A Green Method for the Determination of Cadmium in Natural Waters Based on Multi-Fibre Supported Liquid Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Equipment
2.3. Extraction Procedure
2.4. Optimisation of the Supported Liquid Membrane Method
3. Results
3.1. Univariate Pre-Optimisation of the Supported Liquid Membrane Method
3.1.1. Effect of Extraction Time
3.1.2. Effect of Hollow Fibre Length
3.1.3. Effect of Cyanex® 272 Concentration
3.1.4. Effect of HNO3 Concentration
3.1.5. Effect of Stirring Rate
3.2. Multivariate Optimisation of the Supported Liquid Membrane Method
3.3. Selectivity of Cadmium Transport and Chemical Speciation
3.4. Analytical Performance
3.5. Application to Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kislik, V. Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Song, X.; Huang, X. Recent developments in microextraction techniques for detection and speciation of heavy metals. Adv. Sample Prep. 2022, 2, 100019. [Google Scholar] [CrossRef]
- Yamini, Y.; Rezazadeh, M.; Seidi, S. Liquid-phase microextraction—The different principles and configurations. TrAC Trends Anal. Chem. 2019, 112, 264–272. [Google Scholar] [CrossRef]
- López-López, J.A.; Mendiguchía, C.; Pinto, J.J.; Moreno, C. Application of Solvent-Bar Micro-Extraction for the Determination of Organic and Inorganic Compounds. TrAC Trends Anal. Chem. 2019, 110, 57–65. [Google Scholar] [CrossRef]
- Dmitrienko, S.G.; Apyari, V.V.; Tolmacheva, V.V.; Gorbunova, M.V. Liquid–Liquid Extraction of Organic Compounds into a Single Drop of the Extractant: Overview of Reviews. J. Anal. Chem. 2021, 76, 907–919. [Google Scholar] [CrossRef]
- Kannouma, R.E.; Hammad, M.A.; Kamal, A.H.; Mansour, F.R. Miniaturization of liquid-liquid extraction; the barriers and the enablers. Microchem. J. 2022, 182, 107863. [Google Scholar] [CrossRef]
- Available online: http://water.epa.gov/scitech/methods/cwa/pollutants.cfm (accessed on 14 December 2022).
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32000L0060 (accessed on 14 December 2022).
- Directive 2006/11/EC of the European Parliament and of the Council of 15 February 2006 on Pollution Caused by Certain Dangerous Substances Discharged into the Aquatic Environment of the Community. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32006L0011 (accessed on 14 December 2022).
- Kumar, V.; Sharma, A.; Cerdá, A. Heavy Metals in the Environment: Impact, Assessment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Wang, L.K.; Chen, J.P.; Hung, Y.; Shammas, N.K. Heavy Metals in the Environment; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Xiao, H.; Wang, W.; Pi, S.; Cheng, Y.; Xie, Q. Pyridine-2-sulfonic (or carboxylic) acid modified glassy carbon electrode for anodic stripping voltammetry analysis of Cd2+ and Pb2+. Anal. Chim. Acta 2020, 1135, 20–28. [Google Scholar] [CrossRef]
- Nalawade, A.M.; Nalawade, R.A.; Shejwal, R.V.; Kamble, G.S.; Ling, Y.; Anuse, M.A. Development of a reliable analytical method for the precise extractive spectrophotometric determination of cadmium(II) by using of chromogenic reagent: Analysis of real samples. Int. J. Environ. Anal. Chem. 2022, 102, 4158–4177. [Google Scholar] [CrossRef]
- Şanlier Uҫak, Ş.; Aydin, A. A novel thiourea derivative for preconcentration of copper(II), nickel(II), cadmium(II), lead(II) and iron(II) from seawater samples for Flame Atomic Absorption Spectrophotometry. Mar. Pollut. Bull. 2022, 180, 113787. [Google Scholar] [CrossRef] [PubMed]
- Montoro-Leal, P.; Garcia-Mesa, J.C.; Siles Cordero, M.T.; Lopez Guerrero, M.M.; Vereda Alonso, E. Magnetic dispersive solid phase extraction for simultaneous enrichment of cadmium and lead in environmental water samples. Microchem. J. 2020, 155, 104796. [Google Scholar] [CrossRef]
- Greda, K.; Welna, M.; Szymczycha-Madeja, A.; Pohl, P. Sensitive determination of Ag, Bi, Cd, Hg, Pb, Tl, and Zn by inductively coupled plasma optical emission spectrometry combined with the microplasma-assisted vapor generation. Talanta 2022, 249, 123694. [Google Scholar] [CrossRef]
