Electrophysiological Insights into Antibiotic Translocation and Resistance: The Impact of Outer Membrane Proteins
Abstract
:1. Introduction
2. Understanding the Outer Barrier
Class | Molecules | Molecular Weight g·mol−1 | Porins | Species | Recalculated Flux (Molecules/Second) at 1 μM Antibiotic Gradient | Reported Flux Molecules/Second at the Specific Mentioned Gradient |
---|---|---|---|---|---|---|
β-lactamase inhibitor | Avibactam | 265.24 | OmpF | E. coli | 62 | ≈620 at gradient 10 μM [44] |
β-lactamase inhibitor | Avibactam | 265.24 | OmpC | E. coli | 23 | ≈229 at gradient 10 μM [45] |
β-lactamase inhibitor | Tazobactam | 300.29 | OmpF | E. coli | 20 | ≈200 at gradient 10 μM [44] |
β-lactamase inhibitor | Tazobactam | 300.29 | OmpC | E. coli | 20 | ≈200 at gradient 10 μM [45] |
β-lactamase inhibitor | Sulbactam | 233.24 | OmpF | E. coli | 20 | ≈200 at gradient 10 μM [44] |
β-lactamase inhibitor | Sulbactam | 233.24 | OmpC | E. coli | 18 | ≈187 at gradient 10 μM [45] |
β-lactamase inhibitor | Sulbactam | 233.24 | DcaP | A. baumannii | 8 | ≈8 at gradient 1 μM [48] |
Phosphonic antibiotic | Fosfomycin | 138.059 | OprO | P. aeruginosa | 28 | ≈280 at gradient 10 μM [42] |
Phosphonic antibiotic | Fosfomycin | 138.059 | OprP | P. aeruginosa | ≤1 | ≈2.2 at gradient 10 μM [42] |
Phosphonic antibiotic | Fosfomycin | 138.059 | OmpF | E. coli | 37 | ≈37 at gradient 1 μM [41] |
Phosphonic antibiotic | Fosfomycin | 138.059 | OmpC | E. coli | 7 | ≈7 at gradient 1 μM [41] |
Phosphonic antibiotic | Fosfomycin | 138.059 | LamB | E. coli | 3 | ≈3 at gradient 1 μM [41] |
Phosphonic antibiotic | Fosfomycin | 138.059 | PhoE | E. coli | 9 | ≈9 at gradient 1 μM [41] |
Cephalosporin | Ceftazidime | 546.57 | OmpF | E. coli | 34 | ≈1000 at gradient 30 μM [40] |
Cephalosporin | Ceftazidime | 546.57 | OmpC | E. coli | 17 | ≈500 at gradient 30 μM [40] |
Cephalosporin | Ceftazidime | 546.57 | OprE | P. aeruginosa | ≤1 | ≈0.4 at gradient 10 μM [47] |
Cephalosporin | Cefotaxime | 455.46 | OprE | P. aeruginosa | ≤1 | ≈0.1 at gradient 10 μM [47] |
Penicillin | Ampicillin | 349.41 | OmpF | E. coli | 24 | ≈237 at gradient 10 μM [43] |
Penicillin | Benzylpenicillin | 334.39 | OmpF | E. coli | 12 | ≈120 at gradient 10 μM [43] |
Penicillin | Carbenicillin | 378.40 | OprE | P. aeruginosa | ≤1 | ≈0.04 at gradient 10 μM [47] |
Aminoglycoside | Gentamicin | 477.60 | OmpF | E. coli | 1.5 | ≈15 at gradient 10 μM [46] |
Aminoglycoside | Gentamicin | 477.60 | OmpC | E. coli | ≤1 | ≈8 at gradient 10 μM [46] |
Aminoglycoside | Gentamicin | 477.60 | LamB | E. coli | ≤1 | ≤1 at gradient 10 μM [46] |
Aminoglycoside | Gentamicin | 477.60 | Chip | E. coli | ≤1 | ≈3 at gradient 10 μM [46] |
Aminoglycoside | Kanamycin | 484.50 | OmpF | E. coli | 1 | ≈10 at gradient 10 μM [46] |
Aminoglycoside | Kanamycin | 484.50 | OmpC | E. coli | 1 | ≈11 at gradient 10 μM [46] |
Aminoglycoside | Kanamycin | 484.50 | LamB | E. coli | ≤1 | ≤1 at gradient 10 μM [46] |
Aminoglycoside | Kanamycin | 484.50 | Chip | E. coli | ≤1 | ≈5 at gradient 10 μM [46] |
Aminoglycoside | Amikacin | 585.60 | OmpF | E. coli | ≤1 | ≤1 at gradient 10 μM [46] |
Aminoglycoside | Amikacin | 585.60 | OmpC | E. coli | ≤1 | ≤1 at gradient 10 μM [46] |
Aminoglycoside | Amikacin | 585.60 | LamB | E. coli | ≤1 | ≤1 at gradient 10 μM [46] |
Aminoglycoside | Amikacin | 585.60 | Chip | E. coli | 2 | ≈20 at gradient 10 μM [46] |
