Membrane Fuel Cells. Electrochim. Acta 2018, 271, 127–136. [Google Scholar] [CrossRef]
- Gohel, J.V.; Mishra, P.S.; Murthy, Z.V.P. TiO2 Nanoparticles Prepared by Mechanical Reduction Technique for Superior DMFC Nanocomposite PVA Membranes. Sep. Sci. Technol. 2019, 54, 233–246. [Google Scholar] [CrossRef]
- Shabanpanah, S.; Omrani, A. Improved Proton Conductivity and Methanol Permeability of PVA-Based Proton Exchange Membranes Using Diphenylamine-4-Sulfonic Acid Sodium Salt and Silica Nanoparticles. Polym. Plast. Technol. Mater. 2019, 58, 1662–1677. [Google Scholar] [CrossRef]
- Altaf, F.; Gill, R.; Batool, R.; Drexler, M.; Alamgir, F.; Abbas, G.; Jacob, K. Proton Conductivity and Methanol Permeability Study of Polymer Electrolyte Membranes with Range of Functionalized Clay Content for Fuel Cell Application. Eur. Polym. J. 2019, 110, 155–167. [Google Scholar] [CrossRef]
- Yang, T. Preliminary Study of SPEEK/PVA Blend Membranes for DMFC Applications. Int. J. Hydrogen Energy 2008, 33, 6772–6779. [Google Scholar] [CrossRef]
- El-Toony, M.M.; Abdel-Hady, E.E.; El-Kelsh, N.A. Casting of Poly Hydroxybutarate/Poly (Vinyl Alcohol) Membranes for Proton Exchange Fuel Cells. Electrochim. Acta 2014, 150, 290–297. [Google Scholar] [CrossRef]
- Remiš, T.; Kadlec, J. Influence of Silicon Oxide (SiO2) and Sulfosuccinic Acid (SSA) Loading on Properties of Poly (Vinyl Alcohol) (PVA) Derived Composite Membranes. J. Phys. Conf. Ser. 2018, 1045, 012035. [Google Scholar] [CrossRef]
- Rhim, J.W.; Park, H.B.; Lee, C.S.; Jun, J.H.; Kim, D.S.; Lee, Y.M. Crosslinked Poly (Vinyl Alcohol) Membranes Containing Sulfonic Acid Group: Proton and Methanol Transport through Membranes. J. Memb. Sci. 2004, 238, 143–151. [Google Scholar] [CrossRef]
- Awad, S.; Abdel-Hady, E.E.; Mohamed, H.F.M.; Elsharkawy, Y.S.; Gomaa, M.M. Non-Fluorinated PVA/SSA Proton Exchange Membrane Studied by Positron Annihilation Technique for Fuel Cell Application. Polym. Adv. Technol. 2021, 32, 3322–3332. [Google Scholar] [CrossRef]
- Clarizia, G.; Bernardo, P. Polyether Block Amide as Host Matrix for Nanocomposite Membranes Applied to Different Sensitive Fields. Membranes 2022, 12, 1096. [Google Scholar] [CrossRef]
- Gu, J.; Shi, X.; Bai, Y.; Zhang, H.; Zhang, L.; Huang, H. Silicalite-Filled PEBA Membranes for Recovering Ethanol from Aqueous Solution by Pervaporation. Chem. Eng. Technol. Ind. Chem. Plant Equip. Process Eng. Biotechnol. 2009, 32, 155–160. [Google Scholar] [CrossRef]
- Selim, A.; Knozowska, K.; Ośmiałowski, B.; Kujawa, J.; Mizsey, P.; Kujawski, W. The Fabrication, Characterization, and Pervaporation Performance of Poly (Ether-Block-Amide) Membranes Blended with 4-(Trifluoromethyl)-N (Pyridine-2-Yl) Benzamide and 4-(Dimethylamino)-N (Pyridine-2-Yl) Benzamide Fillers. Sep. Purif. Technol. 2021, 268, 118707. [Google Scholar] [CrossRef]
- Martínez-Izquierdo, L.; Perea-Cachero, A.; Malankowska, M.; Téllez, C.; Coronas, J. A Comparative Study between Single Gas and Mixed Gas Permeation of Polyether-Block-Amide Type Copolymer Membranes. J. Environ. Chem. Eng. 2022, 10, 108324. [Google Scholar] [CrossRef]
- Ebadi, R.; Maghsoudi, H.; Babaluo, A.A. Fabrication and Characterization of Pebax-1657 Mixed Matrix Membrane Loaded with Si-CHA Zeolite for CO2 Separation from CH4. J. Nat. Gas Sci. Eng. 2021, 90, 103947. [Google Scholar] [CrossRef]
