A Review of Temperature Effects on Membrane Filtration
Abstract
:1. Introduction
2. Temperature Impacts on Membrane Fouling
3. Temperature Impacts on Membrane Reactor Performance
4. Temperature Impacts on Membrane Structure and Integrity
5. Impacts of Temperature on Membrane Cleaning
6. Research Gaps, Challenges, and Opportunities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AnMBR | Anaerobic Membrane Bioreactor |
BSA | Bovine Serum Albumin |
COD(s) | Chemical Oxygen Demand(s) |
CST | Capillary Suction Time |
CTA | Cellulose Triacetate |
DCAA | Dichloroacetic Acid |
DSVI | Diluted Sludge Volume Index |
EDTA | Ethylenediaminetetraacetic Acid |
EPS | Extracellular Polymeric Substances |
FO | Forward Osmosis |
GO | Graphene Oxide |
HAAs | Haloacetic Acids |
HANs | Haloacetonitriles |
HKs | Haloketones |
HRT(s) | Hydraulic Retention Time(s) |
MBR(s) | Membrane Bioreactor(s) |
MF | Microfiltration |
NF | Nanofiltration |
NOM | Natural Organic Matter |
PAC | Poly Aluminum Chloride |
PES | Polyethersulfone |
PNIPAAm | Poly(N-Isopropylacrylamide) |
PS | Polysulphone |
PTFE | Polytetrafluoroethylene |
PVDF | Polyvinylidene Fluoride |
PVP | Polyvinyl Pyrrolidone |
RO | Reverse Osmosis |
SAnMBR | Submerged Anaerobic Membrane Bioreactor |
SBR(s) | Sequencing Batch Reactor(s) |
SDS | Sodium Dodecyl Sulphate |
SEM | Scanning Electron Microscope |
SMP | Soluble Microbial Products |
STP | Sodium Tripolyphosphate |
TCM | Trichloromethane |
TCNM | Trichloronitromethane |
THMs | Trihalomethanes |
TMP | Transmembrane Pressure |
TSP | Trisodium Phosphate |
UF | Ultrafiltration |
References
- Pearce, G. Introduction to membranes: Filtration for water and wastewater treatment. Filtr. Sep. 2007, 44, 24–27. [Google Scholar] [CrossRef]
- Yoon, Y.; Amy, G.; Cho, J.; Her, N. Effects of retained natural organic matter (NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration. Desalination 2005, 173, 209–221. [Google Scholar] [CrossRef]
- Rosenberger, S.; Laabs, C.; Lesjean, B.; Gnirss, R.; Amy, G.; Jekel, M.; Schrotter, J.-C. Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Res. 2006, 40, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.-W.; Son, H.-J.; Kang, L.-S. Effects of membrane material and pretreatment coagulation on membrane fouling: Fouling mechanism and NOM removal. Desalination 2006, 197, 154–164. [Google Scholar] [CrossRef]
- Howe, K.; Marwah, A.; Chiu, K.; Adham, S. Effect of membrane configuration on bench-scale MF and UF fouling experiments. Water Res. 2007, 41, 3842–3849. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Goodwin, C.; Gao, W.; Liao, B. Effect of cold water temperature on membrane structure and properties. J. Membr. Sci. 2017, 540, 19–26. [Google Scholar] [CrossRef]
- Tikka, A.; Gao, W.; Liao, B. Reversibility of membrane performance and structure changes caused by extreme cold water temperature and elevated conditioning water temperature. Water Res. 2019, 151, 260–270. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Fukushi, K. Effects of operational conditions on ultrafiltration membrane fouling. Desalination 2008, 229, 181–191. [Google Scholar] [CrossRef]
- Peña, N.; Gallego, S.; del Vigo, F.; Chesters, S.P. Evaluating impact of fouling on reverse osmosis membranes performance. Desalin. Water Treat. 2013, 51, 958–968. [Google Scholar] [CrossRef]
- Chun, Y.; Mulcahy, D.; Zou, L.; Kim, I. A Short review of membrane fouling in forward osmosis processes. Membranes 2017, 7, 30. [Google Scholar] [CrossRef]
