The State of the Art on PVDF Membrane Preparation for Membrane Distillation and Membrane Crystallization: Towards the Use of Non-Toxic Solvents
Abstract
:1. Introduction
2. Membrane Technology in Desalination
3. Membrane Distillation
3.1. Principles of Membrane Distillation
3.2. Configurations of MD
3.2.1. Direct Contact Membrane Distillation
3.2.2. Air Gap Membrane Distillation (AGMD)
3.2.3. Sweeping Gas Membrane Distillation (SGMD)
3.2.4. Vacuum Membrane Distillation (VMD)
3.3. Types of Membrane Geometries
3.4. Membrane Characteristics for MD
- A porous structure to reduce thermal conductivity and to increase mass diffusion through pores: The pores must be in the range of 0.1 to 0.4 µm and membrane porosity between 40% and 90% [33,50]. Membranes having higher porosity have increased flux and low heat loss by conduction. In spite of the increased permeate flux, the highly porous membrane is more prone to break because of the low mechanical resistance. Porosity of the membrane can be evaluated by the gravimetric method by measuring the weight of the liquid contained in the pores.
- An optimal membrane thickness: Membrane thickness plays an important role in predicting resistance-to-mass transfer. It should be as thin as possible to increase mass transfer and to have high MD permeability. In contrast, to have maximum heat efficiency and to avoid heat loss by the conduction in MD membrane matrix, the membrane thickness should kept as thick as possible [51]. Weimming Ni et al. evaluated the optimum membrane thickness of the PVDF membrane using simulation studies in the range of 10 to 20 µm [52].
- Mechanical strength and chemical resistance must be high enough to work for a longer period of time: However, limited studies in the literature have focused on the mechanical properties of the membrane for this application. Reported values showed significant variation with the elastic modulus ranging from (34–3491 MPa), tensile strength from (3.4–57.9 MPa), and elongation at break between 41% and 710%. This wide range indicates that no specific mechanical property requirements have been established for the membranes used in membrane distillation. Additionally, the thermal conductivity of the polymer used in the membranes should be low to minimize heat though conduction. Polymeric membranes commonly used in the MD exhibit thermal conductivity values between 0.1 and 0.5 W·m−1·K−1 [53].
- High liquid entry pressure (LEP): LEP is the parameter that determines the wetting of the membrane pore. It is the minimum transmembrane pressure that is required by the feed to enter the hydrophobic layer of the membrane. This critical pressure is associated with the interfacial tension, maximum size, the shape of the membrane pore, and the contact angle made by the feed liquid at the pore entrance. To avoid wetting of the membrane, the hydrostatic pressure must be kept lower than LEP. Liquid entry pressure can be evaluated by the Laplace equation.
3.5. Membrane Materials and Fabrication
3.6. Performance of Membrane Distillation in Desalination
4. Crystallization
4.1. Membrane Crystallization
4.2. Principles of Membrane Crystallization
4.2.1. Achievement of Supersaturation
4.2.2. Membranes for Crystal Growth
4.3. Configurations and Membranes for MCr Process
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018. [Google Scholar]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar]
- Morcos, S.Y. Chemical precipitation wastewater treatment system. Plat. Surf. Finish. 1999, 86, 50–53. [Google Scholar]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Suresh, A.; Grygolowicz-Pawlak, E.; Pathak, S.; Poh, L.S.; bin Abdul Majid, M.; Dominiak, D.; Bugge, T.V.; Gao, X.; Ng, W.J. Understanding and optimization of the flocculation process in biological wastewater treatment processes: A review. Chemosphere 2018, 210, 401–416. [Google Scholar]
- Kyzas, G.Z.; Matis, K.A. Flotation in water and wastewater treatment. Processes 2018, 6, 116. [Google Scholar] [CrossRef]
- Hube, S.; Eskafi, M.; Hrafnkelsdóttir, K.F.; Bjarnadóttir, B.; Bjarnadóttir, M.Á.; Axelsdóttir, S.; Wu, B. Direct membrane filtration for wastewater treatment and resource recovery: A review. Sci. Total Environ. 2020, 710, 136375. [Google Scholar] [CrossRef]
- Li, X.; Mei, Q.; Chen, L.; Zhang, H.; Dong, B.; Dai, X.; He, C.; Zhou, J. Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Res. 2019, 157, 228–237. [Google Scholar] [CrossRef]
- Kansara, N.; Bhati, L.; Narang, M.; Vaishnavi, R. Wastewater treatment by ion exchange method: A review of past and recent researches. ESAIJ (Environ. Sci. Indian J.) 2016, 12, 143–150. [Google Scholar]
- Heins, W.; Peterson, D. Use of evaporation for heavy oil produced water treatment. J. Can. Pet. Technol. 2005, 44. [Google Scholar] [CrossRef]
- Goh, P.; Ismail, A. A review on inorganic membranes for desalination and wastewater treatment. Desalination 2018, 434, 60–80. [Google Scholar] [CrossRef]
- Assosication, I.D. International Desalination Assosication. Available online: https://idadesal.org/ (accessed on 10 December 2024).
