Carbonized Nickel Complex of Sodium Pectate as Catalyst for Proton-Exchange Membrane Fuel Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Samples by Carbonization
2.2. Transmission Electron Microscopy
2.3. Specific Surface Area
2.4. Cyclic Voltammetry (CV) of Ni(20%)-NaPG Solid-Phase Samples
2.5. ORR Kinetics Study on a Rotating Disk Electrode Using the Koutecký–Levich Method
2.6. Electrochemical Stability during ORR in Acidic Solution
2.7. PEMFC Tests
3. Methods
3.1. TG/DSC–FTIR
3.2. TEM
3.3. Specific Surface Area
3.4. Electrochemistry
3.5. Fuel Cell Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, K.; Lan, Y.; Zhang, X.; Jiang, J.; Sun, C.; Yang, G.; Yang, F.; Lan, H. A Review on Interoperability of Wireless Charging Systems for Electric Vehicles. Energies 2023, 16, 1653. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, C.; Ge, M. Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries. Batteries 2022, 8, 202. [Google Scholar] [CrossRef]
- Wang, W.; Qu, Z.; Wang, X.; Zhang, J. A molecular model of PEMFC catalyst layer: Simulation on reactant transport and thermal conduction. Membranes 2021, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.W.; Wang, C.G.; Huang, C.Y.; Tsai, T.D.; Guo, T.F.; Wen, T.C. Chicken albumen dielectrics in organic field-effect transistors. Adv. Mater. 2011, 23, 4077e4081. [Google Scholar] [CrossRef]
- Hagen, J.A.; Li, W.; Steckl, A.J.; Grote, J.G. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Appl. Phys. Lett. 2006, 88, 171109. [Google Scholar] [CrossRef] [Green Version]
- Yukimoto, T.; Uemura, S.; Kamata, T.; Nakamura, K.; Kobayashi, N. Non-volatile transistor memory fabricated using DNA and eliminating influence of mobile ions on electric properties. J. Mater. Chem. 2011, 21, 15575e15579. [Google Scholar] [CrossRef]
- Hung, Y.C.; Hsu, W.T.; Lin, T.Y.; Fruk, L. Photoinduced write-once read-manytimes memory device based on DNA biopolymer nanocomposite. Appl. Phys. Lett. 2011, 99, 253301. [Google Scholar] [CrossRef]
- Kadirov, M.K.; Minzanova, S.; Nizameev, I.; Mironova, L.G.; Gilmutdinov, I.; Khrizanforov, M.; Kholin, K.; Khamatgalimov, A.; Semeonov, V.; Morozov, V.; et al. Nickel-based pectin coordination polymer as oxygen reduction reaction catalyst for proton-exchange membrane fuel cell. Inorg. Chem. Front. 2018, 5, 780–784. [Google Scholar] [CrossRef]
- Kadirov, M.K.; Minzanova, S.T.; Nizameev, I.R.; Khrizanforov, M.N.; Mironova, L.G.; Kholin, K.V.; Kadirov, D.M.; Nefed’ev, E.S.; Morozov, M.V.; Gubaidullin, A.T.; et al. A Nickel-Based Pectin Metal-Organic Framework as a Hydrogen Oxidation Reaction Catalyst for Proton-Exchange-Membrane Fuel Cells. ChemistrySelect 2019, 4, 4731–4734. [Google Scholar] [CrossRef]
- Nizameev, I.R.; Kadirov, D.M.; Nizameeva, G.R.; Sabirova, A.F.; Kholin, K.V.; Morozov, M.V.; Mironova, L.G.; Zairov, R.R.; Minzanova, S.T.; Sinyashin, O.G.; et al. Complexes of Sodium Pectate with Nickel for Hydrogen Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. Int. J. Mol. Sci. 2022, 23, 14247. [Google Scholar] [CrossRef]
