Thin Film Nanocomposite Membranes Based on Zeolitic Imidazolate Framework-8/Halloysite Nanotube Composites
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Synthesis of ZIF-8
2.3. Modification of ZIF-8 and HNTs with PSS
2.4. Preparation of m-ZIF-8/m-HNT/PAN Nanocomposite Membranes
2.5. Characterization of HNTs, m-HNTs, ZIF-8, and m-ZIF-8
2.6. Characterization of the m-ZIF-8/m-HNT/PAN Membranes
2.7. Filtration Tests of the m-ZIF-8/m-HNT/PAN Membranes
3. Results and Discussion
3.1. Characterization of the m-HNTs and m-ZIF-8 Nanomaterials
3.2. Characterization of the m-ZIF-8/m-HNT/PAN Membranes
3.3. Hydrophilicity of the m-ZIF-8/m-HNT/PAN Membranes
3.4. Separation Performance of the m-ZIF-8/m-HNT/PAN Membranes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Xie, Y.; Cheng, L.; Li, X.; Liu, F.; Wang, Z. Photo-Fenton reaction derived self-cleaning nanofiltration membrane with MOFs coordinated biopolymers for efficient dye/salt separation. Desalination 2023, 553, 116459. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.; Zhang, X.; Chen, T.; Ye, Z.; Rahaman, M.S. High performance nanocomposite nanofiltration membranes with polydopamine-modified cellulose nanocrystals for efficient dye/salt separation. Desalination 2022, 521, 115385. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, T.; Liu, W.; Zhou, R.; Zhou, S.; Wu, R.; Deng, L.; Wang, J.; Van der Bruggen, B. Ultrafiltration pre-oxidation by boron-doped diamond anode for algae-laden water treatment: Membrane fouling mitigation, interface characteristics and cake layer organic release. Water Res. 2020, 187, 116435. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhou, Y.; Cheng, H. Large-scale orientated self-assembled halloysite nanotubes membrane with nanofluidic ion transport properties. Appl. Clay Sci. 2019, 180, 105184. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.; Li, Y.; Han, Q.; Zhang, T.; Zeng, K.; Zhao, C. Polyvinylidene fluoride membrane modified by tea polyphenol for dye removal. J. Mater. Sci. 2020, 55, 389–403. [Google Scholar] [CrossRef]
- Ji, D.; Xiao, C.; An, S.; Zhao, J.; Hao, J.; Chen, K. Preparation of high-flux PSF/GO loose nanofiltration hollow fiber membranes with dense-loose structure for treating textile wastewater. Chem. Eng. J. 2019, 363, 33–42. [Google Scholar] [CrossRef]
- Chen, L.; Shi, G.; Shen, J.; Peng, B.; Zhang, B.; Wang, Y.; Bian, F.; Wang, J.; Li, D.; Qian, Z.; et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017, 550, 380–383. [Google Scholar] [CrossRef]
- Chen, X.; Mohammed, S.; Yang, G.; Qian, T.; Chen, Y.; Ma, H.; Xie, Z.; Zhang, X.; Simon, G.P.; Wang, H. Selective permeation of water through angstrom-channel graphene membranes for bioethanol concentration. Adv. Mater. 2020, 32, 2002320. [Google Scholar] [CrossRef]
- Xue, S.; Ji, C.; Kowal, M.D.; Molas, J.C.; Lin, C.-W.; McVerry, B.T.; Turner, C.L.; Mak, W.H.; Anderson, M.; Muni, M.; et al. Nanostructured graphene oxide composite membranes with ultrapermeability and mechanical robustness. Nano Lett. 2020, 20, 2209–2218. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Chen, B.-Z.; Lu, T.-D.; Wu, H.-L.; Fan, Y.-Q.; Xing, W.; Sun, S.-P. Designing high-performance nanofiltration membranes for high-salinity separation of sulfate and chloride in the chlor-alkali process. Ind. Eng. Chem. Res. 2019, 58, 12280–12290. [Google Scholar] [CrossRef]