- Silva, J.A. Wastewater treatment and reuse for sustainable water resources management: A systematic literature review. Sustainability 2023, 15, 10940. [Google Scholar] [CrossRef]
- Zhu, L.; Gao, M.; Peh, C.K.N.; Ho, G.W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 2018, 5, 323–343. [Google Scholar] [CrossRef]
- Nicolaisen, B. Developments in membrane technology for water treatment. Desalination 2003, 153, 355–360. [Google Scholar] [CrossRef]
- Swamy, B.V.; Madhumala, M.; Prakasham, R.; Sridhar, S. Nanofiltration of bulk drug industrial effluent using indigenously developed functionalized polyamide membrane. Chem. Eng. J. 2013, 233, 193–200. [Google Scholar]
- Fane, A.; Wang, R.; Jia, Y. Membrane technology: Past, present and future. In Membrane and Desalination Technologies; Humana Press: Totowa, NJ, USA, 2011; pp. 1–45. [Google Scholar] [CrossRef]
- Chen, T.; Wei, X.; Chen, Z.; Morin, D.; Alvarez, S.V.; Yoon, Y.; Huang, Y. Designing energy-efficient separation membranes: Knowledge from nature for a sustainable future. Adv. Membr. 2022, 2, 100031. [Google Scholar] [CrossRef]
- Swaminathan, J. Design and operation of membrane distillation with feed recirculation for high recovery brine concentration. Desalination 2018, 445, 51–62. [Google Scholar]
- Aquino, M.; Santoro, S.; Di Profio, G.; La Russa, M.F.; Limonti, C.; Straface, S.; D’Andrea, G.; Curcio, E.; Siciliano, A. Membrane distillation for separation and recovery of valuable compounds from anaerobic digestates. Sep. Purif. Technol. 2023, 315, 123687. [Google Scholar]
- Rahbari-Sisakht, M.; Ismail, A.F. A comprehensive review of pressure and osmosis driven membrane processes: Processes, characteristics and materials. Desalination 2024, 598, 118427. [Google Scholar]
- Choudhury, M.R.; Anwar, N.; Jassby, D.; Rahaman, M.S. Fouling and wetting in the membrane distillation driven wastewater reclamation process–A review. Adv. Colloid Interface Sci. 2019, 269, 370–399. [Google Scholar]
- Eykens, L.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Van der Bruggen, B. Membrane synthesis for membrane distillation: A review. Sep. Purif. Technol. 2017, 182, 36–51. [Google Scholar]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis desalination for water and wastewater: A review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar]
- Guo, H.; Li, X.; Yang, W.; Yao, Z.; Mei, Y.; Peng, L.E.; Yang, Z.; Shao, S.; Tang, C.Y. Nanofiltration for drinking water treatment: A review. Front. Chem. Sci. Eng. 2022, 16, 681–698. [Google Scholar] [PubMed]
- Kang, G.-D.; Cao, Y.-M. Development of antifouling reverse osmosis membranes for water treatment: A review. Water Res. 2012, 46, 584–600. [Google Scholar] [CrossRef]
- Yadav, A.; Labhasetwar, P.K.; Shahi, V.K. Membrane distillation using low-grade energy for desalination: A review. J. Environ. Chem. Eng. 2021, 9, 105818. [Google Scholar]
- Xu, T.; Huang, C. Electrodialysis-based separation technologies: A critical review. AIChE J. 2008, 54, 3147–3159. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Insights. Fortune Business. Available online: https://www.fortunebusinessinsights.com/desalination-technologies-market-109806 (accessed on 10 December 2024).
- Chen, G.; Lu, Y.; Krantz, W.B.; Wang, R.; Fane, A.G. Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge. J. Membr. Sci. 2014, 450, 1–11. [Google Scholar]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. J. Membr. Sci. 1997, 124, 1–25. [Google Scholar]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar]
- Gryta, M. Concentration of NaCl solution by membrane distillation integrated with crystallization. Sep. Sci. Technol. 2002, 37, 3535–3558. [Google Scholar]
- Shirazi, M.M.A.; Kargari, A.; Ismail, A.F.; Matsuura, T. Computational Fluid Dynamic (CFD) opportunities applied to the membrane distillation process: State-of-the-art and perspectives. Desalination 2016, 377, 73–90. [Google Scholar]
- Chimanlal, I.; Nthunya, L.N.; Quist-Jensen, C.; Richards, H. Membrane distillation crystallization for water and mineral recovery: The occurrence of fouling and its control during wastewater treatment. Front. Chem. Eng. 2022, 4, 1066027. [Google Scholar] [CrossRef]