Sodium Glutamate Monohydrate | 187.12 | OprE | P. aeruginosa | ≤1 | ≈0.6 at gradient 10 μM [47] | |
Arginine | 174.20 | OprE | P. aeruginosa | ≤1 | ≈0.1 at gradient 10 μM [47] |
3. Understanding Flux Quantification
4. Flux Data Analysis
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Patil, P.A.; Bobde, K.A.; Masurkar, S.A. Combating Antimicrobial Resistance: The Role of New Biotechnological Tools. NATURALISTA CAMPANO 2024, 28, 142–150. [Google Scholar]
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol Spectr 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef]
- Soge, O.O.; Harger, D.; Schafer, S.; Toevs, K.; Raisler, K.A.; Venator, K.; Holmes, K.K.; Kirkcaldy, R.D. Emergence of increased azithromycin resistance during unsuccessful treatment of Neisseria gonorrhoeae infection with azithromycin (Portland, OR, 2011). Sex. Transm. Dis. 2012, 39, 877–879. [Google Scholar] [CrossRef] [PubMed]
- Mangili, A.; Bica, I.; Snydman, D.R.; Hamer, D.H. Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia. Clin. Infect. Dis. 2005, 40, 1058–1060. [Google Scholar] [CrossRef] [PubMed]
- Jevons, M.P.; Rolinson, G.N.; Knox, R. Celbenin-Resistant Staphylococci. Br. Med. J. 1961, 1, 124. [Google Scholar] [CrossRef]
- Humphries, R.M.; Yang, S.; Hemarajata, P.; Ward, K.W.; Hindler, J.A.; Miller, S.A.; Gregson, A. First Report of Ceftazidime-Avibactam Resistance in a KPC-3-Expressing Klebsiella pneumoniae Isolate. Antimicrob. Agents Chemother. 2015, 59, 6605–6607. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Masi, M.; Winterhalter, M.; Pages, J.M. Outer Membrane Porins. In Bacterial Cell Walls and Membranes; Subcellular Biochemistry; Springer: Cham, Switzerland, 2019; Volume 92, pp. 79–123. [Google Scholar]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef]
- Klug, D.M.; Idiris, F.I.; Blaskovich, M.A.; von Delft, F.; Dowson, C.G.; Kirchhelle, C.; Roberts, A.P.; Singer, A.C.; Todd, M.H. There is no market for new antibiotics: This allows an open approach to research and development. Wellcome Open Res. 2021, 6, 146. [Google Scholar] [CrossRef]
- Ghai, I. A Barrier to Entry: Examining the Bacterial Outer Membrane and Antibiotic Resistance. Appl. Sci. 2023, 13, 4238. [Google Scholar] [CrossRef]
- Ghai, I.; Ghai, S. Exploring bacterial outer membrane barrier to combat bad bugs. Infect. Drug Resist. 2017, 10, 261–273. [Google Scholar] [CrossRef]
- Petrova, E. Innovation in the pharmaceutical industry: The process of drug discovery and development. In Innovation and Marketing in the Pharmaceutical Industry: Emerging Practices, Research, and Policies; Springer: New York, NY, USA, 2013; pp. 19–81. [Google Scholar]
- Shedeed, E. Mapping Global Governance of Antibiotic Stewardship: A One Health Multi-Level Governance Approach. Ph.D. Thesis, Université d’Ottawa|University of Ottawa, Ottawa, ON, Canada, 2024. [Google Scholar]
- Bartfai, T.; Lees, G.V. The Future of Drug Discovery: Who Decides Which Diseases To Treat? Academic Press: Cambridge, CA, USA, 2013. [Google Scholar]
- Cordell, G.A. The contemporary nexus of medicines security and bioprospecting: A future perspective for prioritizing the patient. Nat. Prod. Bioprospect. 2024, 14, 11. [Google Scholar] [CrossRef]