- Alresheedi, M.T.; Basu, O.D. Effects of feed water temperature on irreversible fouling of ceramic ultrafiltration membranes. J. Water Process Eng. 2019, 31, 100883. [Google Scholar] [CrossRef]
- van den Brink, P.; Satpradit, O.-A.; van Bentem, A.; Zwijnenburg, A.; Temmink, H.; van Loosdrecht, M. Effect of temperature shocks on membrane fouling in membrane bioreactors. Water Res. 2011, 45, 4491–4500. [Google Scholar] [CrossRef] [PubMed]
- Alresheedi, M.T.; Basu, O.D. Interplay of water temperature and fouling during ceramic ultrafiltration for drinking water production. J. Environ. Chem. Eng. 2020, 8, 104354. [Google Scholar] [CrossRef]
- Farahbakhsh, K.; Smith, D.W. Membrane filtration for cold regions—Impact of cold water on membrane integrity monitoring tests. J. Environ. Eng. Sci. 2006, 5, S69–S75. [Google Scholar] [CrossRef]
- Lyko, S.; Wintgens, T.; Alhalbouni, D.; Baumgarten, S.; Tacke, D.; Drensla, K.; Janot, A.; Dott, W.; Pinnekamp, J.; Melin, T. Long-term monitoring of a full-scale municipal membrane bioreactor—Characterisation of foulants and operational performance. J. Membr. Sci. 2008, 317, 78–87. [Google Scholar] [CrossRef]
- Tao, C.; Parker, W.; Bérubé, P. Assessing the role of cold temperatures on irreversible membrane permeability of tertiary ultrafiltration treating municipal wastewater. Sep. Puri. Technol. 2021, 278, 119556. [Google Scholar] [CrossRef]
- Gao, W.J.; Leung, K.T.; Qin, W.S.; Liao, B. Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor. Bioresour. Technol. 2011, 102, 8733–8740. [Google Scholar] [CrossRef]
- Gao, W.J.; Qu, X.; Leung, K.T.; Liao, B. Influence of temperature and temperature shock on sludge properties, cake layer structure, and membrane fouling in a submerged anaerobic membrane bioreactor. J. Membr. Sci. 2012, 421–422, 131–144. [Google Scholar] [CrossRef]
- Sharma, R.R.; Agrawal, R.; Chellam, S. Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: Pore size distributions and transport parameters. J. Membr. Sci. 2003, 223, 69–87. [Google Scholar] [CrossRef]
- Rong, C.; Wang, T.; Luo, Z.; Hu, Y.; Kong, Z.; Qin, Y.; Hanaoka, T.; Ito, M.; Kobayashi, M.; Li, Y. Pilot plant demonstration of temperature impacts on the methanogenic performance and membrane fouling control of the anaerobic membrane bioreactor in treating real municipal wastewater. Bioresour. Technol. 2022, 354, 127167. [Google Scholar] [CrossRef]
- Jawor, A.; Hoek, E. Effects of feed water temperature on inorganic fouling of brackish water RO membranes. Desalination 2009, 235, 44–57. [Google Scholar] [CrossRef]
- Jin, X.; Jawor, A.; Kim, S.; Hoek, E. Effects of feed water temperature on separation performance and organic fouling of brackish water RO membranes. Desalination 2009, 239, 346–359. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Tang, S. Impact of temperature seasonal change on sludge characteristics and membrane fouling in a submerged membrane bioreactor. Sep. Sci. Technol. 2010, 45, 920–927. [Google Scholar] [CrossRef]
- Ma, C.; Yu, S.; Shi, W.; Heijman, S.; Rietveld, L.C. Effect of different temperatures on performance and membrane fouling in high concentration PAC-MBR system treating micro-polluted surface water. Bioresour. Technol. 2013, 141, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wen, X.; Zhao, F.; Xia, Y.; Huang, X.; Waite, D.; Guan, J. Effect of temperature variation on membrane fouling and microbial community structure in membrane bioreactor. Bioresour. Technol. 2013, 133, 462–468. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Shon, H.; Hong, S. Organic fouling mechanisms in forward osmosis membrane process under elevated feed and draw solution temperatures. Desalination 2015, 355, 169–177. [Google Scholar] [CrossRef]