- Candelaria, S.L.; Shao, Y.; Zhou, W.; Li, X.; Xiao, J.; Zhang, J.G.; Wang, Y.; Liu, J.; Li, J.; Cao, G. Nanostructured carbon for energy storage and conversion. Nano Energy 2012, 1, 195–220. [Google Scholar] [CrossRef]
- Zhang, L.L.; Gu, Y.; Zhao, X.S. Advanced porous carbon electrodes for electrochemical capacitors. J. Mater. Chem. A 2013, 1, 9395. [Google Scholar] [CrossRef]
- Wei, L.; Yushin, G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 2012, 1, 552–565. [Google Scholar] [CrossRef]
- Huang, H.; Wang, X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 6266–6291. [Google Scholar] [CrossRef]
- Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.D.; Li, X.; Zhang, H. Porous carbon spheres and monoliths: Morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 2014, 43, 4341–4356. [Google Scholar] [CrossRef]
- Yamada, Y.; Sasaki, T.; Tatsuda, N.; Weingarth, D.; Yano, K.; Kötz, R. A novel model electrode for investigating ion transport inside pores in an electrical doublelayer capacitor: Monodispered microporous starburst carbon spheres. Electrochim. Acta 2012, 81, 138. [Google Scholar] [CrossRef]
- Zhang, L.; Kim, J.; Dy, E.; Ban, S.; Tsay, K.; Kawai, H.; Shi, Z.; Zhang, J. Synthesis of novel mesoporous carbon spheres and their supported Fe-based electrocatalysts for PEM fuel cell oxygen reduction reaction. Electrochim. Acta 2013, 108, 480. [Google Scholar] [CrossRef]
- Yan, Z.; Xie, J.; Zong, S.; Zhang, M.; Sun, Q.; Chen, M. Small-sized Pt particles on mesoporous hollow carbon spheres for highly stable oxygen reduction reaction. Electrochim. Acta 2013, 109, 256. [Google Scholar] [CrossRef]
- Cai, D.; Ding, L.; Wang, S.; Li, Z.; Zhu, M.; Wan, H. Facile synthesis of ultrathin-shell graphene hollow spheres for high-performance lithium-ion batteries. Electrochim. Acta 2014, 139, 96. [Google Scholar] [CrossRef]
- Romero-Anaya, A.J.; Ouzzine, M.; Lillo-Ródenas, M.A.; Linares-Solano, A. Spherical carbons: Synthesis, characterization and activation processes. Carbon 2014, 68, 296. [Google Scholar] [CrossRef]
- Titirici, M.M.; White, R.J.; Falco, C.; Sevilla, M. Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage. Energy Environ. Sci. 2012, 5, 6796. [Google Scholar] [CrossRef]
- Gao, S.; Chen, Y.; Fan, H.; Wei, X.; Hu, C.; Luo, H.; Qu, L. Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. J. Mater. Chem. A 2014, 2, 3317. [Google Scholar] [CrossRef]
- Wang, J.; Shen, L.; Ding, B.; Nie, P.; Deng, H.; Dou, H.; Zhang, X. Fabrication of porous carbon spheres for high performance electrochemical capacitors. RSC Adv. 2014, 4, 7538. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, X.; Zhu, B.; Liu, P.F.; Lu, H.T. Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. J. Power Sources 2014, 268, 584. [Google Scholar] [CrossRef]