- Rajakumaran, R.; Kumar, M.; Chetty, R. Morphological effect of ZnO nanostructures on desalination performance and antibacterial activity of thin-film nanocomposite (TFN) membrane. Desalination 2020, 495, 114673. [Google Scholar] [CrossRef]
- Li, Q.; Liao, Z.; Fang, X.; Wang, D.; Xie, J.; Sun, X.; Wang, L.; Li, J. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation. J. Membr. Sci. 2019, 584, 324–332. [Google Scholar] [CrossRef]
- Van Goethem, C.; Verbeke, R.; Pfanmöller, M.; Koschine, T.; Dickmann, M.; Timpel-Lindner, T.; Egger, W.; Bals, S.; Vankelecom, I. The role of MOFs in Thin-Film Nanocomposite (TFN) membranes. J. Membr. Sci. 2018, 563, 938–948. [Google Scholar] [CrossRef]
- Li, C.; Li, S.; Tian, L.; Zhang, J.; Su, B.; Hu, M.Z. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN). J. Membr. Sci. 2019, 572, 520–531. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Guan, J.; Yang, L.; Ren, Y.; Nasir, N.; Wu, H.; Chen, Z.; Jiang, Z. 110th Anniversary: Mixed matrix membranes with fillers of intrinsic nanopores for gas separation. Ind. Eng. Chem. Res. 2019, 58, 7706–7724. [Google Scholar] [CrossRef]
- Yuan, Y.; Tong, C.; Lü, C. Mussel-inspired functionalized LDH as covalent crosslinkers for constructing micro-crosslinking fluorenyl-containing polysulfone-based composite anion exchange membranes with enhanced properties. Appl. Clay Sci. 2020, 199, 105878. [Google Scholar] [CrossRef]
- Zhijiang, C.; Cong, Z.; Ping, X.; Jie, G.; Kongyin, Z. Calcium alginate-coated electrospun polyhydroxybutyrate/carbon nanotubes composite nanofiners as nanofiltration membrane for dye removal. J. Mater. Sci. 2018, 53, 14801–14820. [Google Scholar] [CrossRef]
- Zhao, D.; Japip, S.; Zhang, Y.; Weber, M.; Maletzko, C.; Chung, T. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Res. 2020, 173, 115557. [Google Scholar] [CrossRef]
- Eykens, L.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Van der Bruggen, B. How to optimize the membrane properties for membrane distillation: A review. Ind. Eng. Chem. Res. 2016, 55, 9333–9343. [Google Scholar] [CrossRef]
- Hao, S.; Wen, J.; Li, S.; Wang, J.; Jia, Z. Preparation of COF-LZU1/PAN membranes by an evaporation/casting method for separation of dyes. J. Mater. Sci. 2020, 5, 14817–14828. [Google Scholar] [CrossRef]
- Wang, J.; Lang, W.Z.; Xu, H.P.; Zhang, X.; Guo, Y.J. Improved poly(vinyl butyral) hollow fiber membranes by embedding multi-walled carbon nanotube for the ultrafiltrations of bovine serum albumin and humic acid. Chem. Eng. J. 2015, 260, 90–98. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Ji, Y.L.; Weng, X.D.; Mi, Y.F.; Ye, C.C.; An, Q.F.; Gao, C.J. High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes. ACS Appl. Mater. Interfaces 2016, 8, 6693–6700. [Google Scholar] [CrossRef] [PubMed]
- Kamal, N.; Ahzi, S.; Kochkodan, V. Polysulfone/halloysite composite membranes with low fouling properties and enhanced compaction resistance. Appl. Clay Sci. 2020, 199, 105873. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, J.; Liu, S.; Gao, J.; Lang, J.; Li, C.; Yan, Y. Facile preparation of halloysite nanotube-modified polyvinylidene fluoride composite membranes for highly efficient oil/water emulsion separation. J. Mater. Sci. 2019, 54, 8332–8345. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Y.; Qiu, Q.; Qi, Z.; Liu, S.; Weng, J.; Shen, J. Development of Mixed-Dimensional Membranes Comprising Halloysite Nanotubes and Kevlar Aramid Nanofiber for Enhanced Small-Molecule Dye/Salt Separation. Ind. Eng. Chem. Res. 2023, 62, 1558–1570. [Google Scholar] [CrossRef]
