Screening the Performance of a Reverse Osmosis Pilot-Scale Process That Treats Blended Feedwater Containing a Nanofiltration Concentrate and Brackish Groundwater
Abstract
:1. Introduction
1.1. Fouling
1.1.1. Particulate Fouling
1.1.2. Biofouling
1.1.3. Scaling
1.2. Concentrate Disposal and Minimum Liquid Discharge (MLD)
1.3. Motivation for Further Study
2. Materials and Methods
2.1. Site Information
2.2. NF Concentrate Supply
2.3. Brackish RO Well Supply
2.4. RO Pilot Description
2.5. Blend Ratio and Pretreatment Configuration
2.6. Water Quality and Operational Performance Analysis
2.7. Feedwater Quality
2.8. Methods
2.8.1. Analysis for Anions and Cations
2.8.2. SDI
2.8.3. Analysis for DOC
2.8.4. Ultraviolet–Visible Spectrophotmetry (UV–VIS)
2.8.5. EEMs
2.8.6. Biological Activity Reaction Test (BART)
2.8.7. CF and Filter Pad Autopsy
3. Results and Discussion
3.1. Operational Performance
Pump Energy Consumption and Cost Comparison with and without NF Concentrate in RO Feedwater
3.2. Water Quality
3.2.1. Particulate Fouling Observations
3.2.2. Biological and Organic Fouling Observations
3.3. Autopsy Findings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duranceau, S. Charting the Future Course for Reverse Osmosis and Nanofiltraton Membranes–Opportunities and Challenges; IWA Publishing: London, UK, 2016. [Google Scholar]
- Howe, K.J.; Hand, D.W.; Crittenden, J.C.; Trussel, R.R.; Tchobanoglous, G. Principles of Water Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Duranceau, S.; Taylor, J. Water Quality and Treatment. In Membranes; AWWA: Denver, CO, USA, 2011. [Google Scholar]
- Hasson, D. Elements of Membrane Separation Processes; Balaban Desalination Publications: Rome, Italy, 2021. [Google Scholar]
- Lim, Y.J.; Goh, K.; Wang, R. The coming of age of water channels for separation membranes: From biological to biomimetic to synthetic. Chem. Soc. Rev. 2022, 51, 4537–4582. [Google Scholar] [CrossRef] [PubMed]
- AWWA. Reverse Osmosis and Nanofiltration M46. In Manual of Water Supply Practices, 2nd ed.; American Water Works Association: Denver, CO, USA, 2007. [Google Scholar]
- Van Der Bruggen, B.; Vandecasteele, C. Removal of pollutants from surface water and groundwater by nanofiltration: Overview of possible applications in the drinking water industry. Environ. Pollut. 2002, 122, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Cath, T.Y.; Robertson, A.P.; Reinhard, M.; Leckie, J.O.; Drewes, J.E. Critical review of desalination concentrate management, treatment and beneficial use. Environ. Eng. Sci. 2013, 30, 502–514. [Google Scholar] [CrossRef]
- Nthunya, L.N.; Bopape, M.F.; Mahlangu, O.T.; Mamba, B.B.; Van der Bruggen, B.; Quist-Jensen, C.A.; Richards, H. Fouling, performance and cost analysis of membrane-based water desalination technologies: A critical review. J. Environ. Manag. 2021, 301, 113922. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Rodríguez, S.G.; Schippers, J.C.; Amy, G.L.; Kim, I.S.; Kennedy, M.D. Seawater Reverse Osmosis Desalination: Assessment and Pre-Treatment of Fouling and Scaling; International Water Association Publications: London, UK, 2021. [Google Scholar]
- Najid, N.; Hakizimana, J.N.; Kouzbour, S.; Gourich, B.; Ruiz-García, A.; Vial, C.; Stiriba, Y.; Semiat, R. Fouling control and modeling in reverse osmosis for seawater desalination: A review. Comput. Chem. Eng. 2022, 162, 107794. [Google Scholar] [CrossRef]
- Shang, C.; Pranantyo, D.; Zhang, S. Understanding the roughness–fouling relationship in reverse osmosis: Mechanism and implications. Environ. Sci. Technol. 2020, 54, 5288–5296. [Google Scholar] [CrossRef] [PubMed]