- Yuan, D.; Chen, J.; Zeng, J.; Tan, S. Preparation of monodisperse carbon nanospheres for electrochemical capacitors. Electrochem. Commun. 2008, 10, 1067. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.-M.; Fuhner, C.; Bens, O.; Kern, J.; et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 89–124. [Google Scholar] [CrossRef] [Green Version]
- Titirici, M.M.; Antonietti, M.; Baccile, N. Hydrothermal carbon from biomass: A comparison of the local structure from poly-to monosaccharides and pentoses/hexoses. Green Chem. 2008, 10, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Kubo, S.; White, R.J.; Yoshizawa, N.; Antonietti, M.; Titirici, M.M. Ordered carbohydrate-derived porous carbons. Chem. Mater. 2011, 23, 4882–4885. [Google Scholar] [CrossRef]
- White, R.J.; Antonietti, M.; Titirici, M.-M. Naturally inspired nitrogen doped porous carbon. J. Mater. Chem. 2009, 19, 8645–8650. [Google Scholar] [CrossRef]
- White, R.J.; Yoshizawa, N.; Antonietti, M.; Titirici, M.-M. A sustainable synthesis of nitrogen-doped carbon aerogels. Green Chem. 2011, 13, 2428–2434. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, L.-Z.; Zhou, M.-Q.; Guan, H.; Qiao, S.; Antonietti, M.; Titirici, M.-M. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv. Mater. 2010, 22, 5202–5206. [Google Scholar] [CrossRef] [PubMed]
- Demir-Cakan, R.; Hu, Y.-S.; Antonietti, M.; Maier, J.; Titirici, M.-M. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 2008, 20, 1227–1229. [Google Scholar] [CrossRef]
- Kubo, S.; Tan, I.; White, R.J.; Antonietti, M.; Titirici, M.-M. Template synthesis of carbonaceous tubular nanostructures with tunable surface properties. Chem. Mater. 2010, 22, 6590–6597. [Google Scholar] [CrossRef]
- Jeon, M.K.; Zhang, Y.; McGinn, P.J. A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction reaction. Electrochim. Acta 2010, 55, 5318–5325. [Google Scholar] [CrossRef]
- Paulus, U.A.; Wokaun, A.; Scherer, G.G.; Schmidt, T.J.; Stamenkovic, V.; Markovic, N.M.; Ross, P.N. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim. Acta 2002, 47, 3787–3798. [Google Scholar] [CrossRef]
- Browne, M.P.; Stafford, S.; O’Brien, M.; Nolan, H.; Berner, N.C.; Duesberg, G.S.; Colavita, P.E.; Lyons, M.E. The goldilocks electrolyte: Examining the performance of iron/nickel oxide thin films as catalysts for electrochemical water splitting in various aqueous NaOH solutions. J. Mater. Chem. A 2016, 4, 11397–11407. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341. [Google Scholar] [CrossRef] [Green Version]
Program (1)—280 °C | Program (2)—550 °C | Program (3)—800 °C |
---|---|---|
troom–140 °C–10 °C/min Isotherm: 30 min 140–150 °C–2 °C/min Isotherm: 30 min 150–195 °C–1 °C/min Isotherm: 30 min 195–230 °C–1 °C/min Isotherm: 30 min 230–250 °C–1 °C/min Isotherm: 30 min 250–280 °C–1 °C/min Isotherm: 30 min | Program (1) + 280–300 °C–1 °C/min Isotherm: 30 min 300–350 °C–1 °C/min Isotherm: 30 min 350–550 °C–5 °C/min Isotherm: 30 min | Program (2) + 550–800 °C–5 °C/min Isotherm: 30 min |
Sample | Sample Degassing Conditions | Specific Surface According to BET, m2/g | ||
