Calcium Ion Mixing Modes Govern Membrane Fouling Mitigation During Membrane-Based Recovery of Extracellular Polymeric Substances
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. EPS Extraction
2.3. Sample Preparation
2.4. Filtration Apparatus
2.5. Evaluation of Filtration Behaviors
2.6. Analytical Methods
2.6.1. Determination of Calcium Ion
2.6.2. Dynamic Light Scattering Analysis
2.6.3. FTIR Spectroscopy Analysis
2.6.4. SEM Analysis
2.6.5. TEM Analysis
3. Results and Discussion
3.1. Filtration Behaviors of EPS Solutions for Various Mixing Modes of Ca2+
3.2. Effects of Ca2+ Mixing Sequence, Dosing Volume, and Flow Rate on SA Filtration Behavior
3.3. Mechanism Analysis of Mixing Modes Between EPSs and Ca2+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- van Loosdrecht, M.-C.-M.; Brdjanovic, D. Anticipating the next century of wastewater treatment: Advances in activated sludge sewage treatment can improve its energy use and resource recovery. Science 2014, 344, 1452–1453. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.-Q. (Ed.) Recycling of Polymeric Substances from Sewage (Chinese); Chemical Industry Press: Beijing, China, 2021. [Google Scholar]
- Cao, D.-Q.; Hao, X.-D.; Wang, Z.; Song, X.; Iritani, E.; Katagiri, N. Membrane recovery of alginate in an aqueous solution by the addition of calcium ions: Analyses of resistance reduction and fouling mechanism. J. Membr. Sci. 2017, 535, 312–321. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Jin, J.-Y.; Wang, Q.-H.; Song, X.; Hao, X.-D.; Iritani, E.; Katagiri, N. Ultrafiltration recovery of alginate: Membrane fouling mitigation by multivalent metal ions and properties of recycled materials. Chin. J. Chem. Eng. 2020, 28, 2881–2889. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Wang, X.; Wang, Q.-H.; Fang, X.-M.; Jin, J.-Y.; Hao, X.-D.; Katagiri, N. Removal of heavy metal ions by ultrafiltration with recovery of extracellular polymer substances from excess sludge. J. Membr. Sci. 2020, 606, 118103. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Tang, K.; Yihuo, G.; Jin, Y.; Song, Y.-X.; Wu, Y.-F.; Hao, X.-D. Extracellular polymeric substance-intercalated MXene membrane for osmotic power generation. Chem. Eng. J. 2025, 515, 163879. [Google Scholar] [CrossRef]
- Pandey, S.; Kannaujiya, V.-K. Bacterial extracellular biopolymers: Eco-diversification, biosynthesis, technological development and commercial applications. Int. J. Biol. Macromol. 2024, 279, 135261. [Google Scholar] [CrossRef]
- Atmakuri, A.; Yadav, B.; Tiwari, B.; Drogui, P.; Tyagi, R.-D.; Wong, J.-W. Nature’s architects: A comprehensive review of extracellular polymeric substances and their diverse applications. Waste Dispos. Sustain. Energy 2024, 6, 529–551. [Google Scholar] [CrossRef]
- Lv, L.; Wei, Z.; Li, W.; Chen, J.; Tian, Y.; Gao, W.; Ngo, H.-H. Regulation of extracellular polymers based on quorum sensing in wastewater biological treatment from mechanisms to applications: A critical review. Water Res. 2024, 250, 121057. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, S.; Wang, H.-G.; Lu, M.; Li, Z.-H. Encapsulation of bacteria in different stratified extracellular polymeric substances and its implications for performance enhancement and resource recovery. Water Res. 2022, 220, 118684. [Google Scholar] [CrossRef]
- Wang, L.; Lei, Z.; Zhang, Z.; Yang, X.; Chen, R. Deciphering the role of extracellular polymeric substances in the adsorption and biotransformation of organic micropollutants during anaerobic wastewater treatment. Water Res. 2024, 257, 121718. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Yang, W.-Y.; Wang, Z.; Hao, X.D. Role of extracellular polymeric substance in adsorption of quinolone antibiotics by microbial cells in excess sludge. Chem. Eng. J. 2019, 370, 684−694. [Google Scholar] [CrossRef]