- Madhuranthakam, C.M.R.; Abudaqqa, W.S.K.; Fowler, M. Advances in Polyvinyl Alcohol-Based Membranes for Fuel Cells: A Comprehensive Review on Types, Synthesis, Modifications, and Performance Optimization. Polymers 2024, 16, 1775. [Google Scholar] [CrossRef]
- Chandra Kishore, S.; Perumal, S.; Atchudan, R.; Alagan, M.; Wadaan, M.A.; Baabbad, A.; Manoj, D. Recent Advanced Synthesis Strategies for the Nanomaterial-Modified Proton Exchange Membrane in Fuel Cells. Membranes 2023, 13, 590. [Google Scholar] [CrossRef]
- Bet-Moushoul, E.; Mansourpanah, Y.; Farhadi, K.; Tabatabaei, M. TiO2 Nanocomposite Based Polymeric Membranes: A Review on Performance Improvement for Various Applications in Chemical Engineering Processes. Chem. Eng. J. 2016, 283, 29–46. [Google Scholar] [CrossRef]
- Zaidi, S.M.J. Research Trends in Polymer Electrolyte Membranes for PEMFC. In Polymer Membranes for Fuel Cells; Springer: Berlin/Heidelberg, Germany, 2009; pp. 7–25. [Google Scholar] [CrossRef]
- Abdullah, N.; Kamarudin, S.K. Titanium Dioxide in Fuel Cell Technology: An Overview. J. Power Sources 2015, 278, 109–118. [Google Scholar] [CrossRef]
- Gouda, M.H.; Elessawy, N.A.; Santos, D.M.F. Synthesis and Characterization of Novel Green Hybrid Nanocomposites for Application as Proton Exchange Membranes in Direct Borohydride Fuel Cells. Energies 2020, 13, 1180. [Google Scholar] [CrossRef]
- Al-Mashhadani, M.H.I.; Szijjártó, G.P.; Sebestyén, Z.; Károly, Z.; Mihály, J.; Tompos, A. Novel, Fluorine-Free Membranes Based on Sulfonated Polyvinyl Alcohol and Poly(Ether-Block-Amide) with Sulfonated Montmorillonite Nanofiller for PEMFC Applications. Membranes 2024, 14, 211. [Google Scholar] [CrossRef]
- Meng, G.; Li, X.; Liu, M.; Grigoriev, S.A.; Tolj, I.; Shen, J.; Yue, C.; Sun, C. Investigations of Dongyue Series Perfluorosulfonic Acid Membranes for Applications in Proton Exchange Membrane Fuel Cells (PEMFCs). Batteries 2025, 11, 277. [Google Scholar] [CrossRef]
- Ghosh, P.; Ganguly, S.; Kargupta, K. Phosphosilicate Nano-Network (PPSN)-Polybenzimidazole (PBI) Composite Electrolyte Membrane for Enhanced Proton Conductivity, Durability and Power Generation of HT-PEMFC. Int. J. Hydrogen Energy 2022, 47, 32287–32302. [Google Scholar] [CrossRef]
- Lotz, B. Fold Surfaces of Polymer Crystals Are Nucleation Sites: The Link between Polymer Decoration, Secondary Crystallization, and the Rigid Amorphous Fraction (RAF). Macromolecules 2023, 56, 4135–4152. [Google Scholar] [CrossRef]
- Gouda, M.H.; Gouveia, W.; Elessawy, N.A.; Šljukić, B.; Nassr, A.B.A.A.; Santos, D.M.F. Simple Design of PVA-Based Blend Doped with SO4(PO4)-Functionalised TiO2 as an Effective Membrane for Direct Borohydride Fuel Cells. Int. J. Hydrogen Energy 2020, 45, 15226–15238. [Google Scholar] [CrossRef]
- Gouda, M.H.; Tamer, T.M.; Mohy Eldin, M.S. A Highly Selective Novel Green Cation Exchange Membrane Doped with Ceramic Nanotubes Material for Direct Methanol Fuel Cells. Energies 2021, 14, 5664. [Google Scholar] [CrossRef]
- Perez, G.A.P.; Dumont, M.J. Polyvinyl Sulfonated Catalyst and the Effect of Sulfonic Sites on the Dehydration of Carbohydrates. Chem. Eng. J. 2021, 419, 129573. [Google Scholar] [CrossRef]
