Pore-Discriminative Pervaporation of Xylene Isomers Through In Situ Synthesized MIL-100(In) Membranes
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of MIL-100 Particles and Membranes
2.3. Pervaporation Test
2.4. Characterizations
3. Results and Discussion
3.1. Characterization of MIL-100(In) Powder
3.2. Characterization of MIL-100(In) Membrane
3.3. Separation Performance
3.3.1. Temperature Effect and Long-Term Stability
3.3.2. Separation Mechanism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Bai, P.; Guo, X. Separation of Xylene Isomers: A Review of Recent Advances in Materials. Ind. Eng. Chem. Res. 2017, 56, 14725–14753. [Google Scholar] [CrossRef]
- Sholl, D.S.; Lively, R.P. Seven Chemical Separations to Change the World. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Minceva, M.; Rodrigues, A.E. Understanding and Revamping of Industrial Scale SMB Units for P-Xylene Separation. AIChE J. 2007, 53, 138–149. [Google Scholar] [CrossRef]
- Yuan, W.; Lin, Y.S.; Yang, W. Molecular Sieving MFI-Type Zeolite Membranes for Pervaporation Separation of Xylene Isomers. J. Am. Chem. Soc. 2004, 126, 4776–4777. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Tomita, T.; Takahashi, T. P-Xylene Separation with MFI-Type Zeolite Membrane. Sep. Purif. Technol. 2001, 25, 297–306. [Google Scholar] [CrossRef]
- Wegner, K.; Dong, J.; Lin, Y.S. Polycrystalline MFI Zeolite Membranes: Xylene Pervaporation and Its Implication on Membrane Microstructure. J. Membr. Sci. 1999, 158, 17–27. [Google Scholar] [CrossRef]
- Kusumocahyo, S.P.; Ichikawa, T.; Shinbo, T.; Iwatsubo, T.; Kameda, M.; Ohi, K.; Yoshimi, Y.; Kanamori, T. Pervaporative Separation of Organic Mixtures Using Dinitrophenyl Group-Containing Cellulose Acetate Membrane. J. Membr. Sci. 2005, 253, 43–48. [Google Scholar] [CrossRef]
- McCandless, F.P.; Downs, W.B. Separation of C8 Aromatic Isomers by Pervaporation through Commercial Polymer Films. J. Membr. Sci. 1987, 30, 111–116. [Google Scholar] [CrossRef]
- Zhang, P.; Qian, J.; Yang, Y.; Bai, Y.-X.; An, Q.-F.; Yan, W. Swelling Behavior of Palygorskite-Polyacrylamide Hybrid Membrane in Xylene Mixtures and Its Pervaporation Performance for Separating the Xylene Isomers. J. Membr. Sci. 2007, 288, 280–289. [Google Scholar] [CrossRef]
- Yang, Y.; Qian, J.; Xuan, L.; An, A.; Zhang, L.; Gao, C. Preparation and Pervaporation of a Palygorskite/Polyacrylamide Inorganic-Organic Hybrid Membrane for Separating m-/p-Xylene Isomers. Desalination 2006, 193, 193–201. [Google Scholar] [CrossRef]
- Chen, W.; Wang, P.; Jia, W.; Zeng, H. High-Quality Silicalite-1/PVA Mixed Matrix Membrane for Efficient Pervaporation Separation of Xylene Isomers. J. Membr. Sci. 2025, 729, 124171. [Google Scholar] [CrossRef]
- Chen, H.L.; Wu, L.G.; Tan, J.; Zhu, C.L. PVA Membrane Filled β-Cyclodextrin for Separation of Isomeric Xylenes by Pervaporation. Chem. Eng. J. 2000, 78, 159–164. [Google Scholar] [CrossRef]
