Identification of Membrane Fouling with Greywater Filtration by Porous Membranes: Combined Effect of Membrane Pore Size and Applied Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Simulated Greywater
2.2. Experimental Set-Up and Operation for Dead-End Filtration
2.3. Characterization and Analysis
2.4. Hermia Blocking Law
3. Results and Discussion
3.1. Combined Effect of Membrane Pore Size and Applied Pressure
3.2. Fouling Mechanisms of MF Membrane Filtration with Greywater
3.3. Membrane Rejections and Microscopic Observations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Y = Normalized Permeability at 300 mL Feed Filtration (−) * | |||||||
---|---|---|---|---|---|---|---|
ANOVA | Statistic | ||||||
Sum of Squares | df | Mean Square | F-Value | p-Value | R2 | Adjusted R2 | |
Quadratic model | 732.48 | 5 | 146.5 | 194.58 | 0.0006 | 0.997 | 0.992 |
A: Pore size | 161.9 | 1 | 161.9 | 215.04 | 0.0007 | ||
B: Pressure | 269.9 | 1 | 269.9 | 358.5 | 0.0003 | ||
AB | 8.65 | 1 | 8.65 | 11.49 | 0.0428 | ||
A2 | 131.81 | 1 | 131.81 | 175.08 | 0.0009 | ||
B2 | 3.57 | 1 | 3.57 | 4.74 | 0.1177 | ||
Residual | 2.26 | 3 | 0.7529 | ||||
Cor Total | 734.74 | 8 |
Y = Total Organic Rejection at 300 mL Feed Filtration (%) * | |||||||
---|---|---|---|---|---|---|---|
ANOVA | Statistic | ||||||
Sum of Squares | df | Mean Square | F-Value | p-Value | R2 | Adjusted R2 | |
Linear model | 134.92 | 2 | 67.46 | 17.52 | 0.0031 | 0.8538 | 0.805 |
A: Pore size | 101.12 | 1 | 101.12 | 26.26 | 0.0022 | ||
B: Pressure | 3.38 | 1 | 33.8 | 8.78 | 0.0252 | ||
Residual | 23.11 | 6 | 3.85 | ||||
Cor Total | 158.02 | 8 |
References
- Sharaf, A.; Liu, Y. Mechanisms and Kinetics of Greywater Treatment Using Biologically Active Granular Activated Carbon. Chemosphere 2021, 263, 128113. [Google Scholar] [CrossRef]
- Shaikh, I.N.; Ahammed, M.M. Quantity and Quality Characteristics of Greywater: A Review. J. Environ. Manag. 2020, 261, 110266. [Google Scholar] [CrossRef]
- Oh, K.S.; Leong, J.Y.C.; Poh, P.E.; Chong, M.N.; Lau, E. Von A Review of Greywater Recycling Related Issues: Challenges and Future Prospects in Malaysia. J. Clean. Prod. 2018, 171, 17–29. [Google Scholar] [CrossRef]
- Ghaitidak, D.M.; Yadav, K.D. Characteristics and Treatment of Greywater-a Review. Environ. Sci. Pollut. Res. 2013, 20, 2795–2809. [Google Scholar] [CrossRef]
- Khalil, M.; Liu, Y. Greywater Biodegradability and Biological Treatment Technologies: A Critical Review. Int. Biodeterior. Biodegrad. 2021, 161, 105211. [Google Scholar] [CrossRef]
- Wu, B. Membrane-Based Technology in Greywater Reclamation: A Review. Sci. Total Environ. 2019, 656, 184–200. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.; Al-Gheethi, A.; Abdulrahman, A.; bin Sainudin, M.S.; Bakar, S.A.; Kassim, A.H.M. Optimization of Ceramic Waste Filter for Bathroom Greywater Treatment Using Central Composite Design (CCD). J. Environ. Chem. Eng. 2018, 6, 1578–1588. [Google Scholar] [CrossRef]
- Kim, H.C.; Dempsey, B.A. Membrane Fouling Due to Alginate, SMP, EfOM, Humic Acid, and NOM. J. Memb. Sci. 2013, 428, 190–197. [Google Scholar] [CrossRef]