- Sharma, S.; Chauhan, A.; Ranjan, A.; Mathkor, D.M.; Haque, S.; Ramniwas, S.; Tuli, H.S.; Jindal, T.; Yadav, V. Emerging challenges in antimicrobial resistance: Implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front. Microbiol. 2024, 15, 1403168. [Google Scholar] [CrossRef]
- Soni, J.; Sinha, S.; Pandey, R. Understanding bacterial pathogenicity: A closer look at the journey of harmful microbes. Front. Microbiol. 2024, 15, 1370818. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Shamim, N.J.; Das, A.; Sharma, H.K.; Grewal, A.S.; Pandita, D.; Lather, V. Combating antimicrobial resistance: A paradigm shift from general to precision medicine. Chem. Biol. Lett. 2024, 11, 662. [Google Scholar] [CrossRef]
- Roque-Borda, C.A.; Primo, L.M.D.G.; Franzyk, H.; Hansen, P.R.; Pavan, F.R. Recent Advances in the Development of Antimicrobial Peptides against ESKAPE Pathogens. Heliyon 2024, 10, e31958. [Google Scholar] [CrossRef] [PubMed]
- Winterhalter, M. Antibiotic uptake through porins located in the outer membrane of Gram-negative bacteria. Expert Opin. Drug Deliv. 2021, 18, 449–457. [Google Scholar] [CrossRef]
- Oliveira, J.; Reygaert, W.C. Gram Negative Bacteria. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Nikaido, H.; Nakae, T. The outer membrane of Gram-negative bacteria. Adv. Microb. Physiol. 1979, 20, 163–250. [Google Scholar] [PubMed]
- Delcour, A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Pages, J.M.; James, C.E.; Winterhalter, M. The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 2008, 6, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Winterhalter, M.; Ceccarelli, M. Physical methods to quantify small antibiotic molecules uptake into Gram-negative bacteria. Eur. J. Pharm. Biopharm. 2015, 95 Pt A, 63–67. [Google Scholar] [CrossRef]
- Modi, N.; Benz, R.; Hancock, R.E.; Kleinekathofer, U. Modeling the Ion Selectivity of the Phosphate Specific Channel OprP. J. Phys. Chem. Lett. 2012, 3, 3639–3645. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, A.; Nestorovich, E.M.; Lopez, M.L.; Garcia-Gimenez, E.; Bezrukov, S.M.; Aguilella, V.M. Diffusion, exclusion, and specific binding in a large channel: A study of OmpF selectivity inversion. Biophys. J. 2009, 96, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Weingart, H.; Petrescu, M.; Winterhalter, M. Biophysical characterization of in- and efflux in Gram-negative bacteria. Curr. Drug Targets 2008, 9, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 1994, 264, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Masi, M.; Pages, J.M. Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: The OmpF/C—TolC Case. Open Microbiol. J. 2013, 7, 22–33. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Danelon, C.; Laio, A.; Parrinello, M. Microscopic Mechanism of Antibiotics Translocation through a Porin. Biophys. J. 2004, 87, 58–64. [Google Scholar] [CrossRef]
- Pages, J.M.; Peslier, S.; Keating, T.A.; Lavigne, J.P.; Nichols, W.W. Role of the Outer Membrane and Porins in Susceptibility of beta-Lactamase-Producing Enterobacteriaceae to Ceftazidime-Avibactam. Antimicrob. Agents Chemother. 2015, 60, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- James, C.E.; Mahendran, K.R.; Molitor, A.; Bolla, J.M.; Bessonov, A.N.; Winterhalter, M.; Pages, J.M. How beta-lactam antibiotics enter bacteria: A dialogue with the porins. PLoS ONE 2009, 4, e5453. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, H.; Scorciapino, M.A.; Moynie, L.; Page, M.G.; Naismith, J.H.; Ceccarelli, M.; Winterhalter, M. Molecular Basis of Filtering Carbapenems by Porins from beta-Lactam-resistant Clinical Strains of Escherichia coli. J. Biol. Chem. 2016, 291, 2837–2847. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Gutierrez, S.; Ferrara, L.; Pathania, M.; Masi, M.; Wang, J.; Bodrenko, I.; Zahn, M.; Winterhalter, M.; Stavenger, R.A.; Pages, J.M.; et al. Getting Drugs into Gram-Negative Bacteria: Rational Rules for Permeation through General Porins. ACS Infect. Dis. 2018, 4, 1487–1498. [Google Scholar] [CrossRef] [PubMed]
- Masi, M.; Vergalli, J.; Ghai, I.; Barba-Bon, A.; Schembri, T.; Nau, W.M.; Lafitte, D.; Winterhalter, M.; Pages, J.M. Cephalosporin translocation across enterobacterial OmpF and OmpC channels, a filter across the outer membrane. Commun. Biol. 2022, 5, 1059. [Google Scholar] [CrossRef]
- Bianchi, M.; Winterhalter, M.; Harbig, T.A.; Hörömpöli, D.; Ghai, I.; Nieselt, K.; Brötz-Oesterhelt, H.; Mayer, C.; Borisova-Mayer, M. Fosfomycin Uptake in Escherichia coli Is Mediated by the Outer-Membrane Porins OmpF, OmpC, and LamB. ACS Infect. Dis. 2024, 10, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Citak, F.; Ghai, I.; Rosenkotter, F.; Benier, L.; Winterhalter, M.; Wagner, R. Probing transport of fosfomycin through substrate specific OprO and OprP from Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 2018, 495, 1454–1460. [Google Scholar] [CrossRef]
- Ghai, I.; Bajaj, H.; Arun Bafna, J.; El Damrany Hussein, H.A.; Winterhalter, M.; Wagner, R. Ampicillin permeation across OmpF, the major outer-membrane channel in Escherichia coli. J. Biol. Chem. 2018, 293, 7030–7037. [Google Scholar] [CrossRef] [PubMed]
- Ghai, I.; Pira, A.; Scorciapino, M.A.; Bodrenko, I.; Benier, L.; Ceccarelli, M.; Winterhalter, M.; Wagner, R. General Method to Determine the Flux of Charged Molecules through Nanopores Applied to beta-Lactamase Inhibitors and OmpF. J. Phys. Chem. Lett. 2017, 8, 1295–1301. [Google Scholar] [CrossRef]
- Ghai, I.; Winterhalter, M.; Wagner, R. Probing transport of charged beta-lactamase inhibitors through OmpC, a membrane channel from E. coli. Biochem. Biophys. Res. Commun. 2017, 484, 51–55. [Google Scholar] [CrossRef]
- Paul, E.; Ghai, I.; Hörömpöli, D.; Brötz-Oesterhelt, H.; Winterhalter, M.; Bafna, J.A. Uptake of aminoglycosides through outer membrane porins in Escherichia coli. bioRxiv 2022. [Google Scholar] [CrossRef]
- Samanta, S.; D’Agostino, T.; Ghai, I.; Pathania, M.; Acosta Gutierrez, S.; Andrea Scorciapino, M.; Bodrenko, I.; Wagner, R.; van den Berg, B.; Winterhalter, M.; et al. How to Get Large Drugs through Small Pores? Exploiting the Porins Pathway in Pseudomonas aeruginosa. Biophys. J. 2017, 112, 416a. [Google Scholar] [CrossRef]
- Bhamidimarri, S.P.; Zahn, M.; Prajapati, J.D.; Schleberger, C.; Söderholm, S.; Hoover, J.; West, J.; Kleinekathöfer, U.; Bumann, D.; Winterhalter, M.; et al. A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure 2019, 27, 268–280.e6. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Bodrenko, I.; Acosta-Gutierrez, S.; D’Agostino, T.; Pathania, M.; Ghai, I.; Schleberger, C.; Bumann, D.; Wagner, R.; Winterhalter, M.; et al. Getting Drugs through Small Pores: Exploiting the Porins Pathway in Pseudomonas aeruginosa. ACS Infect. Dis. 2018, 4, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Acosta Gutierrez, S.; Bodrenko, I.; Scorciapino, M.A.; Ceccarelli, M. Macroscopic electric field inside water-filled biological nanopores. Phys. Chem. Chem. Phys. PCCP 2016, 18, 8855–8864. [Google Scholar] [CrossRef] [PubMed]