- Farhat, N.; Vrouwenvelder, J.; van Loosdrecht, M.; Bucs, S.; Staal, M. Effect of water temperature on biofouling development in reverse osmosis membrane systems. Water Res. 2016, 103, 149–159. [Google Scholar] [CrossRef]
- Ma, B.; Ding, Y.; Wang, B.; Qi, Z.; Bai, Y.; Liu, R.; Liu, H.; Qu, J. Influence of sedimentation with pre-coagulation on ultrafiltration membrane fouling performance. Sci. Total Environ. 2020, 708, 134671. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Zhu, L.; Wu, Z.; Hu, Q.; Pan, M. The effect of feed temperature on biofouling development on the MD membrane and its relationship with membrane performance: An especial attention to the microbial community succession. J. Membr. Sci. 2019, 573, 377–392. [Google Scholar] [CrossRef]
- Ashfaq, M.Y.; Al-Ghouti, M.A.; Da’na, D.A.; Qiblawey, H.; Zouari, N. Investigating the effect of temperature on calcium sulfate scaling of reverse osmosis membranes using FTIR, SEM-EDX and multivariate analysis. Sci. Total Environ. 2020, 703, 134726. [Google Scholar] [CrossRef]
- Elcik, H.; Fortunato, L.; Alpatova, A.; Soukane, S.; Orfi, J.; Ali, E.; AlAnsary, H.; Leiknes, T.; Ghaffour, N. Multi-effect distillation brine treatment by membrane distillation: Effect of antiscalant and antifoaming agents on membrane performance and scaling control. Desalination 2020, 493, 114653. [Google Scholar] [CrossRef]
- Hube, S.; Lee, S.; Chong, T.; Brynjólfsson, S.; Wu, B. Biocarriers facilitated gravity-driven membrane filtration of domestic wastewater in cold climate: Combined effect of temperature and periodic cleaning. Sci. Total Environ. 2022, 833, 155248. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Parker, W.; Bérubé, P. Evaluation of the impact of SBR operating temperature and filtration temperature on fouling of membranes used for tertiary treatment. Sep. Puri. Technol. 2022, 294, 121194. [Google Scholar] [CrossRef]
- Chae, S.R.; Shin, H.S. Characteristics of simultaneous organic and nutrient removal in a pilot-scale vertical submerged membrane bioreactor (VSMBR) treating municipal wastewater at various temperatures. Process Biochem. 2007, 42, 193–198. [Google Scholar] [CrossRef]
- Moreau, A.; Ratkovich, N.; Nopens, I.; van der Graaf, J. The (in)significance of apparent viscosity in full-scale municipal membrane bioreactors. J. Membr. Sci. 2009, 340, 249–256. [Google Scholar] [CrossRef]
- Al-Amri, A.; Salim, M.R.; Aris, A. The effect of different temperatures and fluxes on the performance of membrane bioreactor treating synthetic-municipal wastewater. Desalination 2010, 259, 111–119. [Google Scholar] [CrossRef]
- Zheng, W.; Wen, X.; Zhang, B.; Qiu, Y. Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Sci. Total Environ. 2019, 646, 1293–1303. [Google Scholar] [CrossRef]
- Plevri, A.; Mamais, D.; Noutsopoulos, C. Anaerobic MBR technology for treating municipal wastewater at ambient temperatures. Chemosphere 2021, 275, 129961. [Google Scholar] [CrossRef]
- Xie, M.; Price, W.; Nghiem, L.; Elimelech, M. Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis. J. Membr. Sci. 2013, 438, 57–64. [Google Scholar] [CrossRef]