- Xu, J.; Sheng, G.-P. Microbial extracellular polymeric substances (EPS) acted as a potential reservoir in responding to high concentrations of sulfonamides shocks during biological wastewater treatment. Bioresour. Technol. 2020, 313, 123654. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Tan, X.; Shi, L.; Zeng, Q.; Ali, I.; Zhu, R.; Parajuli, K. Phosphorus accumulation in extracellular polymeric substances (EPS) of colony-forming cyanobacteria challenges imbalanced nutrient reduction strategies in eutrophic lakes. Environ. Sci. Technol. 2023, 57, 1600–1612. [Google Scholar] [CrossRef]
- Sen, S.; Tiwari, O.-N.; Arya, R.-K.; Bhowmick, T.-K.; Gayen, K. New insights on microbial extracellular polysaccharides: Production, biological activity, and applications. Biomass Convers. Biorefinery 2025, 15, 1–30. [Google Scholar] [CrossRef]
- Tang, C.-C.; Zhang, X.; He, Z.-W.; Tian, Y.; Wang, X.-C. Role of extracellular polymeric substances on nutrients storage and transfer in algal-bacteria symbiosis sludge system treating wastewater. Bioresour. Technol. 2021, 331, 125010. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, M.; Yang, F.; Zhang, W. A novel hydrophilic modification method of EPS particles: Conception design and performances in concrete. Cem. Concr. Compos. 2023, 142, 105199. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, L.; Lv, Z.; Xin, F.; Dong, W.; Liu, G.; Jia, H. N-acyl-homoserine lactones in extracellular polymeric substances from sludge for enhanced chloramphenicol-degrading anode biofilm formation in microbial fuel cells. Environ. Res. 2022, 207, 112649. [Google Scholar] [CrossRef]
- Gongi, W.; Touzi, H.; Sadly, I.; Ouada, H.B.; Tamarin, O.; Ouada, H.B. A novel impedimetric sensor based on cyanobacterial extracellular polymeric substances for microplastics detection. J. Polym. Environ. 2022, 30, 4738–4748. [Google Scholar] [CrossRef]
- Siddharth, T.; Sridhar, P.; Vinila, V.; Tyagi, R.-D. Environmental applications of microbial extracellular polymeric substance (EPS): A review. J. Environ. Manag. 2021, 287, 112307. [Google Scholar] [CrossRef]
- Zeng, R.-G.; Shi, C.; Hao, L.-T.; Huang, A.; Yuan, T.; Zhang, N. A review of alginate-like extracellular polymers from excess sludge: Extraction, characterization, and potential application. J. Water Process. Eng. 2023, 56, 104346. [Google Scholar] [CrossRef]
- Escárcega-González, C.-E.; Garza-Cervantes, J.-A.; Vázquez-Rodríguez, A.; Morones-Ramírez, J.-R. Bacterial exopolysaccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. Int. J. Polym. Sci. 2018, 1, 7045852. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Song, X.; Fang, X.-M.; Yang, W.-Y.; Hao, X.-D.; Iritani, E.; Katagiri, N. Membrane filtration-based recovery of extracellular polymer substances from excess sludge and analysis of their heavy metal ion adsorption properties. Chem. Eng. J. 2018, 354, 866–874. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Song, X.; Hao, X.-D.; Yang, W.-Y.; Iritani, E.; Katagiri, N. Ca2+-aided separation of polysaccharides and proteins by microfiltration: Implications for sludge processing. Sep. Purif. Technol. 2018, 202, 318–325. [Google Scholar] [CrossRef]
- Cao, D.-Q.; Jin, Y.; Liu, H.; Lei, S.-C.; Song, Y.-X.; Han, J.-L.; Wu, R. Concentration properties of biopolymers via dead-end forward osmosis. Int. J. Biol. Macromol. 2024, 270, 132338. [Google Scholar] [CrossRef] [PubMed]
- Lamkaddam, I.-U.; Vega, E.; Colón, J.; Ponsá, S.; Llenas, L.; Mora, M. Progressive freeze concentration of cheese whey for protein and lactose recovery. J. Dairy Sci. 2023, 139, 105572. [Google Scholar] [CrossRef]
- Nagaraj, V.; Skillman, L.; Li, D.; Foreman, A.; Xie, Z.; Ho, G. Characterisation of extracellular polysaccharides from bacteria isolated from a full-scale desalination plant. Desalination 2017, 418, 9–18. [Google Scholar] [CrossRef]
- Le, X.-N.; Long, D.-P.; Yin, S.-S.; Qing, R.-Y.; Chi, Z.-Z.; Gao, M.-Q.; Zhu, M.-Q. The efficient separation of bioactive components from Eucommia ulmoides Oliver using membrane filtration technology and its mechanisms in preventing alcoholic liver disease. Carbohydr. Polym. 2025, 351, 123100. [Google Scholar] [CrossRef]
