Binding Behavior between Transforming-Growth-Factor-Beta1 and Its Receptor Reconstituted in Biomimetic Membranes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Direct Adhesion
3.2. Real-Time Binding
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, X.-M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Massagué, J. TGF-β signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef] [PubMed]
- Nakao, A.; Afrakhte, M.; Morén, A.; Nakayama, T.; Cristian, J.L.; Heuchel, R.; Itoh, S.; Kawabata, M.; Heldin, N.E.; Heldin, C.H.; et al. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signaling. Nature 1997, 389, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Sun, Y.; Wong, W.L.; Cui, J.; Li, J.; You, X.; Yap, L.F.; Huang, Y.; Hong, W.; Yang, X.; et al. The development of a novel transforming growth factor-β (TGF-β) inhibitor that disrupts ligand-receptor interactions. Euro. J. Med. Chem. 2020, 189, 112042. [Google Scholar] [CrossRef]
- Veneziano, R.; Rossi, C.; Chenal, A.; Brenner, C.; Ladant, D.; Chopineau, J. Synthesis and characterization of tethered lipid assemblies for membrane protein reconstitution. Biointerphases 2017, 12, 04E301. [Google Scholar] [CrossRef]
- Roux, B.; Berneche, S.; Egwolf, B.; Lev, B.; Noskov, S.Y.; Rowley, C.N.; Yu, H. Ion selectivity in channels and transporters. J. Gen. Physiol. 2011, 137, 415–426. [Google Scholar] [CrossRef]
- Hilger, D.; Masureel, M.; Kobilka, B.K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 2018, 25, 4–12. [Google Scholar] [CrossRef]
- Srinivasan, S.; Avadhani, N.G. Cytochrome c oxidase dysfunction in oxidative stress. Free Radic. Biol. Med. 2012, 53, 1252–1263. [Google Scholar] [CrossRef]
- Zhou, W.; Burke, P.J. Versatile Bottom-Up Synthesis of Tethered Bilayer Lipid Membranes on Nanoelectronic Biosensor Devices. ACS Appl. Mater. Interfaces 2017, 9, 14618–14632. [Google Scholar] [CrossRef]
- Wagner, M.L.; Tamm, L.K. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys. J. 2000, 79, 1400–1414. [Google Scholar] [CrossRef]
- Yap, T.L.; Jiang, Z.; Heinrich, F.; Gruschus, J.M.; Pfefferkorn, C.M.; Barros, M.; Curtis, J.E.; Sidransky, E.; Lee, J.C. Structural features of membrane-bound glucocerebrosidase and α-synuclein probed by neutron reflectometry and fluorescence spectroscopy. J. Biol. Chem. 2015, 290, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Leitch, J.; Kunze, J.; Goddard, J.D.; Schwan, A.L.; Faragher, R.J.; Naumann, R.; Knoll, W.; Dutcher, J.R.; Lipkowski, J. In Situ PM-IRRAS Studies of an Archaea Analogue Thiolipid Assembled on a Au(111) Electrode Surface. Langmuir 2009, 25, 10354–10363. [Google Scholar] [CrossRef] [PubMed]
- Ataka, K.; Guess, F.; Knoll, W.; Naumann, R.; Haber-Pohlmeier, S.; Richter, B.; Hberle, J. Oriented Attachment and Membrane Reconstitution of His-Tagged Cytochrome c Oxidase to a Gold Electrode: In Situ Monitoring by Surface-Enhanced Infrared Absorption Spectroscopy. J. Am. Chem. Soc. 2004, 126, 16199–16206. [Google Scholar] [CrossRef] [PubMed]
- Giess, F.; Friedrich, M.G.; Heberle, J.; Naumann, R.L.; Knoll, W. The protein-tethered lipid bilayer: A novel mimic of the biological membrane. Biophys. J. 2004, 87, 3213–3220. [Google Scholar] [CrossRef]
- Proux-Delrouyre, V.; Elie, C.; Moiroux, J.-M.; Bourdilon, C. Formation of Tethered and Streptavidin-Supported Lipid Bilayers on a Microporous Electrode for the Reconstitution of Membranes of Large Surface Area. Langmuir 2002, 18, 3263–3272. [Google Scholar] [CrossRef]