- Karunakaran, A.; Mungray, A.; Garg, M. Effects of temperature, pH, feed, and fertilizer draw solution concentrations on the performance of forward osmosis process for textile wastewater treatment. WER 2021, 93, 2329–2340. [Google Scholar] [CrossRef]
- Laiarinandrasana, L.; Besson, J.; Lafarge, M.; Hochstetter, G. Temperature dependent mechanical behaviour of PVDF: Experiments and numerical modelling. Int. J. Plast. 2009, 25, 1301–1324. [Google Scholar] [CrossRef]
- Dang, H.; Price, W.; Nghiem, L. The effects of feed solution temperature on pore size and trace organic contaminant rejection by the nanofiltration membrane NF270. Sep. Puri. Technol. 2014, 125, 43–51. [Google Scholar] [CrossRef]
- Xu, R.; Zhou, M.; Wang, H.; Wang, X.; Wen, X. Influences of temperature on the retention of PPCPs by nanofiltration membranes: Experiments and modeling assessment. J. Membr. Sci. 2020, 599, 117817. [Google Scholar] [CrossRef]
- Xiao, L.; Isner, A.; Waldrop, K.; Saad, A.; Takigawa, D.; Bhattacharyya, D. Development of bench and full-scale temperature and pH responsive functionalized PVDF membranes with tunable properties. J. Membr. Sci. 2014, 457, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Gao, W.; Liao, B.; Turek, W. The influence of temperature on dynamic membrane structure. J. Membr. Sci. 2023, 688, 122121. [Google Scholar] [CrossRef]
- Guerrero, R.; Rubio Rosas, E.; Rodriguez Lugo, V. Nonlinear changes in pore size induced by temperature in the design of smart membranes. Polym. J. 2010, 42, 947–951. [Google Scholar] [CrossRef]
- Park, Y.; Gutierrez, M.; Lee, L. Reversible Self-Actuated Thermo-Responsive Pore Membrane. Sci. Rep. 2016, 6, 39402. [Google Scholar] [CrossRef]
- Hughes, A.; Mallick, T.; O’Donovan, T. Investigation of the Effects of Temperature on the Microstructure of PTFE Microfiltration Membranes Under Membrane Distillation Conditions. J. Adv. Therm. Sci. Res. 2020, 7, 11–21. [Google Scholar] [CrossRef]
- Edzwald, J. Water Quality & Treatment: A Handbook on Drinking Water, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2011. [Google Scholar]
- Al-Amoudi, A.; Williams, P.; Mandale, S.; Lovitt, R. Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability. Sep. Puri. Technol. 2007, 54, 234–240. [Google Scholar] [CrossRef]
- Al-Amoudi, A.; Lovitt, R. Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci. 2007, 303, 4–28. [Google Scholar] [CrossRef]
- Chen, J.; Kim, S.; Ting, Y. Optimization of membrane physical and chemical cleaning by a statistically designed approach. J. Membr. Sci. 2003, 219, 27–45. [Google Scholar] [CrossRef]
- Almecija, M.; Martinez-Ferez, A.; Guadix, A.; Paez, M.; Guadix, E. Influence of the cleaning temperature on the permeability of ceramic membranes. Desalination 2009, 245, 708–713. [Google Scholar] [CrossRef]
- Rabuni, M.; Nik Sulaiman, N.; Aroua, M.; Yern Chee, C.; Awanis Hashim, N. Impact of in situ physical and chemical cleaning on PVDF membrane properties and performances. Chem. Eng. Sci. 2015, 122, 426–435. [Google Scholar] [CrossRef]
- Ding, J.; Wang, S.; Xie, P.; Zou, Y.; Wan, Y.; Chen, Y.; Wiesner, M. Chemical cleaning of algae-fouled ultrafiltration (UF) membrane by sodium hypochlorite (NaClO): Characterization of membrane and formation of halogenated by-products. J. Membr. Sci. 2020, 598, 117662. [Google Scholar] [CrossRef]
- Wang, H.; Ma, D.; Shi, W.; Yang, Z.; Cai, Y.; Gao, B. Formation of disinfection by-products during sodium hypochlorite cleaning of fouled membranes from membrane bioreactors. Front. Environ. Sci. Eng. 2021, 15, 102. [Google Scholar] [CrossRef] [PubMed]