- Qu, X.Y.; Dong, H.; Zhou, Z.J.; Zhang, L.; Chen, H.L. Pervaporation Separation of Xylene Isomers by Hybrid Membranes of PAAS Filled with Silane-Modified Zeolite. Ind. Eng. Chem. Res. 2010, 49, 7504–7514. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.L.; Liu, N.J.; Chen, H.L.; Pan, Z.R.; Lue, S.J. Pervaporation Behavior of PVA Membrane Containing β-Cyclodextrin for Separating Xylene Isomeric Mixtures. AIChE J. 2013, 59, 604–612. [Google Scholar] [CrossRef]
- Wu, X.; Wei, W.; Jiang, J.; Caro, J.; Huang, A. High-Flux High-Selectivity Metal-Organic Framework MIL-160 Membrane for Xylene Isomer Separation by Pervaporation. Angew. Chem. Int. Ed. 2018, 57, 15354–15358. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, M.; Hori, K.; Goshima, T.; Takaya, N.; Oumi, Y.; Uemiya, S. An Organoselective Zirconium-Based Metal-Organic-Framework UiO-66 Membrane for Pervaporation. Eur. J. Inorg. Chem. 2017, 2017, 2094–2099. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Bai, N.; Zhang, X.; Han, X.; Da Silva, I.; Morris, C.G.; Xu, S.; Wilary, D.M.; Sun, Y.; et al. Refinement of Pore Size at Sub-Angstrom Precision in Robust Metal-Organic Frameworks for Separation of Xylenes. Nat. Commun. 2020, 11, 4280. [Google Scholar] [CrossRef]
- Varoon Agrawal, K.; Zhang, X.; Elyassi, B.; Brewer, D.D.; Gettel, M.; Kumar, S.; Lee, J.A.; Maheshwari, S.; Mittal, A.; Sung, C.-Y.; et al. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane. Science 2011, 334, 72–75. [Google Scholar] [CrossRef]
- Kumar, P.; Kim, D.W.; Rangnekar, N.; Xu, H.; Fetisov, E.O.; Ghosh, S.; Zhang, H.; Xiao, Q.; Shete, M.; Siepmann, J.I.; et al. One-Dimensional Intergrowths in Two-Dimensional Zeolite Nanosheets and Their Effect on Ultra-Selective Transport. Nat. Mater. 2020, 19, 443–449. [Google Scholar] [CrossRef]
- Lai, Z.; Bonilla, G.; Diaz, I.; Nery, J.G.; Sujaoti, K.; Amat, M.A.; Kokkoli, E.; Terasaki, O.; Thompson, R.W.; Tsapatsis, M.; et al. Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation. Science 2003, 300, 456–460. [Google Scholar] [CrossRef]
- Koh, D.-Y.; McCool, B.A.; Deckman, H.W.; Lively, R.P. Reverse Osmosis Molecular Differentiation of Organic Liquids Using Carbon Molecular Sieve Membranes. Science 2016, 353, 804–807. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Qiu, Z.; Zhou, D.; Yang, L.; Suo, X.; Cui, X.; Xing, H. Highly Efficient Separation of Intermediate-Size m-Xylene from Xylenes via a Length-Matched Metal-Organic Framework with Optimal Oxygen Sites Distribution. Angew. Chem. Int. Edit. 2024, 63, e202408817. [Google Scholar] [CrossRef]
- Volkringer, C.; Popov, D.; Loiseau, T.; Férey, G.; Burghammer, M.; Riekel, C.; Haouas, M.; Taulelle, F. Synthesis, Single-Crystal X-Ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal-Organic Framework Aluminum Trimesate MIL-100. Chem. Mater. 2009, 21, 5695–5697. [Google Scholar] [CrossRef]
- Tao, H.; Gu, C.; Hou, R.; Ju, S.; Pan, Y. Designing Pore Size and Pore Electronegativity Environment in Aluminum-Based MOF Membranes for Efficient Cyclohexanone/Cyclohexanol Separation. J. Membr. Sci. 2025, 728, 124157. [Google Scholar] [CrossRef]
