Constructing Gas Transmission Pathways in Two-Dimensional Composite Material ZIF-8@BNNS Mixed-Matrix Membranes to Enhance CO2/N2 Separation Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR and XRD
2.2. Materials and MMMs Characterization
2.2.1. ZIF-8@BNNS and MMMs Morphology
2.2.2. TGA Analysis
2.2.3. DSC Analysis
2.3. BET Characterization of the Material
2.4. Gas Permeation Measurements
3. Methods and Materials
3.1. Materials
3.2. Preparation of ZIF-8@BNNS Composite Fillers
3.3. Membrane Preparation
3.4. Fillers and Membranes Characterization
3.5. Permeability Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, H.; Feng, X.; Ma, D.; Zhang, M.; Zhang, Y.; Liu, Y.; Zhang, J.; Wang, B. Stable Aluminum Metal-Organic Frameworks (Al-MOFs) for Balanced CO2 and Water Selectivity. ACS Appl. Mater. Interfaces 2018, 10, 3160–3163. [Google Scholar] [CrossRef] [PubMed]
- Meis, N.A.H.N.; Johannes, H.B.; de Jong, K.P. Support and Size Effects of Activated Hydrotalcites for Precombustion CO2 Capture. Ind. Eng. Chem. Res. 2010, 49, 1229–1235. [Google Scholar] [CrossRef]
- Baker, R.W.; Low, B.T. Gas Separation Membrane Materials: A Perspective. Macromolecules 2014, 47, 6999–7013. [Google Scholar] [CrossRef]
- Xie, K.; Fu, Q.; Qiao, G.G.; Webley, P.A. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. J. Membr. Sci. 2019, 572, 38–60. [Google Scholar] [CrossRef]
- Russo, G.; Prpich, G.; Anthony, E.J.; Montagnaro, F.; Jurado, N.; Di Lorenzo, G.; Darabkhani, H.G. Selective-exhaust gas recirculation for CO2 capture using membrane technology. J. Membr. Sci. 2018, 549, 649–659. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Aroon, M.A.; Ismail, A.F.; Matsuura, T.; Montazer-Rahmati, M.M. Performance studies of mixed matrix membranes for gas separation: A review. Sep. Purif. Technol. 2010, 75, 229–242. [Google Scholar] [CrossRef]
- Chawla, M.; Saulat, H.; Masood Khan, M.; Mahmood Khan, M.; Rafiq, S.; Cheng, L.; Iqbal, T.; Rasheed, M.I.; Farooq, M.Z.; Saeed, M.; et al. Membranes for CO2/CH4 and CO2/N2 Gas Separation. Chem. Eng. Technol. 2019, 43, 184–199. [Google Scholar] [CrossRef]
- Li, T.; Pan, Y.; Peinemann, K.-V.; Lai, Z. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Membr. Sci. 2013, 425–426, 235–242. [Google Scholar] [CrossRef]
- Adams, R.; Carson, C.; Ward, J.; Tannenbaum, R.; Koros, W. Metal organic framework mixed matrix membranes for gas separations. Microporous Mesoporous Mater. 2010, 131, 13–20. [Google Scholar] [CrossRef]
- Anjum, M.W.; Vermoortele, F.; Khan, A.L.; Bueken, B.; De Vos, D.E.; Vankelecom, I.F. Modulated UiO-66-Based Mixed-Matrix Membranes for CO2 Separation. ACS Appl. Mater. Interfaces 2015, 7, 25193–25201. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O’Keeffe, M.; Yaghi, O.M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 2009, 131, 3875–3877. [Google Scholar] [CrossRef]
- Vu, D.Q.; Koros, W.J.; Miller, S.J. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J. Membr. Sci. 2003, 211, 311–334. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Ban, Y.; Peng, Y.; Jin, H.; Yang, W.; Li, K. Synthesis of zeolitic imidazolate framework nanocrystals. Mater. Lett. 2014, 136, 341–344. [Google Scholar] [CrossRef]
- Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M. Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angew. Chem. Int. Ed. 2006, 118, 1587–1589. [Google Scholar] [CrossRef]
- Phan, A.; Doonan, C.J.; Uriberomo, F.J. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.; Tsapatsis, M. Microporous Metal Organic Framework Membrane on Porous Support Using the Seeded Growth Method. Chem. Mater. 2009, 21, 4920–4924. [Google Scholar] [CrossRef]
- Ordoñez, M.J.C.; Balkus, K.J.; Ferraris, J.P.; Musselman, I.H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 2010, 361, 28–37. [Google Scholar] [CrossRef]
- Abdul Hamid, M.R.; Shean Yaw, T.C.; Mohd Tohir, M.Z.; Wan Azlina, W.A.K.G.; Sutrisna, P.D.; Jeong, H.-K. Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities. J. Ind. Eng. Chem. 2021, 98, 17–41. [Google Scholar] [CrossRef]
- Abdul Hamid, M.R.; Qian, Y.; Wei, R.; Li, Z.; Pan, Y.; Lai, Z.; Jeong, H.-K. Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. J. Membr. Sci. 2021, 640, 119802. [Google Scholar] [CrossRef]
- Wijenayake, S.N.; Panapitiya, N.P.; Versteeg, S.H.; Nguyen, C.N.; Goel, S.; Balkus, K.J.; Musselman, I.H.; Ferraris, J.P. Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation. Ind. Eng. Chem. Res. 2013, 52, 6991–7001. [Google Scholar] [CrossRef]
- Zornoza, B.; Seoane, B.; Zamaro, J.M.; Tellez, C.; Coronas, J. Combination of MOFs and zeolites for mixed-matrix membranes. Chemphyschem 2011, 12, 2781–2785. [Google Scholar] [CrossRef] [PubMed]
- Atash Jameh, A.; Mohammadi, T.; Bakhtiari, O. Preparation of PEBAX-1074/modified ZIF-8 nanoparticles mixed matrix membranes for CO2 removal from natural gas. Sep. Purif. Technol. 2020, 231, 115900. [Google Scholar] [CrossRef]
- Ding, R.; Zheng, W.; Yang, K.; Dai, Y.; Ruan, X.; Yan, X.; He, G. Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation. Sep. Purif. Technol. 2020, 236, 116209. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Varoon, K.; Zhang, X.; Elyassi, B.; Brewer, D.D.; Gettel, M.; Kumar, S.; Lee, J.A.; Maheshwari, S.; Mittal, A.; Sung, C.-Y.; et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011, 334, 72–75. [Google Scholar] [CrossRef]
- Choi, S.; Coronas, J.; Jordan, E.; Oh, W.; Nair, S.; Onorato, F.; Shantz, D.F.; Tsapatsis, M. Layered Silicates by Swelling of AMH-3 and Nanocomposite Membranes. Angew. Chem. Int. Ed. 2008, 120, 562–565. [Google Scholar] [CrossRef]
- Guo, F.; Li, D.; Ding, R.; Gao, J.; Ruan, X.; Jiang, X.; He, G.; Xiao, W. Constructing MOF-doped two-dimensional composite material ZIF-90@C3N4 mixed matrix membranes for CO2/N2 separation. Sep. Purif. Technol. 2022, 280, 119803. [Google Scholar] [CrossRef]
- Ouyang, T.; Chen, Y.; Xie, Y.; Yang, K.; Bao, Z.; Zhong, J. Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology 2010, 21, 245701. [Google Scholar] [CrossRef]
- Ghassemi, H.M.; Lee, C.H.; Yap, Y.K.; Yassar, R.S. In situ TEM monitoring of thermal decomposition in individual boron nitride nanotubes. JOM 2010, 62, 69–73. [Google Scholar] [CrossRef]