- Edzwald, J.K.; Haarhoff, J. Seawater pretreatment for reverse osmosis: Chemistry, contaminants, and coagulation. Water Res. 2011, 45, 5428–5440. [Google Scholar] [CrossRef]
- Ju, Y.; Hong, S. Nano-colloidal fouling mechanisms in seawater reverse osmosis process evaluated by cake resistance simulator-modified fouling index nanofiltration. Desalination 2014, 343, 88–96. [Google Scholar] [CrossRef]
- Lee, S.; Ang, W.; Elimelech, M. Fouling of reverse osmosis membranes by hydrophilic organic matter: Implications for water reuse. Desalination 2006, 187, 313–321. [Google Scholar] [CrossRef]
- Hakizimana, J.; Gourich, B.; Vial, C.; Drogui, P.; Ouamani, A.; Naja, J.; Hilali, L. Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis. Desalination 2016, 393, 90–101. [Google Scholar] [CrossRef]
- Hong, S.; Elimelech, M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Membr. Sci. 1997, 132, 159–181. [Google Scholar] [CrossRef]
- Escobar, I.C.; Randall, A.A. Assimilable Organic Carbon (AOC) And Biodegradable Dissolved Organic Carbon (BDOC): Complementary Measurements. Water Res. 2001, 35, 4444–4454. [Google Scholar] [CrossRef] [PubMed]
- Maddah, H.; Chogle, A. Biofouling in reverse osmosis: Phenomena, monitoring, controlling and remediation. Appl. Water Sci. 2016, 7, 2637–2651. [Google Scholar] [CrossRef]
- Voutchkov, N. Considerations for selection of seawater filtration pretreatment system. Desalination 2010, 261, 354–364. [Google Scholar] [CrossRef]
- Bergman, L.E.; Jones, K.L.; VanBriesen, J.M. Fluorescence characterization of organic matter and fouling: Case study in a full-scale reverse osmosis membrane treatment plant. Water Environ. Res. 2019, 92, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C. Scale formation in NF/RO: Mechanism and control. Water Sci. Technol. 2005, 51, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Matin, A.; Rahman, F.; Shafi, H.Z.; Zubair, S.M. Scaling of reverse osmosis membranes used in water desalination: Phenomena, impact, and control; future directions. Desalination 2019, 455, 135–157. [Google Scholar] [CrossRef]
- Au, J.; Kim, M.; Rahardianto, A.; Cohen, Y.; Lyster, E. Kinetics of RO membrane scaling in the presence of antiscalants. In Proceedings of the AIChE Annual Conference, Minneapolis, MI, USA, 29 October–3 November 2007. [Google Scholar]
- Mickley, M. Membrane Concentrate Disposal: Practices and Regulation; US Department of the Interior, Bureau of Reclamation, Technical Service Center, Water Treatment Engineering and Research Group: Washington, DC, USA, 2006. [Google Scholar]
- Mickley, M. Membrane Concentrate Disposal: Practices and Regulation; US Department of the Interior, Bureau of Reclamation: Washington, DC, USA, 2001. [Google Scholar]
- Lim, Y.J.; Nadzri, N.; Lai, G.S.; Wang, R. Demystifying the Compaction Effects of TFC Polyamide Membranes in the Desalination of Hypersaline Brine via High-Pressure RO. J. Membr. Sci. 2024, 707, 122950. [Google Scholar] [CrossRef]
- Hafiz, M.; Hawari, A.H.; Alfahel, R.; Hassan, M.K.; Altaee, A. Comparison of nanofiltration with reverse osmosis in reclaiming tertiary treated municipal wastewater for irrigation purposes. Membranes 2021, 11, 32. [Google Scholar] [CrossRef]
- García-Figueruelo, C.; Bes-Piá, A.; Mendoza-Roca, J.; Lora-García, J.; Cuartas-Uribe, B. Reverse osmosis of the retentate from the nanofiltration of secondary effluents. Desalination 2009, 240, 274–279. [Google Scholar] [CrossRef]
