Characterization of TMEM16F-Specific Affibodies and Their Cellular Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Purification of Human TMEM16 Protein
2.2. Purification of TMEM16F Affibodies
2.3. Cell Cytotoxicity Assays and Cell Imaging
2.4. Biolayer Interferometry (BLI)
2.5. Phagocytosis Assay and Imaging
2.6. Immunoblotting
2.7. Scrambling Assay
2.8. Ca2+ Influx Assay
3. Results
3.1. Expression of hTMEM16F-Specific Affibodies and Human TMEM16 Proteins
3.2. Interaction of Candidate Affibodies with hTMEM16F Protein
3.3. Effects of the Candidate TMEM16F Affibodies on Neuronal Cell Death Induced by Glutamate
3.4. Effects of Candidate TMEM16F Affibodies on Microglial Phagocytosis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pomorski, T.; Menon, A.K. Lipid flippases and their biological functions. Cell Mol. Life Sci. 2006, 63, 2908–2921. [Google Scholar] [CrossRef]
- Bevers, E.M.; Williamson, P.L. Phospholipid scramblase: An update. FEBS Lett. 2010, 584, 2724–2730. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Schroit, A.J. Aminophospholipid asymmetry: A matter of life and death. Annu. Rev. Physiol. 2003, 65, 701–734. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, J.; Fujii, T.; Imao, T.; Ishihara, K.; Kuba, H.; Nagata, S. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J. Biol. Chem. 2013, 288, 13305–13316. [Google Scholar] [CrossRef]
- Suzuki, J.; Imanishi, E.; Nagata, S. Exposure of phosphatidylserine by Xk-related protein family members during apoptosis. J. Biol. Chem. 2014, 289, 30257–30267. [Google Scholar] [CrossRef]
- Ernst, O.P.; Menon, A.K. Phospholipid scrambling by rhodopsin. Photochem. Photobiol. Sci. 2015, 14, 1922–1931. [Google Scholar] [CrossRef]
- Jan, L.Y.; Jan, Y.N. Wide-ranging cellular functions of ion channels and lipid scramblases in the structurally related TMC, TMEM16 and TMEM63 families. Nat. Struct. Mol. Biol. 2025, 32, 222–236. [Google Scholar] [CrossRef]
- Yang, H.; Kim, A.; David, T.; Palmer, D.; Jin, T.; Tien, J.; Huang, F.; Cheng, T.; Coughlin, S.R.; Jan, Y.N.; et al. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 2012, 151, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Kim, J.H.; He, K.; Wan, Q.; Kim, J.; Flach, M.; Kirchhausen, T.; Vortkamp, A.; Winau, F. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J. Exp. Med. 2016, 213, 2759–2772. [Google Scholar] [CrossRef]
- Wu, N.; Cernysiov, V.; Davidson, D.; Song, H.; Tang, J.; Luo, S.; Lu, Y.; Qian, J.; Gyurova, I.E.; Waggoner, S.N.; et al. Critical Role of Lipid Scramblase TMEM16F in Phosphatidylserine Exposure and Repair of Plasma Membrane after Pore Formation. Cell Rep. 2020, 30, 1129–1140 e1125. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, E.; Collins, P.W.; Williamson, P.L.; Bevers, E.M. Compound heterozygosity for 2 novel TMEM16F mutations in a patient with Scott syndrome. Blood 2011, 117, 4399–4400. [Google Scholar] [CrossRef] [PubMed]