- Lee, S.-R.; Park, Y.; Park, J.-W. Curvature Effect of a Phosphatidylethanolamine-Included Membrane on the Behavior of Cinnamycin on the Membrane. J. Phys. Chem. B 2020, 124, 8984–8988. [Google Scholar] [CrossRef]
- Lee, S.-R.; Park, Y.; Park, J.-W. Kinetic and thermodynamic studies of cinnamycin specific-adsorption on PE-Included-Membranes using surface plasmon resonance. J. Biotechnol. 2020, 320, 77–79. [Google Scholar] [CrossRef]
- Park, J.-W. Nanoliter Reactor Arrays for Antibiotic Study. Bull. Korean Chem. Soc. 2007, 28, 1709–1714. [Google Scholar]
- Kim, S.-E.; Park, J.-W. Analysis of interactions between cinnamycin and biomimetic membranes. Colloids Surf. B Biointerfaces 2020, 185, 110595. [Google Scholar] [CrossRef]
- Lee, G.S.; Park, J.-W. Interactions of Cinnamycin-Immobilized Gold Nanorods with Biomimetic Membranes. J. Membr. Biol. 2020, 253, 37–42. [Google Scholar] [CrossRef]
- Park, J.-W.; Ahn, D.J. Temperature effect on nanometer-scale physical properties of mixed phospholipid monolayers. Colloids Surf. B Biointerfaces 2008, 62, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Friedsam, C.; Wehle, A.K.; Kühner, F.; Gaub, H.E. Dynamic single-molecule force spectroscopy: Bond rupture analysis with variable spacer length. J. Phys. Condens. Matter 2003, 15, S1709. [Google Scholar] [CrossRef]
- Chaiet, L.; Wolf, J.R. The properties of streptavidin, a biotin-binding protein produced by Streptomycetes. Arch. Biochem. Biophys. 1964, 106, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, Q.; Shi, X.; Ma, X.; Yang, H.; Chen, Y.-G.; Fan, X. Single-Molecule Force Spectroscopy Study of Interaction between Transforming Growth Factor β1 and Its Receptor in Living Cells. J. Phys. Chem. B 2007, 111, 13619–13625. [Google Scholar] [CrossRef] [PubMed]
- de Crescenzo, G.; Pham, P.L.; Durocher, Y.; O’Connor-McCourt, N.D. Transforming Growth Factor-beta (TGF-β) Binding to the Extracellular Domain of the Type II TGF-β Receptor: Receptor Capture on a Biosensor Surface Using a New Coiled-Coil Capture System Demonstrates that Avidity Contributes Significantly to High Affinity Binding. J. Mol. Biol. 2003, 328, 1173–1183. [Google Scholar] [PubMed]
- Belair, D.G.; Lee, J.S.; Kellner, A.V.; Huard, J.; Murphy, W.L. Receptor mimicking TGF-β1 binding peptide for targeting TGF-β1 signaling. Biomater. Sci. 2021, 9, 645–652. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, G.; Hadinoto, K.; Lee, S.; Park, J.-W. Binding Behavior between Transforming-Growth-Factor-Beta1 and Its Receptor Reconstituted in Biomimetic Membranes. Membranes 2023, 13, 446. https://doi.org/10.3390/membranes13040446
Shin G, Hadinoto K, Lee S, Park J-W. Binding Behavior between Transforming-Growth-Factor-Beta1 and Its Receptor Reconstituted in Biomimetic Membranes. Membranes. 2023; 13(4):446. https://doi.org/10.3390/membranes13040446
Chicago/Turabian StyleShin, Gounhanul, Kunn Hadinoto, Sungmun Lee, and Jin-Won Park. 2023. "Binding Behavior between Transforming-Growth-Factor-Beta1 and Its Receptor Reconstituted in Biomimetic Membranes" Membranes 13, no. 4: 446. https://doi.org/10.3390/membranes13040446
APA StyleShin, G., Hadinoto, K., Lee, S., & Park, J. -W. (2023). Binding Behavior between Transforming-Growth-Factor-Beta1 and Its Receptor Reconstituted in Biomimetic Membranes. Membranes, 13(4), 446. https://doi.org/10.3390/membranes13040446