- Carollo. Water Desalination Concentrate Management and Piloting South Florida Water Management District; South Florida Water Management District: West Palm Beach, FL, USA, 2009. [Google Scholar]
- Hempstead, T.; Miller, W. Deerfield Beach Plans the Construction of an RO Plant in Response to New Regulatory Requirements. In Proceedings of the AMTA/SEDA Joint Conference and Exposition, Naples, FL, USA, 14–17 July 2008. [Google Scholar]
- Jeffery-Black, S.; Duranceau, S.J.; Franco, C. Caffeine Removal and Mass Transfer in a Nanofiltration Membrane Process. Desalination Water Treat. 2017, 59, 1–10. [Google Scholar] [CrossRef]
- Jeffery-Black, S.; Duranceau, S.J. The influence of solute polarizability and molecular volume on the rejection of trace organics in loose nanofiltration membrane processes. Desalination Water Treat. 2016, 57, 29059–29069. [Google Scholar] [CrossRef]
- Higgins, C.J.; Duranceau, S.J. Removal of Enantiomeric Ibuprofen in a Nanofiltration Membrane Process. Membranes 2020, 10, 383. [Google Scholar] [CrossRef] [PubMed]
- Town of Jupiter, Florida. 10-Year Water Supply Facilities Work Plan; Town of Jupiter Utilities Department: Jupiter, FL, USA, 2019. [Google Scholar]
- Florida Department of Environmental Protection. Florida Administrative Code (FAC) 62-610.865: Blending of Demineralization Concentrate with Reclaimed Water; Florida Department of Environmental Protection: Tallahassee, FL, USA, 2021. [Google Scholar]
- Stanley, E.; Arrington, A.; Dent, R.; Burden, D.; Taylor, R. Preserving the Environment by Increasing Reuse Supplies: Blending Nanofiltration Concentrate & Treated Effluent. Fla. Water Resour. J. 2009, 8, 52–59. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environment Federation; Lipps, W.C.; Braun-Howard, E.B. (Eds.) Standard Methods for the Examination of Water and Wastewater, 24th ed.; APHA Press: Washington, DC, USA, 2023. [Google Scholar]
- USEPA. Methods for Chemical Analysis of Water and Wastes. EPA/600/4-79/020 (NTIS PB84128677); U.S. Environmental Protection Agency: Washington, DC, USA, 2002. [Google Scholar]
- ASTM Method D4195; Standard Guide for Water Analysis for Reverse Osmosis and Nanofiltration Application. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- ASTM Method D4472-08; Standard Guide for Recordkeeping for Reverse Osmosis and Nanofiltration Systems. American Society for Testing Materials: West Conshohocken, PA, USA, 2022.
- ASTM Method D4516-19a; Standard Practice for Standardizing Reverse Osmosis Performance Data. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- American Water Chemicals. Summary of Initial Anti-Scalant Projections for Blending of NF Concentrate with RO Raw Water; American Water Chemicals: Plant City, FL, USA, 2022. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environment Federation; Lipps, W.C.; Braun-Howard, E.B. (Eds.) SM 3120B. Determination of Anions by Ion Chromatography. In Standard Methods for the Examination of Water and Wastewater, 24th ed.; APHA Press: Washington, DC, USA, 2023; pp. 4-7–4-11. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environment Federation; Lipps, W.C.; Braun-Howard, E.B. (Eds.) SM3120B. Metals by Plasma Emission Spectroscopy. In Standard Methods for the Examination of Water and Wastewater, 24th ed.; APHA Press: Washington, DC, USA, 2023; pp. 3-42–3-48. [Google Scholar]
- ASTM Method D4189-23; Standard Test Method for Silt Density Index (SDI) of Water. American Society for Testing and Materials: West Conshohocken, PA, USA, 2014.