- Ousingsawat, J.; Wanitchakool, P.; Schreiber, R.; Kunzelmann, K. Contribution of TMEM16F to pyroptotic cell death. Cell Death Dis. 2018, 9, 300. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.Q.; Hu, X.Y.; Yang, T.; Guan, J.W.; Gu, Y.; Li, H.Y.; Zhang, H.Y.; Xiao, Q.H.; Sun, X.H. TMEM16F may be a new therapeutic target for Alzheimer’s disease. Neural Regen. Res. 2023, 18, 643–651. [Google Scholar] [CrossRef]
- Braga, L.; Ali, H.; Secco, I.; Chiavacci, E.; Neves, G.; Goldhill, D.; Penn, R.; Jimenez-Guardeno, J.M.; Ortega-Prieto, A.M.; Bussani, R.; et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature 2021, 594, 88–93. [Google Scholar] [CrossRef]
- Lam, A.K.M.; Rutz, S.; Dutzler, R. Inhibition mechanism of the chloride channel TMEM16A by the pore blocker 1PBC. Nat. Commun. 2022, 13, 2798. [Google Scholar] [CrossRef]
- Feng, S.; Puchades, C.; Ko, J.; Wu, H.; Chen, Y.; Figueroa, E.E.; Gu, S.; Han, T.W.; Ho, B.; Cheng, T.; et al. Identification of a drug binding pocket in TMEM16F calcium-activated ion channel and lipid scramblase. Nat. Commun. 2023, 14, 4874. [Google Scholar] [CrossRef]
- Cabrita, I.; Benedetto, R.; Schreiber, R.; Kunzelmann, K. Niclosamide repurposed for the treatment of inflammatory airway disease. J. Clin. Investig. 2019, 4, e128414. [Google Scholar] [CrossRef] [PubMed]
- Centeio, R.; Cabrita, I.; Benedetto, R.; Talbi, K.; Ousingsawat, J.; Schreiber, R.; Sullivan, J.K.; Kunzelmann, K. Pharmacological Inhibition and Activation of the Ca2+ Activated Cl− Channel TMEM16A. Int. J. Mol. Sci. 2020, 21, 2557. [Google Scholar] [CrossRef]
- Miner, K.; Labitzke, K.; Liu, B.; Wang, P.; Henckels, K.; Gaida, K.; Elliott, R.; Chen, J.J.; Liu, L.; Leith, A.; et al. Drug Repurposing: The Anthelmintics Niclosamide and Nitazoxanide Are Potent TMEM16A Antagonists That Fully Bronchodilate Airways. Front. Pharmacol. 2019, 10, 51. [Google Scholar] [CrossRef]
- Liang, P.; Wan, Y.C.S.; Yu, K.; Hartzell, H.C.; Yang, H. Niclosamide potentiates TMEM16A and induces vasoconstriction. J. Gen. Physiol. 2024, 156, 444a. [Google Scholar] [CrossRef]
- Sim, J.R.; Shin, D.H.; Park, P.G.; Park, S.H.; Bae, J.Y.; Lee, Y.; Kang, D.Y.; Kim, Y.J.; Aum, S.; Noh, S.H.; et al. Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition. Cell Rep. 2022, 40, 111117. [Google Scholar] [CrossRef]
- Kim, E.; Bang, J.; Sung, J.H.; Lee, J.; Shin, D.H.; Kim, S.; Lee, B.C. Generation of human TMEM16F-specific affibodies using purified TMEM16F. Front. Mol. Biosci. 2023, 10, 1319251. [Google Scholar] [CrossRef]
- Lee, B.C.; Menon, A.K.; Accardi, A. The nhTMEM16 Scramblase Is Also a Nonselective Ion Channel. Biophys. J. 2016, 111, 1919–1924. [Google Scholar] [CrossRef]
- Ishihara, K.; Suzuki, J.; Nagata, S. Role of Ca(2+) in the Stability and Function of TMEM16F and 16K. Biochemistry 2016, 55, 3180–3188. [Google Scholar] [CrossRef]
- Watanabe, R.; Sakuragi, T.; Noji, H.; Nagata, S. Single-molecule analysis of phospholipid scrambling by TMEM16F. Proc. Natl. Acad. Sci. USA 2018, 115, 3066–3071. [Google Scholar] [CrossRef] [PubMed]