- Bodrenko, I.V.; Wang, J.; Salis, S.; Winterhalter, M.; Ceccarelli, M. Sensing Single Molecule Penetration into Nanopores: Pushing the Time Resolution to the Diffusion Limit. ACS Sens. 2017, 2, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Nestorovich, E.M.; Sugawara, E.; Nikaido, H.; Bezrukov, S.M. Pseudomonas aeruginosa porin OprF: Properties of the channel. J. Biol. Chem. 2006, 281, 16230–16237. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, E.; Kojima, S.; Nikaido, H. Klebsiella pneumoniae Major Porins OmpK35 and OmpK36 Allow More Efficient Diffusion of beta-Lactams than Their Escherichia coli Homologs OmpF and OmpC. J. Bacteriol. 2016, 198, 3200–3208. [Google Scholar] [CrossRef]
- Castanheira, M.; Mendes, R.E.; Sader, H.S. Low Frequency of Ceftazidime-Avibactam Resistance among Enterobacteriaceae Isolates Carrying blaKPC Collected in U.S. Hospitals from 2012 to 2015. Antimicrob. Agents Chemother. 2017, 61, e02369-16. [Google Scholar] [CrossRef]
- Bornet, C.; Davin-Regli, A.; Bosi, C.; Pages, J.M.; Bollet, C. Imipenem resistance of enterobacter aerogenes mediated by outer membrane permeability. J. Clin. Microbiol. 2000, 38, 1048–1052. [Google Scholar] [CrossRef]
- Dever, L.A.; Dermody, T.S. Mechanisms of bacterial resistance to antibiotics. Arch. Intern. Med. 1991, 151, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, H.; Tran, Q.T.; Mahendran, K.R.; Nasrallah, C.; Colletier, J.P.; Davin-Regli, A.; Bolla, J.M.; Pages, J.M.; Winterhalter, M. Antibiotic uptake through membrane channels: Role of Providencia stuartii OmpPst1 porin in carbapenem resistance. Biochemistry 2012, 51, 10244–10249. [Google Scholar] [CrossRef] [PubMed]
- Stavenger, R.A.; Winterhalter, M. TRANSLOCATION project: How to get good drugs into bad bugs. Sci. Transl. Med. 2014, 6, 228ed227. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Samartzidou, H.; Lee, K.W.; Briggs, J.M.; Delcour, A.H. Effects of pore mutations and permeant ion concentration on the spontaneous gating activity of OmpC porin. Protein Eng. 2000, 13, 491–500. [Google Scholar] [CrossRef]
- Danelon, C.; Suenaga, A.; Winterhalter, M.; Yamato, I. Molecular origin of the cation selectivity in OmpF porin: Single channel conductances vs. free energy calculation. Biophys. Chem. 2003, 104, 591–603. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghai, I. Electrophysiological Insights into Antibiotic Translocation and Resistance: The Impact of Outer Membrane Proteins. Membranes 2024, 14, 161. https://doi.org/10.3390/membranes14070161
Ghai I. Electrophysiological Insights into Antibiotic Translocation and Resistance: The Impact of Outer Membrane Proteins. Membranes. 2024; 14(7):161. https://doi.org/10.3390/membranes14070161
Chicago/Turabian StyleGhai, Ishan. 2024. "Electrophysiological Insights into Antibiotic Translocation and Resistance: The Impact of Outer Membrane Proteins" Membranes 14, no. 7: 161. https://doi.org/10.3390/membranes14070161
APA StyleGhai, I. (2024). Electrophysiological Insights into Antibiotic Translocation and Resistance: The Impact of Outer Membrane Proteins. Membranes, 14(7), 161. https://doi.org/10.3390/membranes14070161