- American Public Health Association; American Water Works Association; Water Environment Federation; Lipps, W.C.; Braun-Howard, E.B. (Eds.) SM. 5310C Total Organic Carbon. In Standard Methods for the Examination of Water and Wastewater, 24th ed.; APHA Press: Washington, DC, USA, 2023; pp. 5-29–5-31. [Google Scholar]
- Biscardi, P.G.; Duranceau, S.J. Monitoring the Fate of Fluorescing Substances Recycled in Ultrafiltration Process Backwash Water. J. Water Supply Res. Technol. 2016, 65, 541–549. [Google Scholar] [CrossRef]
- Hach. BART Tester Set-Procedures for ALGE, DN, FLOR, HAB, IRB, N, POOL, SLYM, SRB-Instruction Sheets; Hach: Loveland, CO, USA, 2005. [Google Scholar]
- Van der Kooij, D.; Hijnen, W.; Cornelissen, E. Biofouling of Spiral Wound Membranes in Water Treatment; Water Research Foundation and KWR Groginghaven: Denver, CO, USA, 2010. [Google Scholar]
- Matin, A.; Khan, Z.; Zaidi, S.M.J.; Boyce, M.C. Biofouling in Reverse Osmosis Membranes for Seawater Desalination: Phenomena and Prevention. Desalination 2011, 281, 1–16. [Google Scholar] [CrossRef]
- Badruzzaman, M.; Voutchkov, N.; Weinrich, L.; Jacangelo, J.G. Selection of pretreatment technologies for seawater reverse osmosis plants: A review. Desalination 2019, 449, 78–91. [Google Scholar] [CrossRef]
- United States Energy Information Administration. Average Price of Electricity to Ultimate Customers by End-Use Sector; United States Energy Information Administration: Washington, DC, USA, 2024. Available online: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a (accessed on 14 July 2024).
- Rickard, D.; Luther, G.W. Chemistry of Iron Sulfides. Chem. Rev. 2007, 107, 514–562. [Google Scholar] [CrossRef]
- van Beek, C.; van der Kooij, D. Sulfate-Reducing Bacteria in Ground Water from Clogging and Nonclogging Shallow Wells in the Netherlands River Region. Groundwater 1982, 20, 298–302. [Google Scholar] [CrossRef]
- Perry, K.A.; Pedersen, T.F. Sulphur Speciation and Pyrite Formation in Meromictic Ex-Fjords. Geochim. Et Cosmochim. Acta 1993, 57, 4405–4418. [Google Scholar] [CrossRef]
- Duverger, A.; Berg, J.S.; Busigny, V.; Guyot, F.; Bernard, S.; Miot, J. Mechanisms of Pyrite Formation Promoted by Sulfate-Reducing Bacteria in Pure Culture. Front. Earth Sci. 2020, 8, 588310. [Google Scholar] [CrossRef]
- Kappler, A.; Benz, M.; Schink, B.; Brune, A. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 2004, 47, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; Balkema: Cape Town, South Africa, 2005; p. 649. [Google Scholar]
- Canfield, D.E.; Raiswell, R.; Bottrell, S.H. The Reactivity of Sedimentary Iron Minerals toward Sulfide. Am. J. Sci. 1992, 292, 659–683. [Google Scholar] [CrossRef]
- Schoonen, M.; Barnes, H. Reactions Forming Pyrite and Marcasite from Solution: II. Via FeS Precursors below 100 °C. Geochim. Et Cosmochim. Acta 1991, 55, 1505–1514. [Google Scholar] [CrossRef]
- Wang, Q.; Morse, J.W. Pyrite Formation under Conditions Approximating Those in Anoxic Sediments I. Pathway and Morphology. Mar. Chem. 1996, 52, 99–121. [Google Scholar] [CrossRef]