- Akanda, M.R.; Kim, M.J.; Kim, I.S.; Ahn, D.; Tae, H.J.; Rahman, M.M.; Park, Y.G.; Seol, J.W.; Nam, H.H.; Choo, B.K.; et al. Neuroprotective Effects of Sigesbeckia pubescens Extract on Glutamate-Induced Oxidative Stress in HT22 Cells via Downregulation of MAPK/caspase-3 Pathways. Cell Mol. Neurobiol. 2018, 38, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sun, H.; Zhao, W.; Li, J.; Meng, H. Suppression of JNK pathway protects neurons from oxidative injury via attenuating parthanatos in glutamate-treated HT22 neurons. Sci. Rep. 2024, 14, 25793. [Google Scholar] [CrossRef]
- Savolainen, K.M.; Loikkanen, J.; Eerikainen, S.; Naarala, J. Interactions of excitatory neurotransmitters and xenobiotics in excitotoxicity and oxidative stress: Glutamate and lead. Toxicol. Lett. 1998, 102–103, 363–367. [Google Scholar] [CrossRef]
- Son, Y.; Cheong, Y.K.; Kim, N.H.; Chung, H.T.; Kang, D.G.; Pae, H.O. Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J. Signal Transduct. 2011, 2011, 792639. [Google Scholar] [CrossRef]
- Batti, L.; Sundukova, M.; Murana, E.; Pimpinella, S.; De Castro Reis, F.; Pagani, F.; Wang, H.; Pellegrino, E.; Perlas, E.; Di Angelantonio, S.; et al. TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States. Cell Rep. 2016, 15, 2608–2615. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Li, X.; Wu, J.; Xue, T.; Wu, J.; Shen, H.; Li, X.; Shen, M.; Chen, G. TMEM16F Aggravates Neuronal Loss by Mediating Microglial Phagocytosis of Neurons in a Rat Experimental Cerebral Ischemia and Reperfusion Model. Front. Immunol. 2020, 11, 1144. [Google Scholar] [CrossRef] [PubMed]
- Zubia, M.V.; Yong, A.J.H.; Holtz, K.M.; Huang, E.J.; Jan, Y.N.; Jan, L.Y. TMEM16F exacerbates tau pathology and mediates phosphatidylserine exposure in phospho-tau-burdened neurons. Proc. Natl. Acad. Sci. USA 2024, 121, e2311831121. [Google Scholar] [CrossRef] [PubMed]
- Segawa, K.; Suzuki, J.; Nagata, S. Constitutive exposure of phosphatidylserine on viable cells. Proc. Natl. Acad. Sci. USA 2011, 108, 19246–19251. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, Q.Y. TMEM16F inhibition limits pain-associated behavior and improves motor function by promoting microglia M2 polarization in mice. Biochem. Biophys. Res. Commun. 2019, 517, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Zubia, M.V. Multifaceted Roles of the Lipid Scramblase TMEM16F in Tauopathy. Ph.D. Thesis, University of California San Francisco, San Francisco, CA, USA, 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.; Bang, J.; Kim, S.; Lee, B.-C. Characterization of TMEM16F-Specific Affibodies and Their Cellular Effects. Membranes 2025, 15, 255. https://doi.org/10.3390/membranes15090255
Kim E, Bang J, Kim S, Lee B-C. Characterization of TMEM16F-Specific Affibodies and Their Cellular Effects. Membranes. 2025; 15(9):255. https://doi.org/10.3390/membranes15090255
Chicago/Turabian StyleKim, Eunyoung, Jinho Bang, Sunghyun Kim, and Byoung-Cheol Lee. 2025. "Characterization of TMEM16F-Specific Affibodies and Their Cellular Effects" Membranes 15, no. 9: 255. https://doi.org/10.3390/membranes15090255
APA StyleKim, E., Bang, J., Kim, S., & Lee, B.-C. (2025). Characterization of TMEM16F-Specific Affibodies and Their Cellular Effects. Membranes, 15(9), 255. https://doi.org/10.3390/membranes15090255