- Martí-Rujas, J. Structural Elucidation of Microcrystalline MOFs from Powder X-Ray Diffraction. Dalton Trans. 2020, 49, 13897–13916. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.; Yu, J.; Xu, H.; Cui, Y.; Yang, Y.; Qian, G. Preparation and Thiols Sensing of Luminescent Metal-Organic Framework Films Functionalized with Lanthanide Ions. Microporous Mesoporous Mater. 2013, 179, 198–204. [Google Scholar] [CrossRef]
- Dou, Z.; Yu, J.; Cui, Y.; Yang, Y.; Wang, Z.; Yang, D.; Qian, G. Luminescent Metal-Organic Framework Films as Highly Sensitive and Fast-Response Oxygen Sensors. J. Am. Chem. Soc. 2014, 136, 5527–5530. [Google Scholar] [CrossRef]
- Horcajada, P.; Surblé, S.; Serre, C.; Hong, D.-Y.; Seo, Y.-K.; Chang, J.-S.; Grenèche, J.-M.; Margiolaki, I.; Férey, G. Synthesis and Catalytic Properties of MIL-100(Fe), an Iron (iii) Carboxylate with Large Pores. Chem. Commun. 2007, 27, 2820–2822. [Google Scholar] [CrossRef]
- Zhang, F.; Zou, X.; Feng, W.; Zhao, X.; Jing, X.; Sun, F.; Ren, H.; Zhu, G. Microwave-Assisted Crystallization Inclusion of Spiropyran Molecules in Indium Trimesate Films with Antidromic Reversible Photochromism. J. Mater. Chem. 2012, 22, 25019–25026. [Google Scholar] [CrossRef]
- Zhu, B.-J.; Yu, X.-Y.; Jia, Y.; Peng, F.-M.; Sun, B.; Zhang, M.-Y.; Luo, T.; Liu, J.-H.; Huang, X.-J. Iron and 1,3,5-Benzenetricarboxylic Metal-Organic Coordination Polymers Prepared by Solvothermal Method and Their Application in Efficient As(V) Removal from Aqueous Solutions. J. Phys. Chem. C 2012, 116, 8601–8607. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, J.; Jin, Y.; Fu, Y.; Zhong, Y.; Zhu, W. Facile Synthesis of MIL-100(Fe) under HF-Free Conditions and Its Application in the Acetalization of Aldehydes with Diols. Chem. Eng. J. 2015, 259, 183–190. [Google Scholar] [CrossRef]
- Zhang, F.; Jin, Y.; Shi, J.; Zhong, Y.; Zhu, W.; El-Shall, M.S. Polyoxometalates Confined in the Mesoporous Cages of Metal-Organic Framework MIL-100(Fe): Efficient Heterogeneous Catalysts for Esterification and Acetalization Reactions. Chem. Eng. J. 2015, 269, 236–244. [Google Scholar] [CrossRef]
- Jabarian, S.; Ghaffarinejad, A. Simultaneous Electrosynthesis of Cu-BTC and Zn-BTC Metal-Organic Frameworks on Brass. New J. Chem. 2020, 44, 19820–19826. [Google Scholar] [CrossRef]
- Łuczak, J.; Kroczewska, M.; Baluk, M.; Sowik, J.; Mazierski, P.; Zaleska-Medynska, A. Morphology Control through the Synthesis of Metal-Organic Frameworks. Adv. Colloid Interface Sci. 2023, 314, 102864. [Google Scholar] [CrossRef] [PubMed]
- Babu, D.J.; He, G.; Villalobos, L.F.; Agrawal, K.V. Crystal Engineering of Metal-Organic Framework Thin Films for Gas Separations. ACS Sustain. Chem. Eng. 2019, 7, 49–69. [Google Scholar] [CrossRef]
- Xiao, Y.; Song, B.; Chen, Y.; Cheng, L.; Ren, Q. ZIF-67 with Precursor Concentration-Dependence Morphology for Aerobic Oxidation of Toluene. J. Organomet. Chem. 2020, 930, 121597. [Google Scholar] [CrossRef]