- Kim, S.; Park, C. Fouling Behavior and Cleaning Strategies of Ceramic Ultrafiltration Membranes for the Treatment and Reuse of Laundry Wastewater. J. Water Process. Eng. 2022, 48, 102840. [Google Scholar] [CrossRef]
- Ghalami Choobar, B.; Alaei Shahmirzadi, M.A.; Kargari, A.; Manouchehri, M. Fouling Mechanism Identification and Analysis in Microfiltration of Laundry Wastewater. J. Environ. Chem. Eng. 2019, 7, 103030. [Google Scholar] [CrossRef]
- Guilbaud, J.; Massé, A.; Andrs, Y.; Combe, F.; Jaouen, P. Laundry Water Recycling in Ship by Direct Nanofiltration with Tubular Membranes. Resour. Conserv. Recycl. 2010, 55, 148–154. [Google Scholar] [CrossRef]
- Venkatesh, T.; Senthilmurugan, S. Grey Water Treatment and Simultaneous Surfactant Recovery Using UF and RO Process. Sep. Sci. Technol. 2017, 52, 2262–2273. [Google Scholar] [CrossRef]
- Fountoulakis, M.S.; Markakis, N.; Petousi, I.; Manios, T. Single House On-Site Grey Water Treatment Using a Submerged Membrane Bioreactor for Toilet Flushing. Sci. Total Environ. 2016, 551–552, 706–711. [Google Scholar] [CrossRef]
- Athullya, M.K.; Dineep, D.; Mathew, M.L.; Aravindakumar, C.T.; Aravind, U.K. Identification of Micropollutants from Graywater of Different Complexity and Remediation Using Multilayered Membranes. Environ. Sci. Pollut. Res. 2022, 29, 4206–4218. [Google Scholar] [CrossRef] [PubMed]
- Pidou, M.; Parsons, S.A.; Raymond, G.; Jeffrey, P.; Stephenson, T.; Jefferson, B. Fouling Control of a Membrane Coupled Photocatalytic Process Treating Greywater. Water Res. 2009, 43, 3932–3939. [Google Scholar] [CrossRef]
- Klimonda, A.; Kowalska, I. Membrane Technology for the Treatment of Industrial Wastewater Containing Cationic Surfactants. Water Resour. Ind. 2021, 26, 100157. [Google Scholar] [CrossRef]
- Oh, K.S.; Poh, P.E.; Chong, M.N.; Chan, E.S.; Lau, E.V.; Saint, C.P. Bathroom Greywater Recycling Using Polyelectrolyte-Complex Bilayer Membrane: Advanced Study of Membrane Structure and Treatment Efficiency. Carbohydr. Polym. 2016, 148, 161–170. [Google Scholar] [CrossRef]
- Sumisha, A.; Arthanareeswaran, G.; Lukka Thuyavan, Y.; Ismail, A.F.; Chakraborty, S. Treatment of Laundry Wastewater Using Polyethersulfone/Polyvinylpyrollidone Ultrafiltration Membranes. Ecotoxicol. Environ. Saf. 2015, 121, 174–179. [Google Scholar] [CrossRef]
- Ma, Y.; Velioğlu, S.; Trinh, T.A.; Wang, R.; Chew, J.W. Investigation of Surfactant–Membrane Interaction Using Molecular Dynamics Simulation with Umbrella Sampling. ACS ES&T Eng. 2021, 1, 1470–1480. [Google Scholar] [CrossRef]
- Hermia, J. Constant Pressure Blocking Filtration Law Application to Powder-Law Non-Newtonian Fluid. Trans. Inst. Chem. Eng. 1982, 60, 183–187. [Google Scholar]
- Khan, I.A.; Lee, Y.S.; Kim, J.O. A Comparison of Variations in Blocking Mechanisms of Membrane-Fouling Models for Estimating Flux during Water Treatment. Chemosphere 2020, 259, 127328. [Google Scholar] [CrossRef]
- Charfi, A.; Jang, H.; Kim, J. Membrane Fouling by Sodium Alginate in High Salinity Conditions to Simulate Biofouling during Seawater Desalination. Bioresour. Technol. 2017, 240, 106–114. [Google Scholar] [CrossRef]