- Pagliero, M.; Khayet, M.; García-Payo, C.; García-Fernández, L. Hollow fibre polymeric membranes for desalination by membrane distillation technology: A review of different morphological structures and key strategic improvements. Desalination 2021, 516, 115235. [Google Scholar]
- Alhathal Alanezi, A.; Abdallah, H.; El-Zanati, E.; Ahmad, A.; Sharif, A.O. Performance Investigation of O-Ring Vacuum Membrane Distillation Module for Water Desalination. J. Chem. 2016, 2016, 9378460. [Google Scholar]
- Gunko, S.; Verbych, S.; Bryk, M.; Hilal, N. Concentration of apple juice using direct contact membrane distillation. Desalination 2006, 190, 117–124. [Google Scholar]
- Duong, H.C.; Cooper, P.; Nelemans, B.; Cath, T.Y.; Nghiem, L.D. Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level. Sep. Purif. Technol. 2016, 166, 55–62. [Google Scholar]
- Garcıa-Payo, M.; Izquierdo-Gil, M.A.; Fernández-Pineda, C. Air gap membrane distillation of aqueous alcohol solutions. J. Membr. Sci. 2000, 169, 61–80. [Google Scholar]
- Im, B.-G.; Lee, J.-G.; Kim, Y.-D.; Kim, W.-S. Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane. J. Membr. Sci. 2018, 565, 14–24. [Google Scholar] [CrossRef]
- Walton, J.; Lu, H.; Turner, C.; Solis, S.; Hein, H. Solar and waste heat desalination by membrane distillation. Desalination Water Purif. Res. Dev. Program Rep. 2004, 81, 20. [Google Scholar]
- Abu-Zeid, M.A.E.-R.; Zhang, Y.; Dong, H.; Zhang, L.; Chen, H.-L.; Hou, L. A comprehensive review of vacuum membrane distillation technique. Desalination 2015, 356, 1–14. [Google Scholar]
- Cheng, L.-H.; Wu, P.-C.; Chen, J. Modeling and optimization of hollow fiber DCMD module for desalination. J. Membr. Sci. 2008, 318, 154–166. [Google Scholar]
- Bonyadi, S.; Chung, T.-S. Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach. J. Membr. Sci. 2009, 331, 66–74. [Google Scholar] [CrossRef]
- Zhang, J.; Duke, M.; Xie, Z.; Gray, S. Performance of asymmetric hollow fibre membranes in membrane distillation under various configurations and vacuum enhancement. J. Membr. Sci. 2010, 362, 517–528. [Google Scholar]
- Alklaibi, A.M.; Lior, N. Membrane-distillation desalination: Status and potential. Desalination 2005, 171, 111–131. [Google Scholar] [CrossRef]
- Zhang, J.; Dow, N.; Duke, M.; Ostarcevic, E.; Gray, S. Identification of material and physical features of membrane distillation membranes for high performance desalination. J. Membr. Sci. 2010, 349, 295–303. [Google Scholar]
- Zhu, M.; Mao, Y. Large-pore-size membranes tuned by chemically vapor deposited nanocoatings for rapid and controlled desalination. RSC Adv. 2020, 10, 40562–40568. [Google Scholar] [CrossRef]
- Gryta, M. Influence of polypropylene membrane surface porosity on the performance of membrane distillation process. J. Membr. Sci. 2007, 287, 67–78. [Google Scholar] [CrossRef]
- Ni, W.; Li, Y.; Zhao, J.; Zhang, G.; Du, X.; Dong, Y. Simulation study on direct contact membrane distillation modules for high-concentration NaCl solution. Membranes 2020, 10, 179. [Google Scholar] [CrossRef]
- Eykens, L.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Van der Bruggen, B. How to optimize the membrane properties for membrane distillation: A review. Ind. Eng. Chem. Res. 2016, 55, 9333–9343. [Google Scholar]
- Puranik, A.A.; Rodrigues, L.N.; Chau, J.; Li, L.; Sirkar, K.K. Porous hydrophobic-hydrophilic composite membranes for direct contact membrane distillation. J. Membr. Sci. 2019, 591, 117225. [Google Scholar]
- Zuo, J.; Chung, T.-S.; O’Brien, G.S.; Kosar, W. Hydrophobic/hydrophilic PVDF/Ultem® dual-layer hollow fiber membranes with enhanced mechanical properties for vacuum membrane distillation. J. Membr. Sci. 2017, 523, 103–110. [Google Scholar]
- Ameduri, B. From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: Recent developments and future trends. Chem. Rev. 2009, 109, 6632–6686. [Google Scholar]
- Wan, C.; Bowen, C.R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro-and macro-structure. J. Mater. Chem. A 2017, 5, 3091–3128. [Google Scholar]
- Kim, J.F.; Kim, J.H.; Lee, Y.M.; Drioli, E. Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review. AIChE J. 2016, 62, 461–490. [Google Scholar]