- Soriano, E.; Pastor, A.; de la Guardia, M. Multielemental determination of trace mineral elements in seawater by dynamic reaction cell inductively coupled plasma-mass spectrometry after Al(OH)3 coprecipitation. Microchem. J. 2020, 157, 104864. [Google Scholar] [CrossRef]
- Samanta, S.; Cloete, R.; Loock, J.; Rossouw, R.; Roychoudhury, A.N. Determination of trace metal (Mn, Fe, Ni, Cu, Zn, Co, Cd and Pb) concentrations in seawater using single quadrupole ICP-MS: A comparison between offline and online preconcentration setups. Minerals 2021, 11, 1289. [Google Scholar] [CrossRef]
- Unutkan, T.; Seda, E.; Öztürk, E.; Bakirdere, S. Accurate and sensitive determination of concentrations of twenty-two elements in the surface water from west Antarctica. Water Soil Air Pollut. 2022, 233, 233. [Google Scholar]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. Methods of Seawater Analysis, 3rd ed.; Wiley-VCH: Weinheim, Germany, 1999. [Google Scholar]
- Lucena, R.; Cárdenas, S. Analytical sample treatment: Basics and trends. In Analytical Sample Preparation with Nano- and Other High-Performance Materials; Lucena, R., Cárdenas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–11. [Google Scholar]
- Liu, H.; Dasgupta, P.K. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal. Chem. 1996, 68, 1817–1821. [Google Scholar] [CrossRef] [PubMed]
- Jeannot, M.A.; Cantwell, F.F. Solvent microextraction into a single drop. Anal. Chem. 1996, 68, 2236–2240. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Pasias, I.N.; Rousis, N.I.; Psoma, A.K.; Thomaidis, N.S. Simultaneous or sequential multi-element graphite furnace atomic absorption spectrometry techniques: Advances within the last 20 years. At. Spectrosc. 2021, 42, 310–327. [Google Scholar]
- de la Calle, I.; Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review. Anal. Chim. Acta 2016, 936, 12–39. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, B.; He, M.; Hu, B. Switchable solvent based liquid phase microextraction of trace lead and cadmium from environmental and biological samples prior to graphite furnace atomic absorption spectrometry detection. Microchem. J. 2018, 139, 380–385. [Google Scholar] [CrossRef]
- Dadfarnia, S.; Shabani, A.M.H. Recent development in liquid phase microextraction for determination of trace level concentration of metals—A review. Anal. Chim. Acta 2010, 658, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.; Andrade, M.G.; Azevedo, V. Methods of liquid phase microextraction for the determination of cadmium in environmental samples. Environ. Monit. Assess. 2017, 189, 444. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, R.; Bedendo, G.; Schneider, J.; Carasek, E. Isolation and preconcentration of Cd(II) from environmental samples using polypropylene porous membrane in a hollow fiber renewal liquid membrane extraction procedure and determination by FAAS. J. Haz. Mat. 2010, 177, 567–572. [Google Scholar]
- Zeng, C.J.; Yang, F.W.; Zhou, J.; Qiu, H.L. Determination of Cd in water samples by Hollow-fiber-supported liquid-membrane extraction coupled with thermospray-flame-furnace atomic-absorption spectrometry. Spectrosc. Lett. 2011, 44, 278–284. [Google Scholar] [CrossRef]
- Chen, H.; Han, J.; Wang, Y.; Hu, Y.; Ni, L.; Liu, Y.; Kang, W.; Liu, Y. Hollow fiber liquid-phase microextraction of cadmium(II) using an ionic liquid as the extractant. Microchim. Acta 2014, 181, 1455–1461. [Google Scholar] [CrossRef]
- Pont, N.; Salvadó, V.; Fontás, C. Applicability of a supported liquid membrane in the enrichment and determination of cadmium from complex aqueous samples. Membranes 2018, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Anagnostou, D.D.; Fiamegos, Y.C.; Stalikas, C.D. Determination of cadmium and lead in aqueous environmental samples after complexation and microextraction onto the surface of an empty solvent-impregnated polypropylene fibre coupled with electrothermal AAS. Int. J. Environ. Anal. Chem. 2012, 92, 1227–1238. [Google Scholar] [CrossRef]