- Mah, S.K.; Chuah, C.K.; Cathie Lee, W.P.; Chai, S.P. Ultrafiltration of Palm Oil-Oleic Acid-Glycerin Solutions: Fouling Mechanism Identification, Fouling Mechanism Analysis and Membrane Characterizations. Sep. Purif. Technol. 2012, 98, 419–431. [Google Scholar] [CrossRef]
- Ongena, S.; Van de Walle, A.; Mosquera-Romero, S.; Driesen, N.; Gutierrez, L.; Rabaey, K. Comparison of MBR and MBBR Followed by UV or Electrochemical Disinfection for Decentralized Greywater Treatment. Water Res. 2023, 235, 119818. [Google Scholar] [CrossRef]
- Charfi, A.; Ben Amar, N.; Harmand, J. Analysis of Fouling Mechanisms in Anaerobic Membrane Bioreactors. Water Res. 2012, 46, 2637–2650. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; He, Q.; Dong, H.; Wang, J.; Shi, J.; Xie, C.; Lo, Y.M.; Zhao, L. Identification of the Coupled Fouling Mechanism Involved in Microfiltration of Tobacco Extracts Liquid by Multistage Hermia Model. J. Food Process. Eng. 2022, 45, e13961. [Google Scholar] [CrossRef]
- De Bruijn, J.P.F.; Salazar, F.N.; Bórquez, R. Membrane Blocking in Ultrafiltration: A New Approach to Fouling. Food Bioprod. Process. 2005, 83, 211–219. [Google Scholar] [CrossRef]
- Wang, F.; Tarabara, V.V. Pore Blocking Mechanisms during Early Stages of Membrane Fouling by Colloids. J. Colloid Interface Sci. 2008, 328, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Poerio, T.; Denisi, T.; Mazzei, R.; Bazzarelli, F.; Piacentini, E.; Giorno, L.; Curcio, E. Identification of Fouling Mechanisms in Cross-Flow Microfiltration of Olive-Mills Wastewater. J. Water Process. Eng. 2022, 49, 103058. [Google Scholar] [CrossRef]
- Manouchehri, M.; Kargari, A. Water Recovery from Laundry Wastewater by the Cross Flow Microfiltration Process: A Strategy for Water Recycling in Residential Buildings. J. Clean. Prod. 2017, 168, 227–238. [Google Scholar] [CrossRef]
- Amin, I.N.H.M.; Mohammad, A.W.; Markom, M.; Peng, L.C.; Hilal, N. Analysis of Deposition Mechanism during Ultrafiltration of Glycerin-Rich Solutions. Desalination 2010, 261, 313–320. [Google Scholar] [CrossRef]
- Du, X.; Li, B.; Zhuang, Z.; Kuang, K.; Song, W.; Lin, D.; Fu, C.; Wang, Z. Salt Tide Affecting Algae-Laden Micropolluted Surface Water Treatment and Membrane Performance Based on BDD Electro-Oxidation Coupled with Ceramic Membrane Process. Environ. Res. 2023, 237, 116942. [Google Scholar] [CrossRef]
- Chrispim, M.C.; Nolasco, M.A. Greywater Treatment Using a Moving Bed Biofilm Reactor at a University Campus in Brazil. J. Clean. Prod. 2017, 142, 290–296. [Google Scholar] [CrossRef]
- Kim, S.; Park, C. Potential of Ceramic Ultrafiltration Membranes for the Treatment of Anionic Surfactants in Laundry Wastewater for Greywater Reuse. J. Water Process. Eng. 2021, 44, 102373. [Google Scholar] [CrossRef]
- Fernández, E.; Benito, J.M.; Pazos, C.; Coca, J. Ceramic Membrane Ultrafiltration of Anionic and Nonionic Surfactant Solutions. J. Memb. Sci. 2005, 246, 1–6. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Oschmann, N.; Schäfer, A.I. Fouling in Greywater Recycling by Direct Ultrafiltration. Desalination 2006, 187, 283–290. [Google Scholar] [CrossRef]