- Song, L.; Ci, L.; Lu, H.; Sorokin, P.B.; Jin, C.; Ni, J.; Kvashnin, A.G.; Kvashnin, D.G.; Lou, J.; Yakobson, B.I.; et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Horibe, H.; Shirai, T.; Hotta, Y.; Nakano, H.; Nagai, H.; Mitsuishi, K.; Watari, K. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J. Mater. Chem. 2010, 20, 2749–2752. [Google Scholar] [CrossRef]
- Li, T.-L.; Hsu, S.L.-C. Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride. J. Phys. Chem. B 2010, 114, 6825–6829. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhi, C.; Weng, Q.; Bando, Y.; Golberg, D. Boron Nitride Nanosheets: Novel Syntheses and Applications in polymeric Composites. J. Phys. Conf. Ser. 2013, 471, 012003. [Google Scholar] [CrossRef]
- Wu, Y.; Xue, Y.; Qin, S.; Liu, D.; Wang, X.; Hu, X.; Li, J.; Wang, X.; Bando, Y.; Golberg, D.; et al. BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications. ACS Appl. Mater. Interfaces 2017, 9, 43163–43170. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Zhang, H.; Wu, Y.; Zhang, B.; Liu, D.; Qin, S.; Liu, Z.; Liu, L.; Ma, Y.; Chen, Y. Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy 2014, 6, 219–224. [Google Scholar] [CrossRef]
- Pakdel, A.; Zhi, C.; Bando, Y.; Nakayama, T.; Golberg, D. Boron Nitride Nanosheet Coatings with Controllable Water Repellency. ACS Nano 2011, 5, 6507–6515. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J.; Liu, D.; Yang, C.; Liu, Y.; Ruoff, R.S.; Lei, W. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat. Commun. 2018, 9, 1902. [Google Scholar] [CrossRef]
- Lei, W.; Portehault, D.; Liu, D.; Qin, S.; Chen, Y. Porous boron nitride nanosheets for effective water cleaning. Nat. Commun. 2013, 4, 1777. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Low, Z.X.; Kim, S.; Zhang, H.C.; Chen, X.F.; Hou, J.; Seong, J.G.; Lee, Y.M.; Simon, G.P.; Davies, C.H.J.; et al. Functionalized Boron Nitride Nanosheets: A Thermally Rearranged Polymer Nanocomposite Membrane for Hydrogen Separation. Angew. Chem. Int. Ed. 2018, 57, 16056–16061. [Google Scholar] [CrossRef]
- Ameen, A.W.; Ji, J.; Tamaddondar, M.; Moshenpour, S.; Foster, A.B.; Fan, X.; Budd, P.M.; Mattia, D.; Gorgojo, P. 2D boron nitride nanosheets in PIM-1 membranes for CO2/CH4 separation. J. Membr. Sci. 2021, 636, 119527. [Google Scholar] [CrossRef]
- Chen, B.; Liang, C.; Yang, J.; Contreras, D.S.; Clancy, Y.L.; Lobkovsky, E.B.; Yaghi, O.M.; Dai, S. A Microporous Metal–Organic Framework for Gas-Chromatographic Separation of Alkanes. Angew. Chem. Int. Ed. 2006, 118, 1418–1421. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, L.; Ji, C.; Zhou, J.; Cen, K. Porous ceramic hollow fiber-supported Pebax/PEGDME composite membrane for CO2 separation from biohythane. RSC Adv. 2015, 5, 60453–60459. [Google Scholar] [CrossRef]
- Dai, Y.; Ruan, X.; Yan, Z.; Yang, K.; Yu, M.; Li, H.; Zhao, W.; He, G. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Sep. Purif. Technol. 2016, 166, 171–180. [Google Scholar] [CrossRef]
- Tang, P.H.; So, P.B.; Li, W.H.; Hui, Z.Y.; Hu, C.C.; Lin, C.H. Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation. Membranes 2021, 11, 404. [Google Scholar] [CrossRef] [PubMed]
- Casadei, R.; Giacinti Baschetti, M.; Yoo, M.J.; Park, H.B.; Giorgini, L. Pebax® 2533/Graphene Oxide Nanocomposite Membranes for Carbon Capture. Membranes 2020, 10, 188. [Google Scholar] [CrossRef]
