A Mini Review of Ceramic-Based MOF Membranes for Water Treatment
Abstract
:1. Introduction
2. Fabrication of Ceramic-Based MOF Membrane
- In situ growth method
- 2.
- Secondary growth method
- 3.
- Layer-by-layer method
- 4.
- Microwave-induced thermal deposition method
- 5.
- Other methods
3. Water Treatment Application
3.1. Water/Salt Separation
No. | Membrane Type | Substrate | Fabrication Method | Thickness | Application | References |
---|---|---|---|---|---|---|
1 | UiO-66 | Al2O3 hollow fiber | In situ solvothermal | ~2 μm | Desalination | [14] |
2 | UiO-66 | Al2O3 hollow fiber | Secondary growth and post modification | 3.5 μm | Desalination | [53] |
3 | UiO-66 | TiO2-modified Al2O3 | Secondary growth | 1 μm | Desalination | [29] |
4 | MOF-303 | Al2O3 Disc | In situ solvothermal | 4 μm | Desalination | [52] |
5 | UiO-66-NH2 | APTES-modified Al2O3 | Secondary growth | 1 μm | Desalination | [54] |
6 | UiO-66 | Al2O3 | In situ solvothermal | -- | Fluorine removal | [55] |
7 | UiO-66-NH2 | AAO | In situ reaction cell | <500 nm | Ion separation | [56] |
8 | UiO-66 | Al2O3 | Vacuum filtration | -- | Arsenic removal | [16] |
9 | UiO-66-NH2 | ZrO2 | Microwave-assisted | -- | Plumbum removal | [57] |
10 | UiO-66 | Al2O3 | In situ solvothermal | -- | Humic acid removal | [58] |
11 | ZIF-8 | PDA-modified Al2O3 | In situ solvothermal | 20 μm | Desalination | [15] |
12 | CAU-1 | Al2O3 | Secondary growth | 1.3 μm | Desalination | [59] |
13 | NH2-MIL-53(Al) | Al2O3 | Secondary growth | -- | Desalination | [27] |
14 | ZIF-8 | AAO | GO interface-assisted and secondary growth | 0.45 μm | Ion separation | [60] |
15 | ZIF-300 | Al2O3 | Secondary growth | 10 μm | Heavy metal and dye removal | [61] |
16 | ZIF-L | Al2O3 | Secondary growth | 6 μm | Anti-bacterial | [62] |
17 | MIL-53 | AAO | In situ solvothermal | 600 nm | Ion transport | [63] |
18 | 2D Zn-MOF crosslinked nanosheet | Al2O3 | Vacuum filtration | -- | Dye removal | [64] |
19 | Al-MOFnanosheet | AAO | Vacuum filtration | 20 nm | Desalination | [65] |
20 | ZIF-8/PSS | Al2O3 | Layer-by-layer | 5 μm | Dye removal | [32] |
21 | SSP@ZIF-8 | AAO | In situ embedding | 500 nm | Ion separation | [66] |
3.2. Pollutant Separation
3.3. Heavy Metal Separation
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Caro, J. Hierarchy in inorganic membranes. Chem. Soc. Rev. 2016, 45, 3468–3478. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, H.; Yang, F.; Gray, S. Cost and efficiency perspectives of ceramic membranes for water treatment. Water Res. 2022, 220, 118629. [Google Scholar] [CrossRef]
- Chen, M.; Heijman, S.G.J.; Rietveld, L.C. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. Membranes 2021, 11, 888. [Google Scholar] [CrossRef]
- Liu, X.; Shan, Y.; Zhang, S.; Kong, Q.; Pang, H. Application of metal organic framework in wastewater treatment. Green Energy Environ. 2023, 8, 698–721. [Google Scholar] [CrossRef]
- Liu, Y.; Ban, Y.; Yang, W. Microstructural engineering and architectural design of metal-organic framework membranes. Adv. Mater. 2017, 29, 1606949. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wang, J.; Gascon, J.; Li, J.; Van der Bruggen, B. Metal-organic frameworks based membranes for liquid separation. Chem. Soc. Rev 2017, 46, 7124–7144. [Google Scholar] [CrossRef]
- Denny, M.S.; Moreton, J.C.; Benz, L.; Cohen, S.M. Metal–organic frameworks for membrane-based separations. Nat. Rev. 2016, 1, 16078. [Google Scholar] [CrossRef]
- Kadhom, M.; Deng, B. Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl. Mater. Today 2018, 11, 219–230. [Google Scholar] [CrossRef]