- Özdemir, Y.; Üregen, N.; Devrim, Y. Polybenzimidazole Based Nanocomposite Membranes with Enhanced Proton Conductivity for High Temperature PEM Fuel Cells. Int. J. Hydrogen Energy 2017, 42, 2648–2657. [Google Scholar] [CrossRef]
Composition of Membranes | Name |
---|---|
S-PVA 8:2 PEBAX1657 without (TiO2PO4) filler | SPP 0% TiO2PO4 |
S-PVA 8:2 PEBAX1657 with 3% (TiO2PO4) filler | SPP 3% TiO2PO4 |
S-PVA 8:2 PEBAX1657 with 5% (TiO2PO4) filler | SPP 5% TiO2PO4 |
S-PVA 8:2 PEBAX1657 with 7% (TiO2PO4) filler | SPP 7% TiO2PO4 |
Sample | Residue (%) |
---|---|
S-PVA—PEBAX 0% TiO2PO4 | 17.00 |
S-PVA—PEBAX 3% TiO2PO4 | 19.72 |
S-PVA—PEBAX 5% TiO2PO4 | 21.82 |
S-PVA—PEBAX 7% TiO2PO4 | 22.23 |
Wavenumber (cm−1) | Assignment | Origin/Interpretation |
---|---|---|
630 | Ti–O stretching vibration | Confirms presence of TiO2PO4 filler |
690 | Ti–O stretching vibration | TiO2PO4 particles |
1020 | C–O–C stretching | PVA-based membranes |
1028, 1115 | P–O stretching | TiO2PO4 particles |
1036, 1101 | O=SO deformation vibrations | From SSA, confirming the SO3H functional group |
1126 | C–O–C ester deformation | PVA after sulfonation |
1130 | C–C stretching | PVA-based membranes |
1730–1735 | C=O stretching (ester carbonyl) | Esterification between PVA hydroxyl and SSA carboxyl groups |
2940 | C–H stretching | PVA/PEBAX membranes; intensity decreases with TiO2PO4 addition |
3250 | O–H stretching | Hydrogen bonding; intensity decreases with TiO2PO4 addition |
2θ (°) | Assignment | Origin |
---|---|---|
~14.2 | Crystalline PA segment | From polyamide domains in PEBAX copolymer |
~17.3 | Amorphous PEO chain arrangement | From polyethylene oxide domains in PEBAX |
~20.0 | Intermolecular hydrogen bonding in PVA | Partially crystalline structure of PVA; peak decreases upon addition of TiO2PO4 due to reduced hydrogen bonding |
~25.0 | TiO2PO4 nanofiller peak | New peak appearing with TiO2PO4 incorporation, confirming filler presence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mashhadani, M.H.I.; Szijjártó, G.P.; Selim, A.; Sebestyén, Z.; Mihály, J.; Tompos, A. Fluorine-Free Membranes Consisting of a Blend of S-PVA and PEBAX 1657 for Proton Exchange Membrane Fuel Cells: The Role of Titanium Dioxide Phosphate (TiO2PO4) Nanoparticle Fillers. Membranes 2025, 15, 280. https://doi.org/10.3390/membranes15090280
Al-Mashhadani MHI, Szijjártó GP, Selim A, Sebestyén Z, Mihály J, Tompos A. Fluorine-Free Membranes Consisting of a Blend of S-PVA and PEBAX 1657 for Proton Exchange Membrane Fuel Cells: The Role of Titanium Dioxide Phosphate (TiO2PO4) Nanoparticle Fillers. Membranes. 2025; 15(9):280. https://doi.org/10.3390/membranes15090280
Chicago/Turabian StyleAl-Mashhadani, Manhal H. Ibrahim, Gábor Pál Szijjártó, Asmaa Selim, Zoltán Sebestyén, Judith Mihály, and András Tompos. 2025. "Fluorine-Free Membranes Consisting of a Blend of S-PVA and PEBAX 1657 for Proton Exchange Membrane Fuel Cells: The Role of Titanium Dioxide Phosphate (TiO2PO4) Nanoparticle Fillers" Membranes 15, no. 9: 280. https://doi.org/10.3390/membranes15090280
APA StyleAl-Mashhadani, M. H. I., Szijjártó, G. P., Selim, A., Sebestyén, Z., Mihály, J., & Tompos, A. (2025). Fluorine-Free Membranes Consisting of a Blend of S-PVA and PEBAX 1657 for Proton Exchange Membrane Fuel Cells: The Role of Titanium Dioxide Phosphate (TiO2PO4) Nanoparticle Fillers. Membranes, 15(9), 280. https://doi.org/10.3390/membranes15090280