- Madaeni, S.; Samieirad, S. Chemical cleaning of reverse osmosis membrane fouled by wastewater. Desalination 2010, 257, 80–86. [Google Scholar] [CrossRef]
- Ahmad, A.; Mat Yasin, N.; Derek, C.; Lim, J. Chemical cleaning of a cross-flow microfiltration membrane fouled by microalgal biomass. J. Taiwan Inst. Chem. Eng. 2014, 45, 233–241. [Google Scholar] [CrossRef]
- Simon, A.; Price, W.; Nghiem, L. Impact of chemical cleaning on the nanofiltration of pharmaceutically active compounds (PhACs): The role of cleaning temperature. J. Taiwan Inst. Chem. Eng. 2013, 44, 713–723. [Google Scholar] [CrossRef]
- Woo, Y.; Lee, J.; Oh, J.; Jang, H.; Kim, H. Effect of chemical cleaning conditions on the flux recovery of fouled membrane. Desalin. Water Treat. 2013, 51, 5268–5274. [Google Scholar] [CrossRef]
- Zhao, S.; Zou, L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination. Desalination 2011, 278, 157–164. [Google Scholar] [CrossRef]
- Lintzos, L.; Chatzikonstantinou, K.; Tzamtzis, N.; Malamis, S. Influence of the Backwash Cleaning Water Temperature on the Membrane Performance in a Pilot SMBR Unit. Water 2018, 10, 238. [Google Scholar] [CrossRef]
- Hube, S.; Wang, J.; Sim, L.; Chong, T.; Wu, B. Direct membrane filtration of municipal wastewater: Linking periodical physical cleaning with fouling mechanisms. Sep. Puri. Technol. 2021, 259, 118125. [Google Scholar] [CrossRef]
Membrane Type and Material | Reactor | Temperature Examined (°C) | Summary | Reference |
---|---|---|---|---|
Hollow fibre polyvinylidene fluoride (PVDF) membrane | Full-scale municipal MBR | 8–24 | Temperature decreases caused
| [15] |
RO membrane | Bench-scale reactor | 15, 25, 35 | Temperature decreases caused
| [21,22] |
Flat sheet polyethersulfone (PES) membrane | Pilot-scale MBR | 8–26 | Temperature decreases caused
| [23] |
PE microfiltration (MF) membrane | Bench-scale PAC-MBRs | 10, 20 | [24] | |
Hollow fibre PVDF membrane | Pilot-scale MBR | 8.7–19.7 | [25] | |
Hollow fibre PVDF MF membrane | Pilot-scale SAnMBR with real municipal wastewater as influent | 15, 20, 25 | [20] | |
Flat-sheet PVDF membrane | Lab-scale SAnMBR | 37, 42, 47, 45, 50, 55 | High-temperature shock (37 to 42 °C, 37 to 47 °C, 45 to 50 °C, 45 to 55 °C) caused
| [17,18] |
Flat-sheet PVDF membrane | Pilot-scale MBR | 7, 15, 25 | Mechanisms of membrane resistance increase when the temperature decreased:
| [12] |
FO membrane | Lab-scale reactor | 20, 35, 50 | Temperature increases caused
| [26] |
Spiral-wound RO membrane | Lab-scale reactor | 10, 20, 30 | Temperature decreases caused
| [27] |
Hollow fibre PVDF ultrafiltration (UF) membrane | Bench-scale reactor | 13–20, 20–30 | [28] | |
Tubular ceramic UF membrane | Lab-scale reactor | 5, 20, 35 | Temperature decreases caused
| [11] |
Flat sheet polytetrafluoroethylene (PTFE) membrane | Bench-scale direct contact membrane distillation | 40, 60 | High temperature (60 °C) caused
| [29] |
Ceramic UF membrane | Bench-scale reactor | 5, 20, 35 |
| [13] |
GO-coated calcium sulphate RO membrane | Bench-scale RO desalination | 5, 15, 25, 35 |
Temperature increases caused
| [30] |
PTFE microfiltration membrane | Bench-scale direct contact membrane distillation | 50, 60, 70, 80 | When the temperature increased,
| [31] |
Hollow fibre PVDF MF membrane | Lava stone biocarrier facilitated gravity-driven membrane reactors | 8, 22 | Temperature increases caused
| [32] |