- Yu, S.; Pang, H.; Huang, S.; Tang, H.; Wang, S.; Qiu, M.; Chen, Z.; Yang, H.; Song, G.; Fu, D.; et al. Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total Environ. 2021, 800, 149662. [Google Scholar] [CrossRef]
- Abdul Hamid, M.R.; Qian, Y.; Wei, R.; Li, Z.; Pan, Y.; Lai, Z.; Jeong, H.-K. Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. J. Membr. Sci. 2021, 640, 119802. [Google Scholar] [CrossRef]
- Cheng, Y.; Datta, S.J.; Zhou, S.; Jia, J.; Shekhah, O.; Eddaoudi, M. Advances in metal-organic framework-based membranes. Chem. Soc. Rev. 2022, 51, 8300–8350. [Google Scholar] [CrossRef]
- Wu, W.; Hong, X.; Fan, J.; Wei, Y.; Wang, H. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation. Chin. J. Chem. Eng. 2023, 56, 299–313. [Google Scholar] [CrossRef]
- Liu, Y.; Ng, Z.; Khan, E.A.; Jeong, H.-K.; Ching, C.-b.; Lai, Z. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater. 2009, 118, 296–301. [Google Scholar] [CrossRef]
- Liu, X.; Demir, N.K.; Wu, Z.; Li, K. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 2015, 137, 6999–7002. [Google Scholar] [CrossRef]
- Zhu, Y.; Gupta, K.M.; Liu, Q.; Jiang, J.; Caro, J.; Huang, A. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination 2016, 385, 75–82. [Google Scholar] [CrossRef]
- Wang, C.; Lee, M.; Liu, X.; Wang, B.; Paul Chen, J.; Li, K. A metal–organic framework/α-alumina composite with a novel geometry for enhanced adsorptive separation. Chem. Commun. 2016, 52, 8869–8872. [Google Scholar] [CrossRef]
- Sun, H.; Wang, N.; Li, X.; An, Q.-F. Fabrication of MOF derivatives composite membrane via in-situ sulfurization for dye/salt separation. J. Membr. Sci. 2022, 645, 120211. [Google Scholar] [CrossRef]
- Wang, X.; Lyu, Q.; Tong, T.; Sun, K.; Lin, L.C.; Tang, C.Y.; Yang, F.; Guiver, M.D.; Quan, X.; Dong, Y. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 2022, 13, 266. [Google Scholar] [CrossRef]
- Liu, G.; Guo, Y.; Chen, C.; Lu, Y.; Chen, G.; Liu, G.; Han, Y.; Jin, W.; Xu, N. Eliminating lattice defects in metal-organic framework molecular-sieving membranes. Nat. Mater. 2023, 22, 769–776. [Google Scholar] [CrossRef]
- Zacher, D.; Shekhah, O.; Wo¨, C.; Fischer, R.A. Thin films of metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1418–1429. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Zhang, Y.; Ma, J.; Huang, L.; Yu, S.; Chen, L.; Song, G.; Qiu, M.; Wang, X. Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review. Environ. Pollut. 2021, 291, 118076. [Google Scholar] [CrossRef]
- Hermes, S.; Schröder, F.; Chelmowski, R.; Wöll, C.; Fischer, R.A. Selective nucleation and growth of metal–organic open framework thin films on patterned COOHCF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 2005, 127, 13744–13745. [Google Scholar] [CrossRef]
- Zhang, F.; Zou, X.; Sun, F.; Ren, H.; Jiang, Y.; Zhu, G. Growth of preferential orientation of MIL-53(Al) film as nano-assembler. CrystEngComm 2012, 14, 5487. [Google Scholar] [CrossRef]
- Kwon, H.T.; Jeong, H.K. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 2013, 135, 10763–10768. [Google Scholar] [CrossRef]
- Guo, R.; Cai, X.; Liu, H.; Yang, Z.; Meng, Y.; Chen, F.; Li, Y.; Wang, B. In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal. Environ. Sci. Technol. 2019, 53, 2705–2712. [Google Scholar] [CrossRef]
- Miyamoto, M.; Kohmura, S.; Iwatsuka, H.; Oumi, Y.; Uemiya, S. In situ solvothermal growth of highly oriented Zr-based metal organic framework UiO-66 film with monocrystalline layer. CrystEngComm 2015, 17, 3422–3425. [Google Scholar] [CrossRef]
- Zuo, J.; Chung, T.-S. Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation. Water 2016, 8, 586. [Google Scholar] [CrossRef]
- Bux, H.; Feldhoff, A.; Cravillon, J.; Wiebcke, M.; Li, Y.-S.; Caro, J. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chem. Mater. 2011, 23, 2262–2269. [Google Scholar] [CrossRef]