- Hu, S.; Liu, M.; Li, K.; Zuo, Y.; Zhang, A.; Song, C.; Zhang, G.; Guo, X. Solvothermal Synthesis of NH2-MIL-125(Ti) from Circular Plate to Octahedron. Crystengcomm 2014, 16, 9645–9650. [Google Scholar] [CrossRef]
- Khan, N.A.; Jhung, S.-H. Facile Syntheses of Metal-Organic Framework Cu3(BTC)2(H2O)3 under Ultrasound. B Korean Chem. Soc. 2009, 30, 2921–2926. [Google Scholar] [CrossRef]
- Mazaj, M.; Birsa Čelič, T.; Mali, G.; Rangus, M.; Kaučič, V.; Zabukovec Logar, N. Control of the Crystallization Process and Structure Dimensionality of Mg-Benzene-1,3,5-Tricarboxylates by Tuning Solvent Composition. Cryst. Growth Des. 2013, 13, 3825–3834. [Google Scholar] [CrossRef]
- Marx, S.; Kleist, W.; Baiker, A. Synthesis, Structural Properties, and Catalytic Behavior of Cu-BTC and Mixed-Linker Cu-BTC-PyDC in the Oxidation of Benzene Derivatives. J. Catal. 2011, 281, 76–87. [Google Scholar] [CrossRef]
- Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M.B.J.; Sels, B.F.; De Vos, D.E. Interfacial Synthesis of Hollow Metal-Organic Framework Capsules Demonstrating Selective Permeability. Nat. Chem. 2011, 3, 382–387. [Google Scholar] [CrossRef]
- Xiao, B.; Zhao, X.; Huang, C.; Li, Y. Facile Synthesis of Hierarchical Metal-Organic Microsheet-Assembled Microflowers. Mater. Lett. 2015, 152, 139–141. [Google Scholar] [CrossRef]
- Colwell, K.A.; Jackson, M.N.; Torres-Gavosto, R.M.; Jawahery, S.; Vlaisavljevich, B.; Falkowski, J.M.; Smit, B.; Weston, S.C.; Long, J.R. Buffered Coordination Modulation as a Means of Controlling Crystal Morphology and Molecular Diffusion in an Anisotropic Metal-Organic Framework. J. Am. Chem. Soc. 2021, 143, 5044–5052. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhu, Y.; Wang, S.; Su, S.; Zhou, L.; Zhang, H. Combining Coordination Modulation with Acid-Base Adjustment for the Control over Size of Metal-Organic Frameworks. Chem. Mater. 2012, 24, 444–450. [Google Scholar] [CrossRef]
- Garcia-Garfido, J.M.; Enríquez, J.; Chi-Durán, I.; Jara, I.; Vivas, L.; Hernández, F.J.; Herrera, F.; Singh, D.P. Millimeter-Scale Zn(3-Ptz)2 Metal-Organic Framework Single Crystals: Self-Assembly Mechanism and Growth Kinetics. ACS Omega 2021, 6, 17289–17298. [Google Scholar] [CrossRef]
- Forgan, R.S. Modulated Self-Assembly of Metal-Organic Frameworks. Chem. Sci. 2020, 11, 4546–4562. [Google Scholar] [CrossRef]
- Marshall, C.R.; Staudhammer, S.A.; Brozek, C.K. Size Control over Metal-Organic Framework Porous Nanocrystals. Chem. Sci. 2019, 10, 9396–9408. [Google Scholar] [CrossRef]
- Marshall, C.R.; Timmel, E.E.; Staudhammer, S.A.; Brozek, C.K. Experimental Evidence for a General Model of Modulated MOF Nanoparticle Growth. Chem. Sci. 2020, 11, 11539–11547. [Google Scholar] [CrossRef]
- Seoane, B.; Castellanos, S.; Dikhtiarenko, A.; Kapteijn, F.; Gascon, J. Multi-Scale Crystal Engineering of Metal Organic Frameworks. Coord. Chem. Rev. 2016, 307, 147–187. [Google Scholar] [CrossRef]