- Tang, K.; Baskaran, V.; Nemati, M. Bacteria of the sulphur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem. Eng. J. 2009, 44, 73–94. [Google Scholar] [CrossRef]
- Wang, T.; Zhong, G.; Liu, H.; Liu, H.; Xia, Y.; Xun, L. A Common Mechanism for Rapid Transfer of Zero-Valent Sulfur between Microbial Cells. Sci. Total Environ. 2023, 891, 164461. [Google Scholar] [CrossRef]
- Peng, W.; Escobar, I.C. Rejection efficiency of water quality parameters by reverse osmosis and nanofiltration membranes. Environ. Sci. Technol. 2003, 37, 4435–4441. [Google Scholar] [CrossRef]
- Weinrich, L.; Haas, C.N.; LeChevallier, M.W. Recent advances in measuring and modeling reverse osmosis membrane fouling in seawater desalination: A review. J. Water Reuse Desalination 2013, 3, 85–101. [Google Scholar] [CrossRef]
- Trabelsi, L.; M’Sakni, N.H.; Ouada, H.B.; Bacha, H.; Roudesli, S. Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnol. Bioprocess Eng. 2009, 14, 27–31. [Google Scholar] [CrossRef]
- Matthiasson, E. The role of macromolecular adsorption in fouling of ultrafiltration membranes. J. Membr. Sci. 1983, 16, 23–36. [Google Scholar] [CrossRef]
- Baker, J.; Dudley, L. Biofouling in membrane systems—A review. Desalination 1998, 118, 81–89. [Google Scholar] [CrossRef]
- Chester, S.; Pena, N.; Gallego, S.; Fazel, M.; Armstrong, M.; del Vigo, F. Results from 99 Seawater RO Membrane Autopsies. In Proceedings of the World Congress/Perth Convention and Exhibition Centre (PCEC), Perth, Australia, 4–9 September 2011. [Google Scholar]
Parameter | Units | Full-Scale NF | Pilot-Scale RO |
---|---|---|---|
Membrane Type | - | Polypiperazine SW–TFC | Polyamide SW–TFC |
Array | - | 63:18 | 4:2 |
Membranes/PV | - | 6 | 3 |
Feed Spacer | mil | 34 | 28 |
Area | ft2 (m2) | 400 (37) | 85 (7.9) |
Dimensions | in (mm) | 40 × 7.9 × 1.125 (1016 × 201 × 29) | 40 × 3.9 × 0.75 (1016 × 99 × 19) |
Permeate Flow Rate | gpd (m3/d) | 12,500 (47) * | 2600 (9.8) ** |
Stabilized Salt Rejection | % | >97.0 * | >99.7 ** |
Parameter | Unit | Minimum Operating Condition | Maximum Operating Condition |
---|---|---|---|
Full-scale RO trains typically in operation | - | 5 | 6 |
Full-scale NF trains typically in operation | - | 3 | 4 |
RO in blended full-scale permeate stream | % | 46 | 44 |
NF in blended full-scale permeate stream | % | 54 | 56 |
NF concentrate in blended feedwater | % | 15.4 | 17.1 |
NF concentrate flow into RO feedwater | MGD | 1.30 | 1.74 |
Test | Foulant | Purpose | Sample |
---|---|---|---|
SDI | Particulate | Assessed particulate fouling concerns in Phase 2 feedwater streams. | NF concentrate and blended feedwater |
Biological activity reaction test (BART) | Biological | Used to identify iron-related bacteria (IRB), sulfate-reducing bacteria (SRB), and slime-forming bacteria (SLYM) in Phase 2. | NF concentrate and blended feedwater |
Excitation–Emission Matrix Fluorescence Spectroscopy (EEMs) | Organic | Characterized organics in Phase 2 feedwater streams. | NF concentrate, brackish groundwater, and blended feedwater |