- Lai, W.F.; Deckman, H.W.; McHenry, J.A.; Verduijn, J.P. Supported Zeolite Membranes with Controlled Crystal Width and Preferred Orientation Grown on a Growth Enhancing Layer. U.S. Patent No. 5,871,650, 16 February 1999. [Google Scholar]
- Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Membr. Sci. 2010, 354, 48–54. [Google Scholar] [CrossRef]
- Li, H.; Fu, M.; Wang, S.Q.; Zheng, X.; Zhao, M.; Yang, F.; Tang, C.Y.; Dong, Y. Stable Zr-based metal-organic framework nanoporous membrane for efficient desalination of hypersaline water. Environ. Sci. Technol. 2021, 55, 14917–14927. [Google Scholar] [CrossRef]
- Wang, N.; Liu, T.; Shen, H.; Ji, S.; Li, J.-R.; Zhang, R. Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration. AIChE J. 2016, 62, 538–546. [Google Scholar] [CrossRef]
- Shekhah, O.; Wang, H.; Strunskus, T.; Cyganik, P.; Zacher, D.; Fischer, R.; Wöl, C. Layer-by-layer growth of oriented metal organic polymers on a functionalized organic surface. Langmuir 2007, 23, 7440–7442. [Google Scholar] [CrossRef] [PubMed]
- Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R.A.; et al. Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 2007, 129, 15118–15119. [Google Scholar] [CrossRef]
- So, M.C.; Jin, S.; Son, H.J.; Wiederrecht, G.P.; Farha, O.K.; Hupp, J.T. Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal-organic frameworks. J. Am. Chem. Soc. 2013, 135, 15698–15701. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.; Jeong, H.K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chem. Commun. 2008, 21, 2441–2443. [Google Scholar] [CrossRef]
- Fan, J.; Wu, W.; Lu, Z.; Wei, Y. Rapid synthesis strategy of ultrathin UiO-66 separation membranes: Ultrasonic-assisted nucleation followed with microwave-assisted growth. J. Membr. Sci. 2022, 664, 121085. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, G.; Hewitt, I.J.; Qiu, S. “Twin copper source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for pecycling H2. J. Am. Chem. Soc. 2009, 131, 1646–1647. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.N.; Gonzalez, M.A.; McCarthy, M.C.; Jeong, H.K. An unconventional rapid synthesis of high performance metal-organic framework membranes. Langmuir 2013, 29, 7896–7902. [Google Scholar] [CrossRef]
- Yao, J.; Dong, D.; Li, D.; He, L.; Xu, G.; Wang, H. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun. 2011, 47, 2559–2561. [Google Scholar] [CrossRef]
- Wu, X.; Wei, W.; Jiang, J.; Caro, J.; Huang, A. High-flux high-selectivity metal-organic framework MIL-160 membrane for xylene isomer separation by pervaporation. Angew. Chem. Int. Ed. Engl. 2018, 57, 15354–15358. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, Z.; You, M.; Zhang, Y.; Feng, X.; Ma, X.; Meng, J. Formation of a thin and continuous MOF membrane with 2-D MOF nanosheets as seeds via layer-by-layer growth. Chem. Commun. 2019, 55, 10146–10149. [Google Scholar] [CrossRef] [PubMed]
- Barankova, E.; Tan, X.; Villalobos, L.F.; Litwiller, E.; Peinemann, K.V. A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane. Angew. Chem. Int. Ed. Engl. 2017, 56, 2965–2968. [Google Scholar] [CrossRef] [PubMed]
- Lausund, K.B.; Nilsen, O. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. Nat. Commun. 2016, 7, 13578. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Su, P.; Li, Z.; Xu, Z.; Wang, F.; Ou, H.; Zhang, J.; Zhang, G.; Zeng, E. Ultrathin metal-organic framework membrane production by gel-vapour deposition. Nat. Commun. 2017, 8, 406. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y.; Ban, Y.; Jin, H.; Jiao, W.; Liu, X.; Yang, W. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Scinece 2014, 346, 1356–1359. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y.; Ban, Y.; Yang, W. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew. Chem. Int. Ed. Engl. 2017, 56, 9757–9761. [Google Scholar] [CrossRef]
- Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B.F.; De Vos, D.E. Patterned growth of metal–organic framework coatings by electrochemical synthesis. Chem. Mater. 2009, 21, 2580–2582. [Google Scholar] [CrossRef]
- Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle Arndt, K.; Pastré, J. Metal–organic frameworks–prospective industrial applications. J. Mater. Chem. 2006, 16, 626–636. [Google Scholar] [CrossRef]
- Doménech, A.; García, H.; Doménech Carbó, M.T.; Llabrés Xamena, F. Electrochemistry nanometric patterning of MOF particles: Anisotropic metal electrodeposition in Cu/MOF. Electrochem. Commun. 2006, 8, 1830–1834. [Google Scholar] [CrossRef]
- Doménech, A.; García, H.; Doménech Carbó, M.T.; Llabrés Xamena, F. Electrochemistry of metal–organic frameworks: A description from the voltammetry of microparticles approach. J. Phys. Chem. C 2007, 111, 13701–13711. [Google Scholar] [CrossRef]
- Cong, S.; Yuan, Y.; Wang, J.; Wang, Z.; Kapteijn, F.; Liu, X. Highly water-permeable metal-organic framework MOF-303 membranes for desalination. J. Am. Chem. Soc. 2021, 143, 20055–20058. [Google Scholar] [CrossRef]
- Wang, X.R.; Zhai, L.Z.; Wang, Y.X.; Li, R.T.; Gu, X.H.; Yuan, Y.D.; Qian, Y.H.; Hu, Z.G.; Zhao, D. Improving water-treatment performance of zirconium metal–organic framework membranes by postsynthetic defect healing. ACS Appl. Mater. Interfaces 2017, 9, 37848–37855. [Google Scholar] [CrossRef]
- Wan, L.; Zhou, C.; Xu, K.; Feng, B.; Huang, A. Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination. Microporous Mesoporous Mater. 2017, 252, 207–213. [Google Scholar] [CrossRef]
- He, J.Y.; Cai, X.G.; Chen, K.; Li, Y.L.; Zhang, K.S.; Jin, Z.; Meng, F.L.; Liu, N.; Wang, X.G.; Kong, L.T.; et al. Performance of a novelly-defined zirconium metal–organic frameworks adsorption membrane in fluoride removal. J. Colloid Interface Sci. 2016, 484, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.T.; Shehzad, M.A.; Yu, D.B.; Li, Q.H.; Wu, B.; Ren, X.M.; Ge, L.; Xu, T.W. Highly cation permselective metal–organic framework membranes with leaf-like morphology. ChemSusChem 2019, 12, 2593–2597. [Google Scholar] [CrossRef]
- Yin, N.; Wang, K.; Wang, L.Z.; Li, Z.Q. Amino-functionalized MOFs combining ceramic membrane ultrafiltration for Pb (II) removal. Chem. Eng. J. 2016, 306, 619–628. [Google Scholar] [CrossRef]
- Abdullah, N.; Rahman, M.A.; Dzarfan Othman, M.H.; Jaafar, J.; Aziz, A.A. Preparation, characterizations and performance evaluations of alumina hollow fiber membrane incorporated with UiO-66 particles for humic acid removal. J. Membr. Sci. 2018, 563, 162–174. [Google Scholar] [CrossRef]
- Pauzi, M.Z.M.; Mahpoz, N.M.A.; Abdullah, N.; Rahman, M.A.; Abas, K.H.; Aziz, A.A.; Padzillah, M.H.; Othman, M.H.D.; Jaafar, J.; Ismail, A.F. Feasibility study of CAU-1 deposited on alumina hollow fiber for desalination applications. Sep. Purif. Technol. 2019, 217, 247–257. [Google Scholar] [CrossRef]
- Zhang, H.C.; Hou, J.; Hu, Y.X.; Wang, P.Y.; Ou, R.W.; Jiang, L.; Liu, J.Z.; Freeman, B.D.; Hill, A.J.; Wang, H.T. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066. [Google Scholar] [CrossRef]
- Yuan, J.; Hung, W.-S.; Zhu, H.; Guan, K.; Ji, Y.; Mao, Y.; Liu, G.; Lee, K.-R.; Jin, W. Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater. J. Membr. Sci. 2019, 572, 20–27. [Google Scholar] [CrossRef]