---|---|---|---|---|
Time, Hour | Temperature, °C | Degree of Evacuation, Pa | ||
(Ni-NaPG)280C | 13 | 100 | 1 | 0.45 |
(Ni-NaPG)550C | 13 | 100 | 1 | 1.19 |
(Ni-NaPG)800C | 13 | 100 | 1 | 132 |
Sample | Reduction | Oxidation | |||
---|---|---|---|---|---|
1Epc/Epa, V Semidif, V | 2Epc/Epa, V Semidif, V | 1Epa/Epc, V Semidif, V | 2Epa/Epc, V Semidif, V | 3Epa/Epc, V Semidif, V | |
(Ni-NaPG)280C | −1.61/−1.35 −1.49 | −2.32 (irrev) −2.19 | −0.35/−0.70 −0.54 | 0.31/0.17 0.22 | |
(Ni-NaPG)550C | −1.78/−1.88 −1.82 | −2.32 (irrev) −2.33 | −0.38/−0.80 −0.61 | 0.35/0.01 0.17 | 0.75 (irrev) 0.72 |
(Ni-NaPG)800C | −2.22 (irrev) −2.20 | −0.22/−0.65 −0.41 | 0.60/0.35 0.49 | 0.85 (irrev) 0.82 |
Electrolyte | D, cm2/s | υ, cm2/s | CO2, mol/cm3 | B, mAs0.5cm−2 |
---|---|---|---|---|
0.5 M H2SO4 | 1.8 × 10−5 | 0.01 | 1.13 × 10−6 | 0.4 |
Entry | Anode Catalyst | Cathode Catalyst | OCV (mV) | Maximum Current Density (mA cm−2) | Maximum Power Density (mW cm−2) |
---|---|---|---|---|---|
1 [b] | Pt | Ni(20%)-NaPG/C | 602 | 57.8 | 10.58 |
2 [c] | Pt | Ni(25%)-NaPG/C | 710 | 59 | 5.9 |
3 | Pt | (Ni-NaPG)280C/C | 530 | 10.86 | 1.67 |
4 | Pt | (Ni-NaPG)550C/C | 663 | 65.2 | 12.5 |
5 | Pt | (Ni-NaPG)800C/C | 670 | 71.5 | 13 |
6 [b] | Ni(20%)-NaPG/C | Pt | 929 | 23.21 | 6.03 |
7 [d] | Ni(25%)-NaPG/C | Pt | 960 | 5.2 | 1.5 |
8 | (Ni-NaPG)280C/C | Pt | 723 | 1.45 | 0.31 |
9 | (Ni-NaPG)550C/C | Pt | 650 | 56 | 5.96 |
10 | (Ni-NaPG)800C/C | Pt | 847 | 1.42 | 0.34 |
11 | Pt | Pt | 1 | 1280 | 324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kholin, K.V.; Sabirova, A.F.; Kadirov, D.M.; Khamatgalimov, A.R.; Khrizanforov, M.N.; Nizameev, I.R.; Morozov, M.V.; Gainullin, R.R.; Sultanov, T.P.; Minzanova, S.T.; et al. Carbonized Nickel Complex of Sodium Pectate as Catalyst for Proton-Exchange Membrane Fuel Cells. Membranes 2023, 13, 635. https://doi.org/10.3390/membranes13070635
Kholin KV, Sabirova AF, Kadirov DM, Khamatgalimov AR, Khrizanforov MN, Nizameev IR, Morozov MV, Gainullin RR, Sultanov TP, Minzanova ST, et al. Carbonized Nickel Complex of Sodium Pectate as Catalyst for Proton-Exchange Membrane Fuel Cells. Membranes. 2023; 13(7):635. https://doi.org/10.3390/membranes13070635
Chicago/Turabian StyleKholin, Kirill V., Aigul F. Sabirova, Danis M. Kadirov, Ayrat R. Khamatgalimov, Mikhail N. Khrizanforov, Irek R. Nizameev, Mikhail V. Morozov, Radis R. Gainullin, Timur P. Sultanov, Salima T. Minzanova, and et al. 2023. "Carbonized Nickel Complex of Sodium Pectate as Catalyst for Proton-Exchange Membrane Fuel Cells" Membranes 13, no. 7: 635. https://doi.org/10.3390/membranes13070635
APA StyleKholin, K. V., Sabirova, A. F., Kadirov, D. M., Khamatgalimov, A. R., Khrizanforov, M. N., Nizameev, I. R., Morozov, M. V., Gainullin, R. R., Sultanov, T. P., Minzanova, S. T., Nefed’ev, E. S., & Kadirov, M. K. (2023). Carbonized Nickel Complex of Sodium Pectate as Catalyst for Proton-Exchange Membrane Fuel Cells. Membranes, 13(7), 635. https://doi.org/10.3390/membranes13070635