Specific ultraviolet absorbance (SUVA) | Organic | Supplemented EEMs findings in identifying the types of organics present in feedwater and concentrate streams. | NF concentrate, brackish groundwater, blended feedwater, and RO concentrate |
SDI silver filter pad autopsy | Organic, scaling | Used to evaluate the atomic composition present on the filter pad upstream of Phase 2 feedwater streams. | NF concentrate and blended feedwater |
CF Autopsy | Organic, scaling | Identified the atomic composition present on the CF upstream of the blended feedwater stream in Phase 1. | Blended feedwater |
Parameter | pH | Temp. | ORP | Turb. | Con. | TDS | Alk. | Ca2+ | Mg2+ | SiO2 | Na+ | Sr2+ | Cl− | SO2− | Fe2+ | DOC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | s.u. | °C | mV | NTU | µS/cm | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L |
Blended Feedwater | 7.09 | 24.3 | −219 | 0.24 | 8320 | 4670 | 198 | 207 | 166 | 14.4 | 1220 | 11.8 | 2290 | 368 | 0.147 | <0.25 |
Brackish Groundwater | 6.89 | 26.3 | −231 | 0.13 | 8750 | 5090 | 162 | 147 | 158 | 14.0 | 1400 | 11.0 | 2870 | 448 | 0.082 | 2.43 |
NF Concentrate | 6.86 | 25.2 | −140 | 0.64 | 2210 | 2010 | 442 | 411 | 20.2 | 16.6 | 70.9 | 2.87 | 72.2 | 623 | 0.472 | 56.8 |
Parameter | Stage | Average Flow Rate | Average Pressure | SEC | Cost | |
---|---|---|---|---|---|---|
Feed | Permeate | Feed | ||||
Units | - | gpm (m3/h) | gpm (m3/h) | psi (bar) | kWh/gal (kWh/m3) | USD/gal (USD/m3) |
Brackish groundwater feed | 1st | 19.9 (4.52) | 11.0 (2.49) | 184 (12.6) | 7.71 (2040) | 0.994 (263) |
2nd | 8.82 (2.00) | 3.84 (0.87) | 273 (18.8) | 12.0 (3170) | 1.55 (409) | |
Phase 1 Blended Feed | 1st | 20.0 (4.54) | 11.1 (2.5) | 188 (13.0) | 7.87 (2080) | 1.02 (268) |
2nd | 8.87 (2.01) | 3.86 (0.88) | 255 (17.6) | 11.1 (2940) | 1.43 (379) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagglund, C.R.; Duranceau, S.J. Screening the Performance of a Reverse Osmosis Pilot-Scale Process That Treats Blended Feedwater Containing a Nanofiltration Concentrate and Brackish Groundwater. Membranes 2024, 14, 164. https://doi.org/10.3390/membranes14080164
Hagglund CR, Duranceau SJ. Screening the Performance of a Reverse Osmosis Pilot-Scale Process That Treats Blended Feedwater Containing a Nanofiltration Concentrate and Brackish Groundwater. Membranes. 2024; 14(8):164. https://doi.org/10.3390/membranes14080164
Chicago/Turabian StyleHagglund, Christopher R., and Steven J. Duranceau. 2024. "Screening the Performance of a Reverse Osmosis Pilot-Scale Process That Treats Blended Feedwater Containing a Nanofiltration Concentrate and Brackish Groundwater" Membranes 14, no. 8: 164. https://doi.org/10.3390/membranes14080164
APA StyleHagglund, C. R., & Duranceau, S. J. (2024). Screening the Performance of a Reverse Osmosis Pilot-Scale Process That Treats Blended Feedwater Containing a Nanofiltration Concentrate and Brackish Groundwater. Membranes, 14(8), 164. https://doi.org/10.3390/membranes14080164