- Xia, M.; Liu, C.; Ahn, D.-U.; Huang, X.; Jin, Y.; Cai, Z. Large-scale isolation and purification of yolk immunoglobulin with different purity levels via a combination technique based on high-speed-shear crossflow membrane separation. Food Hydrocoll. 2023, 140, 108618. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, M.; Lee, H.-J.; Ganzoury, M.-A.; Zhang, N.; de Lannoy, C.-F. Nanocomposite polymeric membranes for organic micropollutant removal: A critical review. ACS EST Eng. 2022, 2, 1574–1598. [Google Scholar] [CrossRef]
- Liu, T.; Lian, Y.; Graham, N.; Yu, W.; Rooney, D.; Sun, K. Application of polyacrylamide flocculation with and without alum coagulation for mitigating ultrafiltration membrane fouling: Role of floc structure and bacterial activity. Chem. Eng. J. 2017, 307, 41–48. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, D.; Graham, N.-J. Membrane fouling by extracellular polymeric substances after ozone pre-treatment: Variation of nano-particles size. Water Res. 2017, 120, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, G.; Li, Y.; An, C.; Feng, R.; Wu, Y.; Shen, J. Functional PVDF ultrafiltration membrane for Tetrabromobisphenol-A (TBBPA) removal with high water recovery. Water Res. 2020, 181, 115952. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.-J.; Winters, H.; Liu, Y. Ultrafiltration behaviors of alginate blocks at various calcium. Water Res. 2015, 83, 248–257. [Google Scholar] [CrossRef]
- Shen, Y.; Tan, Q.; Sun, J.; Cai, X.; Shen, L.; Lin, H.; Wei, X. Membrane fouling characteristics and mechanisms in coagulation-ultrafiltration process for treating microplastic-containing water. Sci. Total Environ. 2024, 954, 176524. [Google Scholar] [CrossRef]
- Xin, Y.-J.; Bligh, M.-W.; Kinsela, A.-S.; Wang, Y.; David Waite, T. Calcium-mediated polysaccharide gel formation and breakage: Impact on membrane foulant hydraulic properties. J. Membr. Sci. 2015, 475, 395–405. [Google Scholar] [CrossRef]
- Xu, S.-J.; Chen, G.-E.; Xu, Z.-L. Excellent anti-fouling performance of PVDF polymeric membrane modified by enhanced CaA gel-layer. J. Ind. Eng. Chem. 2018, 58, 179–188. [Google Scholar] [CrossRef]
- Kimura, K.; Tanaka, I.; Nishimura, S.-I.; Miyoshi, R.; Miyoshi, T.; Watanabe, Y. Further examination of polysaccharides causing membrane fouling in membrane bioreactors (MBRs): Application of lectin affinity chromatography and MALDI-TOF/MS. Water Res. 2012, 46, 5725–5734. [Google Scholar] [CrossRef]
- Lin, L.; Zheng, M.; Ma, C.; Fu, Q.; Zhang, Y. Transparent exopolymer particles-associated membrane fouling analyses of systems containing sodium alginate, calcium, iron, alum and their combination during dead-end ultrafiltration. J. Clean Prod. 2022, 366, 132983. [Google Scholar] [CrossRef]
- van den Brink, P.; Zwijnenburg, A.; Simth, G.; Temmink, H.; Van Loosdrecht, M. Effect of free calcium concentration and ionic strength on alginate fouling in cross-flow membrane filtration. J. Membr. Sci. 2009, 345, 207–216. [Google Scholar] [CrossRef]
- Ye, Y.; Clech, P.-L.; Chen, V.; Fane, A.-G.; Jefferson, B. Fouling mechanisms of alginate solutions as model extracellular polymeric substances. Desalination 2005, 175, 7–20. [Google Scholar] [CrossRef]
- Blandino, A.; Manuel, M.; Cantero, D. Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics. J. Biosci. Bioeng. 1999, 88, 686–689. [Google Scholar] [CrossRef]
- Donati; Asaro, F.; Paoletti, S. Experimental evidence of counterion affinity in alginates: The case of nongelling ion Mg2+. J. Phys. Chem. B 2009, 113, 12877–12886. [Google Scholar] [CrossRef]
- Fatin-Rouge, N.; Dupont, A.; Vidonne, A.; Dejeu, J.; Fievet, P.; Foissy, A. Removal of some divalent cations from water by membrane-filtration assisted with alginate. Water Res. 2006, 40, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Lu, X.-W.; Li, X.-Y. Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery. J. Hazard. Mater. 2016, 308, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-J.; Lin, H.-J.; Shen, L.-G.; Liao, B.-Q.; Wu, X.-L.; Li, R.-J. Effect of calcium ions on fouling properties of alginate solution and its mechanisms. J. Membr. Sci. 2017, 525, 320–329. [Google Scholar] [CrossRef]