- Mokhtari, F.; Samadi, A.; Rashed, A.O.; Li, X.; Razal, J.M.; Kong, L.; Varley, R.J.; Zhao, S. Recent progress in electrospun polyvinylidene fluoride (PVDF)-based nanofibers for sustainable energy and environmental applications. Prog. Mater. Sci. 2024, 148, 101376. [Google Scholar]
- Hassankiadeh, N.T.; Cui, Z.; Kim, J.H.; Shin, D.W.; Lee, S.Y.; Sanguineti, A.; Arcella, V.; Lee, Y.M.; Drioli, E. Microporous poly (vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. J. Membr. Sci. 2015, 479, 204–212. [Google Scholar]
- Sawada, S.-i.; Ursino, C.; Galiano, F.; Simone, S.; Drioli, E.; Figoli, A. Effect of citrate-based non-toxic solvents on poly (vinylidene fluoride) membrane preparation via thermally induced phase separation. J. Membr. Sci. 2015, 493, 232–242. [Google Scholar]
- Kang, G.-D.; Cao, Y.-M. Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review. J. Membr. Sci. 2014, 463, 145–165. [Google Scholar]
- Sherwood, J.; Farmer, T.J.; Clark, J.H. Catalyst: Possible consequences of the N-methyl pyrrolidone REACH restriction. Chem 2018, 4, 2010–2012. [Google Scholar]
- Russo, F.; Galiano, F.; Pedace, F.; Aricò, F.; Figoli, A. Dimethyl isosorbide as a green solvent for sustainable ultrafiltration and microfiltration membrane preparation. ACS Sustain. Chem. Eng. 2019, 8, 659–668. [Google Scholar]
- Galiano, F.; Ghanim, A.H.; Rashid, K.T.; Marino, T.; Simone, S.; Alsalhy, Q.F.; Figoli, A. Preparation and characterization of green polylactic acid (PLA) membranes for organic/organic separation by pervaporation. Clean Technol. Environ. Policy 2019, 21, 109–120. [Google Scholar]
- Marino, T.; Russo, F.; Figoli, A. The formation of polyvinylidene fluoride membranes with tailored properties via vapour/non-solvent induced phase separation. Membranes 2018, 8, 71. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.E.; Raverty, W.D. Predicted environmental effects from liquid emissions in the manufacture of levoglucosenone and Cyrene. Appita Technol. Innov. Manuf. Environ. 2016, 69, 344–351. [Google Scholar]
- Zhang, J.; Cao, P.; Cui, Z.; Wang, Q.; Fan, F.; Qiu, M.; Wang, X.; Wang, Z.; Wang, Y. Endowing piezoelectric and anti-fouling properties by directly poling β-phase PVDF membranes with green diluents. AIP Adv. 2019, 9, 115219. [Google Scholar]
- Marino, T.; Galiano, F.; Molino, A.; Figoli, A. New frontiers in sustainable membrane preparation: Cyrene™ as green bioderived solvent. J. Membr. Sci. 2019, 580, 224–234. [Google Scholar]
- Rizqi, R.A.; Hartono, Y.V.; Shalahuddin, I.; Nugroho, W.A.; Bilad, M.R.; Arif, C.; Wibisono, Y. Green synthesis of polyvinylidene fluoride ultrafiltration membrane with upgraded hydrophilicity. Results Mater. 2023, 19, 100417. [Google Scholar]
- Cui, Z.; Cheng, Y.; Xu, K.; Yue, J.; Zhou, Y.; Li, X.; Wang, Q.; Sun, S.-P.; Wang, Y.; Wang, X. Wide liquid-liquid phase separation region enhancing tensile strength of poly (vinylidene fluoride) membranes via TIPS method with a new diluent. Polymer 2018, 141, 46–53. [Google Scholar]
- Wang, Q.; Wang, Z.; Wu, Z. Effects of solvent compositions on physicochemical properties and anti-fouling ability of PVDF microfiltration membranes for wastewater treatment. Desalination 2012, 297, 79–86. [Google Scholar]
- Chang, H.-H.; Chang, L.-K.; Yang, C.-D.; Lin, D.-J.; Cheng, L.-P. Effect of solvent on the dipole rotation of poly (vinylidene fluoride) during porous membrane formation by precipitation in alcohol baths. Polymer 2017, 115, 164–175. [Google Scholar]
- Yang, H.-R.; Huang, Y.-H.; Wang, C.-F.; Chung, T.-S. Green fabrication of PVDF superhydrophobic membranes using a green solvent triethyl phosphate (TEP) for membrane distillation. Desalination 2023, 566, 116934. [Google Scholar]
- Cui, Z.; Hassankiadeh, N.T.; Lee, S.Y.; Woo, K.T.; Lee, J.M.; Sanguineti, A.; Arcella, V.; Lee, Y.M.; Drioli, E. Tailoring novel fibrillar morphologies in poly (vinylidene fluoride) membranes using a low toxic triethylene glycol diacetate (TEGDA) diluent. J. Membr. Sci. 2015, 473, 128–136. [Google Scholar]
- Russo, F.; Marino, T.; Galiano, F.; Gzara, L.; Gordano, A.; Organji, H.; Figoli, A. Tamisolve® NxG as an alternative non-toxic solvent for the preparation of porous poly (vinylidene fluoride) membranes. Polymers 2021, 13, 2579. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-X.; Liou, Y.-K.; Lee, S.L.; Chen, S.-Y.; Tao, F.-T.; Cheng, T.-W.; Tung, K.-L. Preparation of PVDF/PMMA composite membrane with green solvent for seawater desalination by gap membrane distillation. J. Membr. Sci. 2023, 679, 121676. [Google Scholar]