Zeeweed-1000 hollow fibre UF membrane | Bench-scale sequencing batch reactors (SBRs) with municipal wastewater as influent | 8, 14, 20 | Decreasing temperatures increase membrane resistance from fouling and intrinsic resistance. | [33] |
Membrane Type and Material | Reactor | Temperature (°C) | Summary | Reference |
---|---|---|---|---|
PES hollow fibre MF membrane | Lab-scale submerged MBR treating synthetic-municipal wastewater | 25, 35, 45 | Temperature increases caused
| [36] |
Asymmetric cellulose triacetate FO membrane and thin-film composite polyamide FO membrane | Bench-scale cross-flow FO system | 20, 40 | Increased temperatures increased membrane flux | [39] |
Unknown | Full-scale wastewater treatment plant MBR | spring, summer, autumn, winter | Low temperatures during wintertime caused
| [37] |
FO membrane | Lab-scale fertilizer-driven FO | 25, 30, 35 | Temperature increases caused
| [40] |
Flat sheet membrane | Lab-scale submerged AnMBR with real wastewater | 18 ± 4 (winter), 24 ± 3 (summer) | Temperature decreases increased effluent CODs with different HRTs | [38] |
Zeeweed-1000 hollow-fibre ultrafiltration membrane | Filtration of the effluent of bench-scale SBRs treating real municipal wastewater | 8, 14, 20 | Temperature drop caused the decreasing hydraulically irreversible permeability by
| [16] |
Membrane Type and Material | Reactor | Temperature (°C) | Summary | Reference |
---|---|---|---|---|
Zeeweed-500 hollow fibre MF membrane | Lab-scale filtration | 0–30 | Temperature decreases
| [14] |
Two commercial polyamide thin-film nanofiltration (NF) membranes | Lab-scale filtration | 5, 15, 23, 35, 41 | Temperature decreases caused
| [19] |
NF270 flat-sheet NF membranes | Lab-scale filtration | 20, 30, 40 | [42] | |
A loose and a tight NF membrane | Lab-scale cross-flow filtration | 5, 10, 15, 20, 25 | [43] | |
PVDF MF membranes and flatsheet PNIPAAm–PVDF membrane | Lab-scale filtration | 25, 30, 34, 40, 48 | Pore-filling several polymers on the PVDF membrane formed a sensitive temperature-responsive membrane.
| [44] |
PVDF hollow fibre MF membrane | Lab-scale filtration | 0.3, 21 | Extremely cold water temperatures at 0.3 °C deteriorated membrane performance and led to membrane pore shrinkage.
| [6] |
PVDF hollow fibre MF membrane | Lab-scale filtration | 0.3, 21, 35 | [7] | |
PVDF hollow fibre MF membrane | Lab-scale filtration | 0.3, 5, 10, 21, 35 | The colder the water temperature, the faster and greater the reduction in membrane pores. The recovery treatment at 35 °C could fully recover membrane structure. | [45] |
Lot M38 & Lot M39 Membrane | Lab-scale experimental and modelling studies | room temperature, 60 | Membrane pore size increased with time with thermal treatment. A non-linear mathematical model based on the consideration of different forces was proposed to describe the change in membrane pore size with thermal treatment. | [46] |
Hybrid membrane of poly (N-isopropylacrylamide), (PNIPAM) within PTFE | Lab-scale experimental and modelling studies | 20, 40 (temperature cycle) | Membrane pore opening and closing dynamics followed the temperature cycle. Mathematical models based on the theory of thermoelasticity were developed to model the thermo-response of membrane pore size change in temperature cycles. | [47] |
PTFE membrane | Lab-scale experimental and modelling studies | 17, 60, 70, 80 | As the temperature increased, the pore size gradually increased. Mathematical models based on heat transfer and energy balance were developed to describe the change in membrane pore sizes with temperature change and thermal treatment. | [48] |