- Kausar, A. Review on polymer/halloysite nanotube nanocomposite. Polym. Plast. Technol. Eng. 2018, 57, 548–564. [Google Scholar] [CrossRef]
- Zeng, G.; He, Y.; Zhan, Y.; Zhang, L.; Shi, H.; Yu, Z. Preparation of a novel poly(vinylidene fluoride) ultrafiltration membrane by incorporation of 3-aminopropyltriethoxysilane-grafted halloysite nanotubes for oil/water separation. Ind. Eng. Chem. Res. 2016, 55, 1760–1767. [Google Scholar] [CrossRef]
- Zeng, G.; He, Y.; Ye, Z.; Yang, X.; Chen, X.; Ma, J.; Li, F. Novel halloysite nanotubes intercalated graphene oxide based composite membranes for multifunctional applications: Oil/water separation and dyes removal. Ind. Eng. Chem. Res. 2017, 56, 10472–10481. [Google Scholar] [CrossRef]
- Mishra, G.; Mukhopadhyay, M. Enhanced antifouling performance of halloysite nanotubes (HNTs) blended poly(vinyl chloride) (PVC/HNTs) ultrafiltration membranes: For water treatment. J. Ind. Eng. Chem. 2018, 63, 366–379. [Google Scholar] [CrossRef]
- Ghanbari, M.; Emadzadeh, D.; Lau, W.J.; Lai, S.O.; Matsuura, T.; Ismail, A.F. Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination 2015, 358, 33–41. [Google Scholar] [CrossRef]
- Asempour, F.; Akbari, S.; Kanani-Jazi, M.H.; Atashgar, A.; Matsuura, T.; Kruczek, B. Chlorine-resistant TFN RO membranes containing modified poly(amidoamine) dendrimer-functionalized halloysite nanotubes. J. Membr. Sci. 2021, 623, 119039. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, H.; Bai, J.; Liu, J.; Zhang, Y. A porous graphene composite membrane intercalated by halloysite nanotubes for efficient dye desalination. Desalination 2017, 420, 145–157. [Google Scholar] [CrossRef]
- Qiu, S.; Xue, M.; Zhu, G. Metal-organic framework membranes: From synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116–6140. [Google Scholar] [CrossRef] [PubMed]
- Beh, J.J.; Ooi, B.S.; Lim, J.K.; Ng, E.P.; Mustapa, H. Development of high water permeability and chemically stable thin film nanocomposite (TFN) forward osmosis (FO) membrane with poly(sodium 4-styrenesulfonate) (PSS)-coated zeolitic imidazolate framework-8 (ZIF-8) for produced water treatment. J. Water Process. Eng. 2020, 33, 101031. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, Y.; Uliana, A.; Zhu, J.; Liu, J.; Van der Bruggen, B. Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance. ACS Appl. Mater. Interfaces 2016, 8, 25508–25519. [Google Scholar] [CrossRef] [PubMed]
- Gambinossi, F.; Mylon, S.E.; Ferri, J.K. Aggregation kinetics and colloidal stability of functionalized nanoparticles. Adv. Colloid Interface Sci. 2015, 222, 332–349. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhou, C.; Lvov, Y.; Liu, M. Clay nanotubes aligned with shear forces for mesenchymal stem cell patterning. Small 2019, 15, 1900357. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Guo, Z.; Wang, H.; Wang, L.; Qian, Y.; Long, X.; Ma, C.; Zhang, Z.; Li, J.; Zhang, H. Enhanced water permeance of a polyamide thin-film composite nanofiltration membrane with a metal-organic framework interlayer. J. Membr. Sci. 2021, 625, 119154. [Google Scholar] [CrossRef]
- Wu, X.; Yang, L.; Meng, F.; Shao, W.; Liu, X.; Li, M. ZIF-8-incorporated thin-film nanocomposite (TFN) nanofiltration membranes: Importance of particle deposition methods on structure and performance. J. Membr. Sci. 2021, 632, 119356. [Google Scholar] [CrossRef]