- Guo, F.; Li, B.; Ding, R.; Li, D.; Jiang, X.; He, G.; Xiao, W. A Novel Composite Material UiO-66@HNT/Pebax Mixed Matrix Membranes for Enhanced CO2/N2 Separation. Membranes 2021, 11, 693. [Google Scholar] [CrossRef]
- Daynes, H.A. The Process of Diffusion through a Rubber Membrane. Proc. R. Soc. Lond. Ser. A 1920, 97, 286–307. [Google Scholar]
- Barrer, R.M.; Rideal, E.K. Permeation, diffusion and solution of gases in organic polymers. Trans. Faraday Soc. 1939, 35, 628–643. [Google Scholar] [CrossRef]
Membranes | Tg (°C) | PEO | PA |
---|---|---|---|
Tg (°C) | Tm (°C) | ||
Pristine Pebax | −54.3 | 14.74 | 203.82 |
5 wt.% | −52.7 | 14.16 | 203.75 |
10 wt.% | −52.2 | 14.39 | 203.91 |
15 wt.% | −52.4 | 14.53 | 203.46 |
20 wt.% | −53.0 | 14.41 | 204.02 |
Sample | BNNS | ZIF-8@BNNS |
---|---|---|
BET surface/m2∙g−1 | 76.35 | 448.36 |
Pore volume/cm3∙g−1 | 0.39 | 0.54 |
Average pore size/nm | 3.41 | 1.08 |
ZIF-8@BNNS Loading (wt.%) | D(CO2) a | S(CO2) b | D(N2) a | S(N2) b |
---|---|---|---|---|
0 | 10.43 ± 0.02 | 7.76 ± 0.03 | 8.25 ± 0.04 | 0.20 ± 0.01 |
5 | 12.59 ± 0.03 | 8.21 ± 0.04 | 5.96 ± 0.03 | 0.24 ± 0.02 |
10 | 12.66 ± 0.01 | 8.22 ± 0.02 | 5.8 ± 0.03 | 0.24 ± 0.01 |
15 | 12.79 ± 0.04 | 8.23 ± 0.02 | 5.77 ± 0.04 | 0.23 ± 0.02 |
20 | 12.94 ± 0.03 | 8.23 ± 0.04 | 5.6 ± 0.03 | 0.23 ± 0.01 |
Materials | Conditions | PCO2 (Barrer) | αCO2/N2 | Ref. |
---|---|---|---|---|
Pebax-1657 | 5 bar, 25 °C | 78.6 | 48.7 | This work |
ZIF-8/Pebax-1657 | - | 199.57 | 53.88 | [45] |
pGO/Pebax-2533 | 1 bar, 35 °C | 380.44 | 24.19 | [46] |
BNNS/Pebax-1657 | 5 bar, 25 °C | 45.96 | 64.01 | This work |
UiO-66@HNT/Pebax-1657 | 5 bar, 25 °C | 119.08 | 76.26 | [47] |
ZCN/Pebax-1657 | 2 bar, 25 °C | 110.5 | 84.4 | [28] |
ZIF-8@BNNS/Pebax-1657 | 5 bar, 25 °C | 106.5 | 83.2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Xiao, W.; Ma, C.; Ruan, X.; He, G.; Wang, H.; Yang, Z.; Jiang, X. Constructing Gas Transmission Pathways in Two-Dimensional Composite Material ZIF-8@BNNS Mixed-Matrix Membranes to Enhance CO2/N2 Separation Performance. Membranes 2023, 13, 444. https://doi.org/10.3390/membranes13040444
Guo F, Xiao W, Ma C, Ruan X, He G, Wang H, Yang Z, Jiang X. Constructing Gas Transmission Pathways in Two-Dimensional Composite Material ZIF-8@BNNS Mixed-Matrix Membranes to Enhance CO2/N2 Separation Performance. Membranes. 2023; 13(4):444. https://doi.org/10.3390/membranes13040444
Chicago/Turabian StyleGuo, Fei, Wu Xiao, Canghai Ma, Xuehua Ruan, Gaohong He, Hanli Wang, Zhendong Yang, and Xiaobin Jiang. 2023. "Constructing Gas Transmission Pathways in Two-Dimensional Composite Material ZIF-8@BNNS Mixed-Matrix Membranes to Enhance CO2/N2 Separation Performance" Membranes 13, no. 4: 444. https://doi.org/10.3390/membranes13040444
APA StyleGuo, F., Xiao, W., Ma, C., Ruan, X., He, G., Wang, H., Yang, Z., & Jiang, X. (2023). Constructing Gas Transmission Pathways in Two-Dimensional Composite Material ZIF-8@BNNS Mixed-Matrix Membranes to Enhance CO2/N2 Separation Performance. Membranes, 13(4), 444. https://doi.org/10.3390/membranes13040444