- Nejati, S.; Boo, C.; Osuji, C.O.; Elimelech, M. Engineering flat sheet microporous PVDF films for membrane distillation. J. Membr. Sci. 2015, 492, 355–363. [Google Scholar]
- Dalla Torre, D.; Annatelli, M.; Aricò, F. Acid catalyzed synthesis of dimethyl isosorbide via dimethyl carbonate chemistry. Catal. Today 2023, 423, 113892. [Google Scholar]
- Kerkel, F.; Markiewicz, M.; Stolte, S.; Müller, E.; Kunz, W. The green platform molecule gamma-valerolactone–ecotoxicity, biodegradability, solvent properties, and potential applications. Green Chem. 2021, 23, 2962–2976. [Google Scholar]
- Medina-Gonzalez, Y.; Aimar, P.; Lahitte, J.-F.; Remigy, J.-C. Towards green membranes: Preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent. Int. J. Sustain. Eng. 2011, 4, 75–83. [Google Scholar]
- Russo, F.; Mazzei, R.; Brunetti, A.; Criscuoli, A.; Figoli, A. The Status and Perspectives of Sustainable Membrane Materials, Membrane (Bio) reactors, and Membrane Distillation Processes. Membr. Sci. Int. 2024, 3, 1–25. [Google Scholar]
- Chang, J.; Zuo, J.; Zhang, L.; O’Brien, G.S.; Chung, T.-S. Using green solvent, triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation. J. Membr. Sci. 2017, 539, 295–304. [Google Scholar]
- Figoli, A.; Marino, T.; Simone, S.; Di Nicolò, E.; Li, X.-M.; He, T.; Tornaghi, S.; Drioli, E. Towards non-toxic solvents for membrane preparation: A review. Green Chem. 2014, 16, 4034–4059. [Google Scholar]
- Kim, D.; Nunes, S.P. Green solvents for membrane manufacture: Recent trends and perspectives. Curr. Opin. Green Sustain. Chem. 2021, 28, 100427. [Google Scholar]
- Dong, X.; Lu, D.; Harris, T.A.; Escobar, I.C. Polymers and solvents used in membrane fabrication: A review focusing on sustainable membrane development. Membranes 2021, 11, 309. [Google Scholar] [CrossRef] [PubMed]
- Ting, L.L.H.; Teow, Y.H.; Mahmoudi, E.; Ooi, B.S. Development and optimization of low surface free energy of rGO-PVDF mixed matrix membrane for membrane distillation. Sep. Purif. Technol. 2023, 305, 122428. [Google Scholar]
- Prince, J.; Singh, G.; Rana, D.; Matsuura, T.; Anbharasi, V.; Shanmugasundaram, T. Preparation and characterization of highly hydrophobic poly (vinylidene fluoride)–Clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation. J. Membr. Sci. 2012, 397, 80–86. [Google Scholar]
- Zhao, L.; Wu, C.; Lu, X.; Ng, D.; Truong, Y.B.; Xie, Z. Activated carbon enhanced hydrophobic/hydrophilic dual-layer nanofiber composite membranes for high-performance direct contact membrane distillation. Desalination 2018, 446, 59–69. [Google Scholar]
- Li, Z.; Cheng, B.; Ju, J.; Kang, W.; Liu, Y. Development of a novel multi-scale structured superhydrophobic nanofiber membrane with enhanced thermal efficiency and high flux for membrane distillation. Desalination 2021, 501, 114834. [Google Scholar]
- Agbaje, T.A.; Al-Gharabli, S.; Mavukkandy, M.O.; Kujawa, J.; Arafat, H.A. PVDF/magnetite blend membranes for enhanced flux and salt rejection in membrane distillation. Desalination 2018, 436, 69–80. [Google Scholar]
- Fadhil, S.; Marino, T.; Makki, H.F.; Alsalhy, Q.F.; Blefari, S.; Macedonio, F.; Di Nicolò, E.; Giorno, L.; Drioli, E.; Figoli, A. Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation. Chem. Eng. Process. Process Intensif. 2016, 102, 16–26. [Google Scholar]
- Saïdi, S.; Macedonio, F.; Russo, F.; Hannachi, C.; Hamrouni, B.; Drioli, E.; Figoli, A. Preparation and characterization of hydrophobic P (VDF-HFP) flat sheet membranes using Tamisolve® NxG solvent for the treatment of saline water by direct contact membrane distillation and membrane crystallization. Sep. Purif. Technol. 2021, 275, 119144. [Google Scholar]
- Razmjou, A.; Arifin, E.; Dong, G.; Mansouri, J.; Chen, V. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 2012, 415, 850–863. [Google Scholar] [CrossRef]
- Damour, C.; Benne, M.; Boillereaux, L.; Grondin-Perez, B.; Chabriat, J.-P. Multivariable linearizing control of an industrial sugar crystallization process. J. Process Control 2011, 21, 46–54. [Google Scholar] [CrossRef]