- Majewski, M.B.; Noh, H.; Islamoglu, T.; Farha, O.K. NanoMOFs: Little Crystallites for Substantial Applications. J. Mater. Chem. A 2018, 6, 7338–7350. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the Right Stuff: The Trade-off between Membrane Permeability and Selectivity. Science 2017, 356, eaab0530. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.-Y.; Bai, X.-Y.; Zhang, J.; Wang, Y.; Li, S.-N.; Jiang, Y.-C.; Hu, M.-C.; Zhai, Q.-G. Precise Pore Space Partitions Combined with High-Density Hydrogen-Bonding Acceptors within Metal-Organic Frameworks for Highly Efficient Acetylene Storage and Separation. Angew. Chem. Int. Ed. 2021, 60, 10122–10128. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, R.; Sun, Z.; Lin, L.; Yang, H.; Li, H.; Nan, C.; Sun, G.; Ma, S. Morphology-Controlled Synthesis of Ni-MOFs with Highly Enhanced Electrocatalytic Performance for Urea Oxidation. Inorg. Chem. 2019, 58, 11449–11457. [Google Scholar] [CrossRef]
- Gu, S.; Zhou, H.; Zhang, M.; Zhou, C.; Feng, W.; Jiang, Y.; Pang, H. Nucleation and Growth of MOF-Based Composite Materials for Electrochemical Energy Storage. Particuology 2025, 102, 216–239. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Q.; Wang, H.; Chen, Y.; Zhang, M. Temperature Effect on the Morphology and Catalytic Performance of Co-MOF-74 in Low-Temperature NH3-SCR Process. Catal. Commun. 2016, 80, 24–27. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Z.; Fu, X.; Mo, B.; Zhang, Y.; Chen, G.; Zhu, H.; Liu, G.; Jin, W. In Situ Formation of Ultrathin Zr-MOF Mixed-Matrix Membrane for Azeotropic Mixture Separation. Ind. Eng. Chem. Res. 2024, 63, 19775–19787. [Google Scholar] [CrossRef]
- Pham, T.C.T.; Kim, H.S.; Yoon, K.B. Growth of Uniformly Oriented Silica MFI and BEA Zeolite Films on Substrates. Science 2011, 334, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Ding, J.; Fan, L.; Xue, M.; Zhang, D.; Gao, L.; Qiu, S. Preparation of a MOF Membrane with 3-Aminopropyltriethoxysilane as Covalent Linker for Xylene Isomers Separation. Inorg. Chem. Commun. 2013, 30, 74–78. [Google Scholar] [CrossRef]
- Baker, R.W.; Wijmans, J.G.; Huang, Y. Permeability, Permeance and Selectivity: A Preferred Way of Reporting Pervaporation Performance Data. J. Membr. Sci. 2010, 348, 346–352. [Google Scholar] [CrossRef]
- Xu, M.; Tang, W.-Q.; Meng, S.-S.; Gu, Z.-Y. Metal-Organic Frameworks for the Separation of Xylene Isomers. Chem. Soc. Rev. 2025, 54, 1613–1633. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, X.; Li, Z.; Lin, Y.S. Synthesis, Characterization and Gas Transport Properties of MOF-5 Membranes. J. Membr. Sci. 2011, 382, 82–90. [Google Scholar] [CrossRef]
- Kasik, A.; Lin, Y.S. Organic Solvent Pervaporation Properties of MOF-5 Membranes. Sep. Purif. Technol. 2014, 121, 38–45. [Google Scholar] [CrossRef]