- Gu, Q.L.; Albert Ng, T.C.; Sun, Q.M.; Kotb Elshahawy, A.M.; Lyu, Z.Y.; He, Z.M.; Zhang, L.; Ng, H.Y.; Zeng, K.Y.; Wang, J. Heterogeneous ZIF-L membranes with improved hydrophilicity and anti-bacterial adhesion for potential application in water treatment. RSC Adv. 2019, 9, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Chan, K.Y.; Li, C.V.; Xie, L.X.; Olorunyomi, J.F. Highly selective transport of alkali metal ions by nanochannels of polyelectrolyte threaded MIL-53 metal organic framework. Nano Lett. 2019, 19, 4990–4996. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Yao, R.; Yang, W.S. A poly(amidoamine) nanoparticle cross-linked two-dimensional metal–organic framework nanosheet membrane for water purification. Chem. Commun. 2019, 55, 3935–3938. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.P.; Qiu, R.S.; Xia, Y.; Lu, J.; Chen, Y.; Gu, Q.F.; Liu, R.P.; Hu, C.Z.; Qu, J.H.; Wang, H.; et al. Ultrathin water-stable metal–organic framework membrane for ion separation. Sci. Adv. 2020, 6, eaay3998. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.Q.; Guo, Y.; Peng, X.S.; Chen, B.L. Light-gated cation-selective transport in metal–organic framework membranes. J. Mater. Chem. A 2020, 8, 11399–11405. [Google Scholar] [CrossRef]
- Yahaya, N.Z.S.; Paiman, S.H.; Abdullah, N.; Mu’ammar Mahpoz, N.; Raffi, A.A.; Rahman, M.A.; Abas, K.H.; Aziz, A.A.; Othman, M.H.D.; Jaafar, J. Synthesis and characterizations of MIL-140B-Al2O3/YSZ ceramic membrane using solvothermal method for seawater desalination. J. Aust. Ceram. Soc. 2019, 56, 291–300. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, Y.; Lim, T.T.; Wang, R.; Hu, X. A novel metal–organic framework (MOF)–mediated interfacial polymerization for direct deposition of polyamide layer on ceramic substrates for nanofiltration. Adv. Mater. Interfaces 2019, 6, 1900132. [Google Scholar] [CrossRef]
- Chee, D.N.A.; Aziz, F.; Ismail, A.F.; Kueh, A.B.H.; Amin, M.A.M.; Amran, M. Adsorptive zeolitic imidazolate framework-8 membrane on ceramic support for the removal of lead(II) ions. Chem. Eng. Sci. 2023, 276, 118775. [Google Scholar] [CrossRef]
- Teng, J.; Deng, Y.; Zhou, X.; Yang, W.; Huang, Z.; Zhang, H.; Zhang, M.; Lin, H. A critical review on thermodynamic mechanisms of membrane fouling in membrane-based water treatment process. Front. Environ. Sci. Eng. 2023, 17, 129. [Google Scholar] [CrossRef]
Fabrication Method | Advantages | Disadvantages | References |
---|---|---|---|
In situ growth | Simple process | Poor controllability, random growth | [13,14,24,25,26,28] |
Secondary growth | Controllable growth, easy to obtain dense membrane | High demand of seed quality | [29,31] |
Layer-by-layer method | Reduced synthesis temperature | Multiple steps | [34] |
Microwave-induced thermal deposition | Reduced synthesis time, high efficiency | High cost of heating equipment | [36] |
Electrochemical method | Easy to meet the requirements of industrial production | Ag fouling on membrane | [48,49,50,51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, M.; Chen, M.; Zhang, Y. A Mini Review of Ceramic-Based MOF Membranes for Water Treatment. Membranes 2023, 13, 751. https://doi.org/10.3390/membranes13090751
Wang X, Wang M, Chen M, Zhang Y. A Mini Review of Ceramic-Based MOF Membranes for Water Treatment. Membranes. 2023; 13(9):751. https://doi.org/10.3390/membranes13090751
Chicago/Turabian StyleWang, Xueling, Man Wang, Mingliang Chen, and Yatao Zhang. 2023. "A Mini Review of Ceramic-Based MOF Membranes for Water Treatment" Membranes 13, no. 9: 751. https://doi.org/10.3390/membranes13090751
APA StyleWang, X., Wang, M., Chen, M., & Zhang, Y. (2023). A Mini Review of Ceramic-Based MOF Membranes for Water Treatment. Membranes, 13(9), 751. https://doi.org/10.3390/membranes13090751