- Zhang, M.-J.; Hong, H.-C.; Lin, H.-J.; Shen, L.-G.; Yu, H.-Y.; Ma, G.-C.; Chen, J.-R.; Liao, B.Q. Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations. Water Res. 2018, 129, 337–346. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, G.; Li, W.; Ma, L.; Wang, F.; Li, T.; Wei, Z. Biofouling behavior of PVDF ultrafiltration membrane incorporating cray fish shell biochar in the presence of inorganic cations and organic matters: Characteristics and mechanisms. Colloids Surf. A Physicochem. Eng. Asp. 2025, 707, 135927. [Google Scholar] [CrossRef]
- Katsoufidou, K.; Yiantsios, S.-G.; Karabelas, A.-J. Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing. J. Membr. Biol. 2007, 300, 137–146. [Google Scholar] [CrossRef]
- Listiarini, K.; Chun, W.; Sun, D.-D.; Leckie, J.-O. Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes. J. Membr. Sci. 2009, 344, 244–251. [Google Scholar] [CrossRef]
- Wu, S.; Ma, B.; Hu, C.; Hua, X.; Fan, H.; Ulbricht, M.; Qu, J. Cake layer 3D structure regulation to optimize water channels during Al-based coagulation-ultrafiltration process. Water Res. 2023, 236, 119941. [Google Scholar] [CrossRef]
- Sperry, D.; Baker, F. Notes and correspondence: A study of the fundamental laws of filtration using plant-scale equipment. Ind. Eng. Chem. 1921, 13, 1163–1165. [Google Scholar] [CrossRef]
- Chen, L.; Ji, Y.; Yu, Z.; Wang, C.; Alvarez, P.-J.; Xu, X.; Zhu, L. Uncover the secret of granule calcification and deactivation in up-flow anaerobic sludge bed (UASB) reactor with long-term exposure to high calcium. Water Res. 2021, 189, 116586. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhang, J.; Chen, Y.; Xie, C.-M.; Su, L.; Wang, S.-F. Strategy to prevent calcification by restricting surface adhesion of Ca2+: Reduced affinity of extracellular polymeric substances for Ca2+ by mild acidic conditions. Bioresour. Technol. 2024, 406, 131032. [Google Scholar] [CrossRef] [PubMed]
- Donati, I.; Paoletti, S. Material properties of alginates. In Alginates: Biology and Applications; Rehm, B.H.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
Mixing Order | Ca2+ Solution | EPS Solution | Q [mL/min] | CCa [mM] | pH | Zeta [mV] | ||
---|---|---|---|---|---|---|---|---|
C0-Ca [mM] | V0-Ca [mL] | C0-EPS [g·L−1] | V0-EPS [mL] | |||||
Ca2+ → EPS | 5 | 50 | 1.25 | 200 | 25 | 1 | 6.66 | −13.2 |
25 | 5 | 7.10 | −7.82 | |||||
500 | 10 | 1.0 | 1000 | 7.12 | −5.99 | |||
1750 | 2.8 | 7.19 | −7.47 | |||||
EPS → Ca2+ | 5 | 50 | 1.25 | 200 | 1 | 7.25 | −11.5 | |
25 | 5 | 7.23 | −8.62 | |||||
Ca2+ → SA | 500 | 10 | 1.0 | 1000 | 6.07 | −15.1 | ||
1000 | 5 | 6.18 | −16.8 | |||||
1750 | 2.8 | 6.22 | −19.1 | |||||
500 | 10 | 5 | 7.30 | −29.0 | ||||
15 | 7.05 | −18.7 | ||||||
5 | 50 | 1.25 | 200 | 25 | 1 | 6.79 | −19.0 | |
25 | 5 | 6.57 | −7.66 | |||||
SA → Ca2+ | 5 | 1 | 7.02 | −6.3 | ||||
25 | 5 | 6.47 | −6.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, D.-Q.; Song, Y.-X.; Wu, Y.-F.; Yihuo, G.; Jin, J.-Y. Calcium Ion Mixing Modes Govern Membrane Fouling Mitigation During Membrane-Based Recovery of Extracellular Polymeric Substances. Membranes 2025, 15, 169. https://doi.org/10.3390/membranes15060169
Cao D-Q, Song Y-X, Wu Y-F, Yihuo G, Jin J-Y. Calcium Ion Mixing Modes Govern Membrane Fouling Mitigation During Membrane-Based Recovery of Extracellular Polymeric Substances. Membranes. 2025; 15(6):169. https://doi.org/10.3390/membranes15060169
Chicago/Turabian StyleCao, Da-Qi, Yi-Xuan Song, Yun-Feng Wu, Guri Yihuo, and Jing-Yi Jin. 2025. "Calcium Ion Mixing Modes Govern Membrane Fouling Mitigation During Membrane-Based Recovery of Extracellular Polymeric Substances" Membranes 15, no. 6: 169. https://doi.org/10.3390/membranes15060169
APA StyleCao, D.-Q., Song, Y.-X., Wu, Y.-F., Yihuo, G., & Jin, J.-Y. (2025). Calcium Ion Mixing Modes Govern Membrane Fouling Mitigation During Membrane-Based Recovery of Extracellular Polymeric Substances. Membranes, 15(6), 169. https://doi.org/10.3390/membranes15060169