- Kasik, A.; James, J.; Lin, Y.S. Synthesis of ZIF-68 Membrane on a ZnO Modified α-Alumina Support by a Modified Reactive Seeding Method. Ind. Eng. Chem. Res. 2016, 55, 2831–2839. [Google Scholar] [CrossRef]
- Cong, S.; Zhou, Y.; Luo, C.; Wang, C.; Wang, J.; Wang, Z.; Liu, X. Designing Metal–Organic Framework (MOF) Membranes for Isomer Separation. Angew. Chem. Int. Ed. 2024, 63, e202319894. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.I.; Kapelewski, M.T.; Bloch, E.D.; Milner, P.J.; Reed, D.A.; Hudson, M.R.; Mason, J.A.; Barin, G.; Brown, C.M.; Long, J.R. Separation of Xylene Isomers through Multiple Metal Site Interactions in Metal-Organic Frameworks. J. Am. Chem. Soc. 2018, 140, 3412–3422. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, J.; Ullah, S.; Yao, J.; Luo, H.; Huang, J.; Xia, Q.; Thonhauser, T.; Li, J.; Wang, H. Separating Xylene Isomers with a Calcium Metal-Organic Framework. Angew. Chem. Int. Ed. 2023, 62, e202310672. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Sharma, A.; Lee, J.H.; Lim, J.; Min, S.K.; Chun, H.; Lah, M.S. Highly Selective Adsorption of Para-Xylene, Ethylbenzene, and Explicit Exclusion of Ortho-Xylene from Xylene Isomers Using a Pillar-Layered MOF with Tuned Pore Channels. Angew. Chem. Inter. Ed. 2025, e202512244. [Google Scholar] [CrossRef]
- Torres-Knoop, A.; Krishna, R.; Dubbeldam, D. Separating Xylene Isomers by Commensurate Stacking of P-Xylene within Channels of MAF-X8. Angew. Chem. Inter. Ed. 2014, 53, 7774–7778. [Google Scholar] [CrossRef]
- Haouas, M.; Volkringer, C.; Loiseau, T.; Férey, G.; Taulelle, F. Monitoring the Activation Process of the Giant Pore MIL-100(Al) by Solid State NMR. J. Phys. Chem. C 2011, 115, 17934–17944. [Google Scholar] [CrossRef]
- Volkringer, C.; Leclerc, H.; Lavalley, J.-C.; Loiseau, T.; Férey, G.; Daturi, M.; Vimont, A. Infrared Spectroscopy Investigation of the Acid Sites in the Metal-Organic Framework Aluminum Trimesate MIL-100(Al). J. Phys. Chem. C 2012, 116, 5710–5719. [Google Scholar] [CrossRef]
- Dou, Z.; Cai, J.; Cui, Y.; Yu, J.; Xia, T.; Yang, Y.; Qian, G. Preparation and Gas Separation Properties of Metal-Organic Framework Membranes. Z. Anorg. Allg. Chem. 2015, 641, 792–796. [Google Scholar] [CrossRef]
- Kumar, N.; Wang, S.-Q.; Mukherjee, S.; Bezrukov, A.A.; Patyk-Kaźmierczak, E.; O’Nolan, D.; Kumar, A.; Yu, M.-H.; Chang, Z.; Bu, X.-H.; et al. Crystal Engineering of a Rectangular Sql Coordination Network to Enable Xylenes Selectivity over Ethylbenzene. Chem. Sci. 2020, 11, 6889–6895. [Google Scholar] [CrossRef]
- Yang, L.; Liu, H.; Yuan, D.; Xing, J.; Xu, Y.; Liu, Z. Efficient Separation of Xylene Isomers by a Pillar-Layer Metal-Organic Framework. ACS Appl. Mater. Interfaces 2021, 13, 41600–41608. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Wu, Y.; Wang, C.; Guo, T.; Zhang, J.; Sun, L. Cross-Linked γ-Cyclodextrin Metal-Organic Framework—A New Stationary Phase for the Separations of Benzene Series and Polycyclic Aromatic Hydrocarbons. Microchim. Acta 2021, 188, 245. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, D.