- Lu, H.; Wang, J.; Wang, T.; Wang, N.; Bao, Y.; Hao, H. Crystallization techniques in wastewater treatment: An overview of applications. Chemosphere 2017, 173, 474–484. [Google Scholar] [CrossRef]
- Nathoo, J.; Jivanji, R.; Lewis, A. Freezing your brines off: Eutectic freeze crystallization for brine treatment. In Proceedings of the International Mine Water Conference, Pretoria, South Africa, 19–23 October 2009; pp. 431–437. [Google Scholar]
- Dai, M.; Bian, H.; Liu, X.; Rong, R.; Song, D.; Peng, C. Feasibility of effective separation of NaCl and Na2SO4 after simultaneous crystallization from solution. Powder Technol. 2024, 444, 120053. [Google Scholar] [CrossRef]
- Van Spronsen, J.; Pascual, M.R.; Genceli, F.; Trambitas, D.; Evers, H.; Witkamp, G.-J. Eutectic freeze crystallization from the ternary Na2CO3–NaHCO3–H2O system: A novel scraped wall crystallizer for the recovery of soda from an industrial aqueous stream. Chem. Eng. Res. Des. 2010, 88, 1259–1263. [Google Scholar] [CrossRef]
- Suzuki, K.; Tanaka, Y.; Osada, T.; Waki, M. Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Water Res. 2002, 36, 2991–2998. [Google Scholar] [CrossRef]
- Santoro, S.; Aquino, M.; Rizza, C.; Occhiuzzi, J.; Mastrippolito, D.; D’Olimpio, G.; Avci, A.H.; De Santis, J.; Paolucci, V.; Ottaviano, L. Lithium recovery through WS2 nanofillers-promoted solar photothermal membrane crystallization of LiCl. Desalination 2023, 546, 116186. [Google Scholar] [CrossRef]
- Kitamura, M.; Konno, H.; Yasui, A.; Masuoka, H. Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions. J. Cryst. Growth 2002, 236, 323–332. [Google Scholar] [CrossRef]
- Ulrich, J.; Jones, M. Industrial crystallization: Developments in research and technology. Chem. Eng. Res. Des. 2004, 82, 1567–1570. [Google Scholar] [CrossRef]
- Mullin, J. Industrial Crystallization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Lakerveld, R.; Kuhn, J.; Kramer, H.J.; Jansens, P.J.; Grievink, J. Membrane assisted crystallization using reverse osmosis: Influence of solubility characteristics on experimental application and energy saving potential. Chem. Eng. Sci. 2010, 65, 2689–2699. [Google Scholar] [CrossRef]
- Chergaoui, S.; Lauzer, J.; Debecker, D.P.; Leyssens, T.; Luis, P. Tuning membrane properties to control supersaturation of antisolvent crystallization. J. Membr. Sci. 2024, 694, 122415. [Google Scholar]
- Jiang, X.; Shao, Y.; Sheng, L.; Li, P.; He, G. Membrane crystallization for process intensification and control: A review. Engineering 2021, 7, 50–62. [Google Scholar]
- Creusen, R.; van Medevoort, J.; Roelands, M.; van Duivenbode, A.V.R.; Hanemaaijer, J.H.; van Leerdam, R. Integrated membrane distillation–crystallization: Process design and cost estimations for seawater treatment and fluxes of single salt solutions. Desalination 2013, 323, 8–16. [Google Scholar] [CrossRef]
- Curcio, E.; Criscuoli, A.; Drioli, E. Membrane crystallizers. Ind. Eng. Chem. Res. 2001, 40, 2679–2684. [Google Scholar]
- Tan, H.-F.; Tan, W.-L.; Ooi, B.; Leo, C. Superhydrophobic PVDF/micro fibrillated cellulose membrane for membrane distillation crystallization of struvite. Chem. Eng. Res. Des. 2021, 170, 54–68. [Google Scholar]
- Tsai, J.-H.; Perrotta, M.L.; Gugliuzza, A.; Macedonio, F.; Giorno, L.; Drioli, E.; Tung, K.-L.; Tocci, E. Membrane-assisted crystallization: A molecular view of NaCl nucleation and growth. Appl. Sci. 2018, 8, 2145. [Google Scholar] [CrossRef]
- Das, P.; Dutta, S.; Singh, K.; Maity, S. Energy saving integrated membrane crystallization: A sustainable technology solution. Sep. Purif. Technol. 2019, 228, 115722. [Google Scholar]
- Iwamatsu, M. Cell dynamics approach to the formation of metastable phases during phase transformation. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2005, 71, 061604. [Google Scholar]
- Bosetti, L.; Mazzotti, M. Population balance modeling of growth and secondary nucleation by attrition and ripening. Cryst. Growth Des. 2019, 20, 307–319. [Google Scholar] [CrossRef]
- Curcio, E.; Fontananova, E.; Di Profio, G.; Drioli, E. Influence of the structural properties of poly (vinylidene fluoride) membranes on the heterogeneous nucleation rate of protein crystals. J. Phys. Chem. B 2006, 110, 12438–12445. [Google Scholar]