- Waite, T.D.; Schäfer, A.I.; Fane, A.G.; Heuer, A. Colloidal Fouling of Ultrafiltration Membranes: Impact of Aggregate Structure and Size. J. Colloid Interface Sci. 1999, 212, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Katsoufidou, K.; Yiantsios, S.G.; Karabelas, A.J. Experimental Study of Ultrafiltration Membrane Fouling by Sodium Alginate and Flux Recovery by Backwashing. J. Memb. Sci. 2007, 300, 137–146. [Google Scholar] [CrossRef]
- Villacorte, L.O.; Ekowati, Y.; Winters, H.; Amy, G.; Schippers, J.C.; Kennedy, M.D. MF/UF Rejection and Fouling Potential of Algal Organic Matter from Bloom-Forming Marine and Freshwater Algae. Desalination 2015, 367, 1–10. [Google Scholar] [CrossRef]
- Guo, H.; Tang, X.; Ganschow, G.; Korshin, G.V. Differential ATR FTIR Spectroscopy of Membrane Fouling: Contributions of the Substrate/Fouling Films and Correlations with Transmembrane Pressure. Water Res. 2019, 161, 27–34. [Google Scholar] [CrossRef]
Item | Value |
---|---|
C2H3NaO2 | 384 mg/L |
NH4Cl | 83 mg/L |
K2HPO4 | 3 mg/L |
Na2SO4 | 51 mg/L |
CaCl2 | 50 mg/L |
NaCl | 50 mg/L |
Shampoo | 53 mg/L |
Shower gel | 143 mg/L |
Toothpaste | 36 mg/L |
Shaving cream | 53 mg/L |
Laundry detergent | 208 mg/L |
Dishwasher | 87 mg/L |
pH | 7.6 ± 0.3 |
Total organic carbon | 103 ± 2.2 mg/L |
Suspended solids | 15.5 ± 3 mg/L |
Total dissolved solids | 444.05 ± 7.6 mg/L |
Mean particle size (d50) | 59.6 nm |
Fouling Mechanism | Equation | Linearized Equation Form | Schematic |
---|---|---|---|
Pore constriction (PC) | |||
Complete blocking (CB) | |||
Intermediate blocking (IB) | |||
Cake formation (CF) |
Pore Size (μm) | Applied Pressure (bar) | Dominant Fouling Mechanism (Hermia Constant) | All Filtration Range | |||||
---|---|---|---|---|---|---|---|---|
RMSE (as L/m2/h) | R2 | |||||||
0.03 | 0.5 | CF (3.39 × 104) | 58.0 | 0.9930 | ||||
1.0 | CB (9.9 × 10−3) | → | IB (11.51) | → | CF (2.02 × 104) | 41.3 | 0.9962 | |
1.5 | CB (11.2 × 10−3) | → | IB (9.84) | 58.6 | 0.9972 | |||
0.10 | 0.5 | CB (5.7 × 10−3) | → | IB (9.33) | 35.1 | 0.9963 | ||
1.0 | CB (8.4 × 10−3) | → | IB (8.38) | 80.0 | 0.9945 | |||
1.5 | CB (13.9 × 10−3) | → | IB (9.56) | 51.0 | 0.9990 | |||
0.45 | 0.5 | PC (3.87) | 94.4 | 0.9953 | ||||
1.0 | PC (4.76) | 221.8 | 0.9932 | |||||
1.5 | PC (5.02) | 282.4 | 0.9943 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, H.; Kang, S.; Kim, J. Identification of Membrane Fouling with Greywater Filtration by Porous Membranes: Combined Effect of Membrane Pore Size and Applied Pressure. Membranes 2024, 14, 46. https://doi.org/10.3390/membranes14020046
Jang H, Kang S, Kim J. Identification of Membrane Fouling with Greywater Filtration by Porous Membranes: Combined Effect of Membrane Pore Size and Applied Pressure. Membranes. 2024; 14(2):46. https://doi.org/10.3390/membranes14020046
Chicago/Turabian StyleJang, Hoseok, Sinu Kang, and Jeonghwan Kim. 2024. "Identification of Membrane Fouling with Greywater Filtration by Porous Membranes: Combined Effect of Membrane Pore Size and Applied Pressure" Membranes 14, no. 2: 46. https://doi.org/10.3390/membranes14020046
APA StyleJang, H., Kang, S., & Kim, J. (2024). Identification of Membrane Fouling with Greywater Filtration by Porous Membranes: Combined Effect of Membrane Pore Size and Applied Pressure. Membranes, 14(2), 46. https://doi.org/10.3390/membranes14020046