Membrane Type and Material | Fouled Membrane Origin | Cleaning Method | Temperature (°C) | Summary | Reference |
---|---|---|---|---|---|
Spiral- wound thin film PES UF and Polyamide RO membranes from Fluid Systems | Filtrated by secondary effluent collected from a local sewage treatment plant | Physical: forward flush, backwash Chemical: TriClean 212F | 25, 50 | Increased cleaning temperatures caused:
| [52] |
Flat sheet cellulose triacetate (CTA) FO membranes | Treating actual and simulated brackish water | Physical | 25, 35, 45 | [61] | |
Flat sheet UF PVDF membrane | Fouled with bovine serum albumin (BSA) | Chemical: NaOH, NaOCl | 25, 50 | [54] | |
Three commercial NF membranes | Saline water desalination | Chemical: HCl; NaOH; SDS; Mixed agent of EDTA, trisodium phosphate (TSP) and sodium tripolyphosphate (STP); NaOH followed by HCl | 20, 23, 25, 30, 34 | Cleaning temperature had no impact on membrane surface charge and zeta potential. | [50] |
Tubular ceramic Céram Inside membrane made of ZrO2–TiO2 | Fouled by protein solution containing β-lactoglobulin and bovine serum albumin | Chemical: sodium hydroxide and sodium dodecyl sulphate solution | 30, 50, 60 |
| [53] |
FT-30 polyamide membrane | Treated industrial wastewater | Chemical: HCl, HNO3, H2SO4, NaOH, EDTA, SDS | 15, 25, 35, 45 |
| [57] |
PVDF hollow fibre membrane | Pilot plant treating river water | Chemical: NaOH, NaOCl, H2SO4, HNO3, citric acid, and oxalic acid | 2, 23 | [60] | |
NF270 NF membrane with “a semi-aromatic piperazine-based polyamide skin layer on top of a microporous” polysulphone (PS) backing layer | Virgin membrane | Chemical: citric acid, NaOH, EDTA, and SDS | 20, 35, 50 |
| [59] |
Cellulose acetate flat-sheet MF membrane | Fouled with Chlorella cells | Chemical: NaOH, NaOCl, nitric acid, and citric acid | 25, 40, 60, 80 |
| [58] |
Hollow fibre UF R-PVDF membrane | Fouled with synthetic wastewater | Physical: backwash | 8, 18, 28, 38 | Increased backwash water temperatures
| [62] |
Flat-sheet PES ultrafiltration membrane | Fouled with algal solution | Chemical: NaOCl | 15, 25, 35 | Increased cleaning temperatures significantly boosted the generation of halogenated by-products. | [55] |
PVDF ultrafiltration membrane | Fouled with real wastewater | Physical | 25, 50 | High cleaning temperature mitigated intermediate pore blocking and physically irreversible fouling. | [63] |
PVP/SiO2 modified hollow fibre PVDF ultrafiltration membrane | Fouled with simulated domestic sewage | Chemical: NaOCl | 15, 25, 35 | Cleaning temperatures could impact the generation of disinfecting by-products. | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Gao, W.; Liao, B.; Bai, H.; Qiao, Y.; Turek, W. A Review of Temperature Effects on Membrane Filtration. Membranes 2024, 14, 5. https://doi.org/10.3390/membranes14010005
Xu B, Gao W, Liao B, Bai H, Qiao Y, Turek W. A Review of Temperature Effects on Membrane Filtration. Membranes. 2024; 14(1):5. https://doi.org/10.3390/membranes14010005
Chicago/Turabian StyleXu, Bochao, Wa Gao, Baoqiang Liao, Hao Bai, Yuhang Qiao, and Walter Turek. 2024. "A Review of Temperature Effects on Membrane Filtration" Membranes 14, no. 1: 5. https://doi.org/10.3390/membranes14010005
APA StyleXu, B., Gao, W., Liao, B., Bai, H., Qiao, Y., & Turek, W. (2024). A Review of Temperature Effects on Membrane Filtration. Membranes, 14(1), 5. https://doi.org/10.3390/membranes14010005