- Wee, L.H.; Martens, J.A.; Vankelecom, I.F. Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance. J. Membr. Sci. 2017, 523, 561–566. [Google Scholar]
- Liu, G.; Jiang, Z.; Cao, K.; Nair, S.; Cheng, X.; Zhao, J.; Gomaa, H.; Wu, H.; Pan, F. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. J. Membr. Sci. 2017, 523, 185–196. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Y.; Hou, J.; Zhang, Y.; Fam, W.; Liu, J.; Bennett, T.D.; Chen, V. Ultraselective pebax membranes enabled by templated microphase separation. ACS Appl. Mater. Interfaces 2018, 10, 20006–20013. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Oh, J.Y.; Hong, S.P.; Lee, J.M.; Roh, S.M.; Kim, S.H.; Park, H.B. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: Importance of particle deposition. J. Membr. Sci. 2019, 570, 23–33. [Google Scholar] [CrossRef]
- Liu, M.L.; Li, L.; Sun, Y.X.; Fu, Z.J.; Cao, X.L.; Sun, S.P. Scalable conductive polymer membranes for ultrafast organic pollutants removal. J. Membr. Sci. 2021, 617, 118644. [Google Scholar] [CrossRef]
- Luo, D.; Yan, C.; Wang, T. Interparticle forces underlying nanoparticle self-assemblies. Small 2015, 11, 5984–6008. [Google Scholar] [CrossRef]
- Basu, S.; Maes, M.; Cano-Odena, A.; Alaerts, L.; De Vos, D.E.; Vankelecom, I.F. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks. J. Membr. Sci. 2009, 344, 190–198. [Google Scholar] [CrossRef]
- Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef]
- He, H.; Xu, P.; Wang, D.; Zhou, H.; Chen, C. Polyoxometalate-modified halloysite nanotubes-based thin-film nanocomposite membrane for efficient organic solvent nanofiltration. Sep. Purif. Technol. 2022, 295, 121348. [Google Scholar] [CrossRef]
- Shah, A.A.; Cho, Y.H.; Choi, H.G.; Nam, S.E.; Kim, J.F.; Kim, Y.; Park, Y.-I.; Park, H. Facile integration of halloysite nanotubes with bioadhesive as highly permeable interlayer in forward osmosis membranes. J. Ind. Eng. Chem. 2019, 73, 276–285. [Google Scholar] [CrossRef]
- Ang MB, M.Y.; Tang, C.L.; De Guzman, M.R.; Maganto HL, C.; Caparanga, A.R.; Huang, S.H.; Tsai, H.; Hu, C.; Lee, K.; Lai, J. Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment. Desalination 2020, 481, 114352. [Google Scholar] [CrossRef]
- Thebo, K.H.; Qian, X.; Zhang, Q.; Chen, L.; Cheng, H.M.; Ren, W. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 2018, 9, 1486. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, E.R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 1959, 63, 1381–1387. [Google Scholar] [CrossRef]
- Ji, M.; Wang, Z.; Zhu, Y.; Shan, L.; Lu, Y.; Zhang, Y.; Zhang, Y.; Jin, J. Thin-film composite nanofiltration membrane with unprecedented stability in strong acid for highly selective dye/NaCl separation. J. Membr. Sci. 2022, 645, 120189. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Luo, Y.; Zhang, N.; Qi, W.; Jiang, E.; Bao, J.; Zhang, X.; Zheng, W.; An, B.; et al. Low-pressure loose GO composite membrane intercalated by CNT for effective dye/salt separation. Sep. Purif. Technol. 2021, 256, 117839. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z.; Yang, L.; Zhao, S.; Song, P.; Khan, B. A novel loose-NF membrane based on the phosphorylation and cross-linking of polyethyleneimine layer on porous PAN UF membranes. J. Membr. Sci. 2018, 555, 56–68. [Google Scholar] [CrossRef]