- Das, P.; Dutta, S.; Singh, K.K. Insights into membrane crystallization: A sustainable tool for value added product recovery from effluent streams. Sep. Purif. Technol. 2021, 257, 117666. [Google Scholar] [CrossRef]
- Cui, Z.; Li, X.; Zhang, Y.; Wang, Z.; Gugliuzza, A.; Militano, F.; Drioli, E.; Macedonio, F. Testing of three different PVDF membranes in membrane assisted-crystallization process: Influence of membrane structural-properties on process performance. Desalination 2018, 440, 68–77. [Google Scholar] [CrossRef]
- Quist-Jensen, C.A.; Ali, A.; Mondal, S.; Macedonio, F.; Drioli, E. A study of membrane distillation and crystallization for lithium recovery from high-concentrated aqueous solutions. J. Membr. Sci. 2016, 505, 167–173. [Google Scholar] [CrossRef]
- Guillen-Burrieza, E.; Mavukkandy, M.; Bilad, M.; Arafat, H. Understanding wetting phenomena in membrane distillation and how operational parameters can affect it. J. Membr. Sci. 2016, 515, 163–174. [Google Scholar] [CrossRef]
- Ye, W.; Wu, J.; Ye, F.; Zeng, H.; Tran, A.T.; Lin, J.; Luis, P.; Van der Bruggen, B. Potential of osmotic membrane crystallization using dense membranes for Na2CO3 production in a CO2 capture scenario. Cryst. Growth Des. 2015, 15, 695–705. [Google Scholar] [CrossRef]
- Das, P.; Singh, K.K.K.; Dutta, S. Insight into emerging applications of forward osmosis systems. J. Ind. Eng. Chem. 2019, 72, 1–17. [Google Scholar] [CrossRef]
- Tun, C.M.; Fane, A.G.; Matheickal, J.T.; Sheikholeslami, R. Membrane distillation crystallization of concentrated salts—Flux and crystal formation. J. Membr. Sci. 2005, 257, 144–155. [Google Scholar] [CrossRef]
- Perrotta, M.L.; Macedonio, F.; Tocci, E.; Giorno, L.; Drioli, E.; Gugliuzza, A. Graphene stimulates the nucleation and growth rate of NaCl crystals from hypersaline solution via membrane crystallization. Environ. Sci. Water Res. Technol. 2020, 6, 1723–1736. [Google Scholar] [CrossRef]
- Frappa, M.; Macedonio, F.; Gugliuzza, A.; Jin, W.; Drioli, E. Performance of PVDF based membranes with 2D materials for membrane assisted-crystallization process. Membranes 2021, 11, 302. [Google Scholar] [CrossRef]
- Mene, N.R.; Murthy, Z. Recovery of pure water and crystalline products from concentrated brine by using membrane distillation crystallization. Sep. Sci. Technol. 2019, 54, 396–408. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar]
Characteristics | Polymer |
---|---|
Structure | (CH2-CF2)n [60] |
Crystalline forms | α, β, γ, δ and ε |
Melting point (β) | 170 °C |
Density | 1.77 kg/m3 |
Glass transition temperature | −40 °C to −30 °C |
Decomposition temperature | 316 °C |
Solvent | Mol. wt g/mol | Boiling Point °C | Preparation Technique | Ref. |
---|---|---|---|---|
ATEC | 318.3 | 132 | TIPS | [61] |
ATBC | 402.5 | 173 | ||
([BMIM]PF6) | 284.1 | >340 | TIPS | [68] |
CyreneTM | 128.13 | 226 | NIPS | [69] |
VIPS-NIPS | ||||
NIPS | [70] | |||
EIPS | ||||
DMI | 174.1 | 93–95 | VIPS-NIPS | [64] |
DBM | 228.2 | 281 | TIPS | [71] |
DMSO | 78.1 | 189 | NIPS | [72,73] |
EL | 118.1 | 154 | EIPS-NIPS | [65] |
TEP | 182.1 | 215 | NIPS | [66] |
SANIPS-NIPS | [74] | |||
TEGDA | 234.2 | 286 | TIPS | [61,75] |
TEC | 276.2 | 127 | TIPS | [61] |
Properties | CyreneTM [69] | Dimethyl Isorbide (DMI) [79] | γ-Valerolactone (GVL) [80] |
---|---|---|---|
Color | Colorless Light yellow | Colorless to slight yellow | Colorless |
Molecular weight (g/mol) | 128.1 | 174.1 | 100.1 |
Formula | C6H8O3 | C8H14O4 | C5H8O2 |
Density (g/cm3) | 1.2 | 1.1 | 1.0 |
Miscibility with H2O | Complete | Complete | Complete |
PVDF-solvent distance a | 3.3 | 5.7 | 3.1 |
δd (MPa 0.5) [64] | 18.8 | 17.6 | 17.1 |
δp (MPa 0.5) [64] | 10.6 | 7.1 | 11.9 |
δH (MPa 0.5) [64] | 6.9 | 7.5 | 6.2 |
Green Solvent | Advantages | Disadvantages |
---|---|---|
TamiSolve NxG (N-butyl pyrrolidone) |
|
|
Dimethyl Sulfoxide (DMSO) |
|
|
Triethyl Phosphate (TEP) |
|
|
Dimethyl Isosorbide (DMI) |
|
|
γ-Valerolactone (GVL) |
|
|
Dihydrolevoglucosenone (Cyrene™) |
|
|
PolarClean (Methyl 5-dimethylamino-2-methyl-5-oxopentanoate) |
|
|
Dope Solution Preparation | Membrane Preparation | Membrane Characterizations | DCMD Condition | Membrane Performance | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Additives | Solvent | Method | Contact Angle ° | Pore Size µm | Porosity % | Thickness µm | Temp °C | Feed Conc. M NaCl | Flux kg/m2h | Rejection | ||