-D.; Ji, G.-J.; Yuan, S.; Qian, J.-F.; He, M.-Y.; Chen, Q.; Zhang, Z.-H. Efficient Adsorption Separation of Xylene Isomers Using a Facilely Fabricated Cyclodextrin-Based Metal-Organic Framework. J. Chem. Technol. Biotechnol. 2018, 93, 2898–2905. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, J.; Pandey, H.; Dong, X.; Gong, Q.; Wang, H.; Yu, L.; Zhou, K.; Yu, W.; Huang, X.; et al. Efficient Separation of Xylene Isomers by Using a Robust Calcium-Based Metal-Organic Framework through a Synergetic Thermodynamically and Kinetically Controlled Mechanism. J. Mater. Chem. A 2021, 9, 26202–26207. [Google Scholar] [CrossRef]
Material | Bet Surface Area | Total Pore Volume | Average Pore Diameter |
---|---|---|---|
MIL-100(In) | 1264.0 m2/g | 0.48 cm3/g | 0.77 nm |
Material | Feed Composition | Separation Factor | Flux (g·m−2·h−1) | Ref. |
---|---|---|---|---|
Mixed-matrix membranes for the separation of xylene isomers | ||||
PGS/PAM | PX/MX (10/90) | 1.64 | 47.3 | [9] |
PGS/PAM | MX/PX (10/90) | 1.4 | 37.3 | [10] |
SPMMM-Fu | PX/MX (10/90) | 39.73 | 34.6 | [11] |
ꞵ-CD/PVA | PX/MX (10/90) | 2.96 | 95.0 | [12] |
silicalite-1/PAAS | PX/MX (15/85) | 2.68 | 342.8 | [13] |
ꞵ-CD-EGDE/PVA | PX/MX (10/90) | 1.34 | 58.0 | [14] |
Other membranes for the separation of xylene isomers | ||||
MFI | PX/MX (50/50) | 1.00 | 200.0 | [6] |
CA-DNP | PX/MX (50/50) | 1.30 | 7.3 | [7] |
PE | PX/MX (50/50) | 1.2 | 0.5 * | [8] |
Metal–organic framework membranes for the separation of xylene isomers | ||||
UiO-66 | PX/MX (50/50) | 1.20 | 370.0 | [16] |
MIL-160 | PX/MX (50/50) | 40.50 | 486.0 | [15] |
MOF-5 | PX/OX (50/50) | 1.24 | 162.5 # | [61] |
MOF-5 | PX/OX (50/50) | 2.22 | 169.5 | [62] |
PX/MX (50/50) | 1.95 | 177.0 | ||
ZIF-68 | / | / | 492.0 | [63] |
UiO-66 | PX/OX (50/50) | 4.83 | 2.8 ** | [64] |
Zn2(BDC)2DABCO | MX/PX (50/50) | 1.62 | 2627.0 | [58] |
MIL-100(In) | MX/PX (50/50) | 2.54 | 7600.0 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Jiang, C.; Wang, Y.; Li, Z.; Gu, Y.; Hou, R.; Pan, Y. Pore-Discriminative Pervaporation of Xylene Isomers Through In Situ Synthesized MIL-100(In) Membranes. Membranes 2025, 15, 261. https://doi.org/10.3390/membranes15090261
Yu J, Jiang C, Wang Y, Li Z, Gu Y, Hou R, Pan Y. Pore-Discriminative Pervaporation of Xylene Isomers Through In Situ Synthesized MIL-100(In) Membranes. Membranes. 2025; 15(9):261. https://doi.org/10.3390/membranes15090261
Chicago/Turabian StyleYu, Jinsuo, Chenyang Jiang, Yanjun Wang, Zemin Li, Yawei Gu, Rujing Hou, and Yichang Pan. 2025. "Pore-Discriminative Pervaporation of Xylene Isomers Through In Situ Synthesized MIL-100(In) Membranes" Membranes 15, no. 9: 261. https://doi.org/10.3390/membranes15090261
APA StyleYu, J., Jiang, C., Wang, Y., Li, Z., Gu, Y., Hou, R., & Pan, Y. (2025). Pore-Discriminative Pervaporation of Xylene Isomers Through In Situ Synthesized MIL-100(In) Membranes. Membranes, 15(9), 261. https://doi.org/10.3390/membranes15090261