- Jin, J.; Du, X.; Yu, J.; Qin, S.; He, M.; Zhang, K.; Chen, G. High performance nanofiltration membrane based on SMA-PEI cross-linked coating for dye/salt separation. J. Membr. Sci. 2020, 611, 118307. [Google Scholar] [CrossRef]
- Cao, X.L.; Yan, Y.N.; Zhou, F.Y.; Sun, S.P. Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater. J. Membr. Sci. 2020, 595, 117476. [Google Scholar] [CrossRef]
- Fan, L.; Ma, Y.; Su, Y.; Zhang, R.; Liu, Y.; Zhang, Q.; Jiang, Z. Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. RSC Adv. 2015, 5, 107777–107784. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Song, P. Free Radical Graft Copolymerization Strategy To Prepare Catechin-Modified Chitosan Loose Nanofiltration (NF) Membrane for Dye Desalination, ACS Sustain. Chem. Eng. 2018, 6, 4253–4263. [Google Scholar]
- Zhao, S.; Wang, Z. A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination. J. Membr. Sci. 2017, 524, 214–224. [Google Scholar] [CrossRef]
- Kong, G.; Fan, L.; Zhao, L.; Feng, Y.; Cui, X.; Pang, J.; Guo, H.; Sun, H.; Kang, Z.; Sun, D.; et al. Spray-dispersion of ultra-small EMT zeolite crystals in thin-film composite membrane for high-permeability nanofiltration process. J. Membr. Sci. 2021, 622, 119045. [Google Scholar] [CrossRef]
Samples | Total Number of Nanomaterials (mg) | m-HNTs (mg) | m-ZIF-8 (mg) |
---|---|---|---|
NFM-0 | 10 | 0 | 10 |
NFM-2.5 | 10 | 2.5 | 7.5 |
NFM-5 | 10 | 5 | 5 |
NFM-7.5 | 10 | 7.5 | 2.5 |
NFM-10 | 10 | 10 | 0 |
Ions | rs (Å) | rH (Å) |
---|---|---|
Na+ | 1.84 | 3.58 |
Mg2+ | 3.47 | 4.28 |
Cl− | 1.21 | 3.32 |
SO42− | 2.3 | 3.79 |
Membranes | Dye Molecule | Dye Rejection (%) | NaCl Rejection (%) | Water Flux (L m−2 h−1) | Ref. |
---|---|---|---|---|---|
bisAPAF-TMC/PES | Direct Red 23 | 98.7 | 19.5 | 17.0 | [53] |
c-CNT@GO | Methyl Blue | 94.1 | 1.3 | 26.3 | [54] |
Fe(III)-phos-(PEI)/HPAN | Methyl Blue | 99.9 | 7.5 | 8.5 | [55] |
SMA-PEI/PES | Congo Red | 99.7 | 2.4 | 23 | [56] |
M-PIP | Reactive black 5 | 99.0 | 11.0 | 26.4 | [57] |
TA-Fe3+/PES | Congo red | 99.0 | 5 | 27.2 | [58] |
Catechin-chitosan/HPAN | Acid fuchsin | 98.7 | 12.5 | 14.4 | [59] |
GA/PEI-M | Methyl Blue | 90.0 | 5.0 | 25.5 | [60] |
S-EMT/PA-2 | Methyl blue | 98.9 | 28.4 | 24.4 | [61] |
m-ZIF-8/m-HNTs/PAN | Reactive Red 49 | 97.1 | 21.3 | 17.0 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Duan, S.; Wang, H.; Wei, C.; Qin, L.; Dong, G.; Zhang, Y. Thin Film Nanocomposite Membranes Based on Zeolitic Imidazolate Framework-8/Halloysite Nanotube Composites. Membranes 2024, 14, 7. https://doi.org/10.3390/membranes14010007
Wang Y, Duan S, Wang H, Wei C, Qin L, Dong G, Zhang Y. Thin Film Nanocomposite Membranes Based on Zeolitic Imidazolate Framework-8/Halloysite Nanotube Composites. Membranes. 2024; 14(1):7. https://doi.org/10.3390/membranes14010007
Chicago/Turabian StyleWang, Yan, Shaofan Duan, Huixian Wang, Can Wei, Lijuan Qin, Guanying Dong, and Yatao Zhang. 2024. "Thin Film Nanocomposite Membranes Based on Zeolitic Imidazolate Framework-8/Halloysite Nanotube Composites" Membranes 14, no. 1: 7. https://doi.org/10.3390/membranes14010007
APA StyleWang, Y., Duan, S., Wang, H., Wei, C., Qin, L., Dong, G., & Zhang, Y. (2024). Thin Film Nanocomposite Membranes Based on Zeolitic Imidazolate Framework-8/Halloysite Nanotube Composites. Membranes, 14(1), 7. https://doi.org/10.3390/membranes14010007