PVDF | - | TEP | NIPS | 125 ± 2 | - | 70 | 60 | 60 | 1 | 32 | - | [78] |
PVDF | - | TEP | NIPS | 125 ± 2 | - | 70 | 150 | 60 | 1 | 20 | - | [78] |
PVDF | - | TEP | NIPS | 125 ± 2 | - | 75 | 60 | 60 | 1 | 40 | - | [78] |
PVDF | - | TEP | NIPS | 125 ± 2 | - | 75 | 150 | 60 | 1 | 26 | - | [78] |
PVDF | rGO | NMP | NIPS | 150.7 ± 2.8 | - | - | - | 60 | 0.6 | 34.6 | 99.9 | [87] |
PVDF | TiO2 and FTCS (for dip coating) | Dip coating on commerical PVDF membrane | 166 | 0.4 | - | - | 70 | 0.6 | 75 | 94 | [94] | |
PVDF Kynar® | Cloisite® | DMAc and acetone | Electrospinning | 154.2 ± 3.0 | 0.6 ± 0.2 | 81 ± 3 | - | 65 | 0.6 | 57 | 99 | [88] |
PVDF Kynar® | Fe3SO4 | DMAc | NIPS | 99.2 | 0.1 | 57 | - | 60 | 0.6 | 15 | 99.5 | [91] |
PVDF Kynar® | - | TEP | SANIPS | 154 | - | 93 | 83 | 60 | 1.8 | 22 | >99.9 | [74] |
PVDF-HFP | AC | DMF (0.005 wt% LiCl) | Electrospun | 142.7 ± 0.6 | 0.7 ± 0.036 | 90.5 ± 1.7 | 120 | 60 | 0.6 | 45.6 | 99.9 | [89] |
PVDF-HFP | TEP | NIPS | 89.2 | 0.06 | 78.1 | 49 ± 8 | 60 | 0.6 | 16.1 | 99 | [92] | |
PVDF-HFP | PEG | Tamisolve | NIPS | 89.1 ± 0.1 | 0.05 ± 0.01 | 77.2 ± 0.8 | 148.7 ± 2.2 | 36 | 0.6 | 2.2 | 99.9 | [93] |
PVDF/TBAHP/PS; 35 wt% | DMF and acetone | Electrospinning | 151.7 | 1.6 | 87 | 100 ± 10 | 60 | 0.6 | 50 | 99.9 | [90] |
Type of PVDF | Dope Solution Preparation | Membrane Preparation | Membrane Characterization | MCr/MDC Conditions | Membrane Performance | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Additives | Solvent | Preparation Method | Contact Angle ° | Pore Size µm | Porosity % | Thickness µm | Application | Feed Temp. °C | Permeate Temp.°C | Feed Conc. M NaCl | Flux kg/m2h | ||
PVDF- VVHP04700 | Hyflon AD40H (for dip coating) | - | Dip coating | 132 ± 1 | 0.4 | 59.4 ± 0.8 | 102.9 ± 2 | MCr | 34 | 10.5 | 5.3 | 1.7 | [117] |
PVDF- HVHP04700 | Hyflon AD40H (for dip coating) | - | Dip coating | 137 ± 1 | 0.8 | 58.3 ± 0.5 | 98 ± 2.5 | MCr | 34 | 10.5 | 5.3 | 2.5 | [117] |
PVDF | LiCl | DMF | Wet phase inversion | 98.5 | 0.3 | 44.9 | 66 | MDC | 69.8 | 26.8 | 5.1 | 1.4 | [125] |
PVDF | Acetone | DMF | Wet phase inversion | 80 | 0.32 | 41.1 | 60 | MDC | 69.8 | 26.8 | 5.1 | 1.7 | [125] |
PVDF | - | - | Commercial membrane | - | 0.2 | 70 | 125 | MCr | 60 | 20 | 4.5 | 20 | [122] |
PVDF | Graphene pallet | NMP | Dry–wet phase inversion | 156 ± 5 | 0.7 | 86 | - | MCr | 36.5 | - | 5.3 | 8 | [123] |
PVDF/BT (0.5%) | NMP ink | Dry–wet phase inversion | 128 ± 8 | 0.5 ± 0.2 | 75 ± 1 | 68 ± 1 | MCr | 34 | 11 | 5 | 2.7 | [124] | |
PVDF/BT (7%) | NMP ink | Dry–wet phase inversion | 130 ± 2 | 0.5 ± 0.08 | 77 ± 1 | 100 ± 5 | MCr | 34 | 11 | 5 | 3.9 | [124] | |
PVDF/G (0.5%) | NMP ink | Dry–wet phase inversion | 136 ± 1 | 0.2 ± 0.05 | 56 ± 7 | 62 ± 3 | MCr | 34 | 11 | 5 | 1.6 | [124] | |
PVDF-HFP | PEG | Tamisolve | NIPS | 88.02 ± 0.6 | 0.19 ± 0.03 | 80.1 ± 1.3 | 142.2 ± 4.2 | MCr | 40 | 10 | 5.3 | 1.8 | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.M.; Russo, F.; Macedonio, F.; Criscuoli, A.; Curcio, E.; Figoli, A. The State of the Art on PVDF Membrane Preparation for Membrane Distillation and Membrane Crystallization: Towards the Use of Non-Toxic Solvents. Membranes 2025, 15, 117. https://doi.org/10.3390/membranes15040117
Khan AM, Russo F, Macedonio F, Criscuoli A, Curcio E, Figoli A. The State of the Art on PVDF Membrane Preparation for Membrane Distillation and Membrane Crystallization: Towards the Use of Non-Toxic Solvents. Membranes. 2025; 15(4):117. https://doi.org/10.3390/membranes15040117
Chicago/Turabian StyleKhan, Aqsa Mansoor, Francesca Russo, Francesca Macedonio, Alessandra Criscuoli, Efrem Curcio, and Alberto Figoli. 2025. "The State of the Art on PVDF Membrane Preparation for Membrane Distillation and Membrane Crystallization: Towards the Use of Non-Toxic Solvents" Membranes 15, no. 4: 117. https://doi.org/10.3390/membranes15040117
APA StyleKhan, A. M., Russo, F., Macedonio, F., Criscuoli, A., Curcio, E., & Figoli, A. (2025). The State of the Art on PVDF Membrane Preparation for Membrane Distillation and Membrane Crystallization: Towards the Use of Non-Toxic Solvents. Membranes, 15(4), 117. https://doi.org/10.3390/membranes15040117