- Herce-Sesa, B.; López-López, J.A.; Pinto, J.; Moreno, C. Ionic liquid-based solvent micro-extraction of Ag and Cd form saline and hyper-saline waters. Chem. Eng. J. 2017, 308, 649–655. [Google Scholar] [CrossRef]
- Herce-Sesa, B.; López-López, J.A.; Moreno, C. Ionic liquid solvent bar micro-extraction of CdCln(n−2)- species for ultratrace Cd determination in seawater. Chemosphere 2018, 193, 306–312. [Google Scholar] [CrossRef]
- Herce-Sesa, B.; Pirkwieser, P.; López-López, J.A.; Jirsa, F.; Moreno, C. Selective liquid phase micro-extraction of metal chloro-complexes from saline waters using ionic liquids. J. Clean. Prod. 2020, 262, 121415. [Google Scholar] [CrossRef]
- Morgan, E. Chemometrics: Experimental Design; Wiley: Belmont, FL, USA, 1995. [Google Scholar]
- Dżygiel, P.; Wieczorek, P.P. Supported Liquid Membranes and Their Modifications: Definition, Classification, Theory, Stability, Application and Perspectives. In Liquid Membranes. Principles and Applications in Chemical Separations and Wastewater Treatment; Kislik, V.S., Ed.; Elsevier: Amsterdam, The Nederlands, 2010. [Google Scholar]
- Al-Rossies, A.A.S.; Al-Anazi, B.D.; Paiaman, A.M. Effect of pH-values on the contact angle and interfacial tension. NAFTA 2010, 61, 181–186. [Google Scholar]
- Irigoyen, L.; Moreno, C.; Mendiguchía, C.; García-Vargas, M. Application of liquid membranes to sample preconcentration for the spectrometric determination of cadmium in seawater. J. Memb. Sci. 2006, 274, 169–172. [Google Scholar] [CrossRef]
Time (h) | HNO3 (M) | Cyanex® 272 (M) | EF | |
---|---|---|---|---|
1 | 2.25 | 0.209 | 0.8 | 39.26 |
2 | 3.5 | 0.175 | 1.1 | 103.16 |
3 | 3.5 | 0.075 | 0.5 | 136.94 |
4 | 1 | 0.175 | 1.1 | 10.88 |
5 | 3.5 | 0.075 | 1.1 | 192.6 |
6 | 2.25 | 0.125 | 1.3 | 93.96 |
7 | 2.25 | 0.125 | 0.8 | 122.54 |
8 | 2.25 | 0.041 | 0.8 | 121.44 |
9 | 2.25 | 0.125 | 0.8 | 84.74 |
10 | 1 | 0.175 | 0.5 | 13.34 |
11 | 4.35 | 0.125 | 0.8 | 231.51 |
12 | 1 | 0.075 | 0.5 | 11.82 |
13 | 1 | 0.075 | 1.1 | 74.87 |
14 | 2.25 | 0.125 | 0.3 | 12.55 |
15 | 3.5 | 0.175 | 0.5 | 21.98 |
16 | 0.15 | 0.125 | 0.8 | 0.52 |
17 | 2.25 | 0.209 | 0.8 | 21.08 |
18 | 3.5 | 0.175 | 1.1 | 108.86 |
19 | 3.5 | 0.075 | 0.5 | 131.28 |
20 | 1 | 0.175 | 1.1 | 13.4 |
21 | 3.5 | 0.075 | 1.1 | 196.54 |
22 | 2.25 | 0.125 | 1.3 | 106.97 |
23 | 2.25 | 0.125 | 0.8 | 99.33 |
24 | 2.25 | 0.041 | 0.8 | 146.37 |
25 | 2.25 | 0.125 | 0.8 | 69.81 |
26 | 1 | 0.175 | 0.5 | 0.8 |
27 | 4.35 | 0.125 | 0.8 | 182.94 |
28 | 1 | 0.075 | 0.5 | 22.88 |
29 | 1 | 0.075 | 1.1 | 70.97 |
30 | 2.25 | 0.125 | 0.3 | 5.53 |
31 | 3.5 | 0.175 | 0.5 | 16.01 |
32 | 0.15 | 0.125 | 0.8 | 0.3 |
Technique | Vol. (mL) | EF | LOD (ng L−1) | Reference |
---|---|---|---|---|
SAGD-ICP-OES a | 10 | -- | 60 | 16 |
NH3-DRC-ICP-MS b | 40 | 2 | 5 | 17 |
SQ-ICP-MS c | 10 | 30 | 0.63 | 18 |
HFRLM-FAAS d | 20 | 107 | 1500 | 30 |
HFLPME-IL-TS-FF-AAS e | 100 | 90 | 9 | 31 |
HFLPME-IL-GFAAS f | 50 | 162 | 0.12 | 32 |
HFLPME-ETAAS g | 25 | 30 | 4 | 34 |
3SBME-IL-GFAAS h | 35 | 65 | 4.5 | 36 |
HFLPME-GFAAS i | 250 | 130 | 0.13 | This method |
Sample | [Cd]spiked ng L−1 | [Cd]found ng L−1 | % R |
---|---|---|---|
Bottled water 1 | --- | 4.5 | |
Bottled water 1 | 10 | 14.4 | 99.4 |
Bottled water 2 | --- | 2.7 | |
Bottled water 2 | 10 | 11.7 | 92.3 |
Tap water | --- | 2.2 | |
Tap water | 10 | 14.6 | 119.9 |
Seawater | 50 | 67 | 133.8 |
Seawater | 100 | 104 | 103.9 |
Seawater | 200 | 208 | 103.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, J.J.; Mánuel, V.; Moreno, C. A Green Method for the Determination of Cadmium in Natural Waters Based on Multi-Fibre Supported Liquid Membranes. Membranes 2023, 13, 327. https://doi.org/10.3390/membranes13030327
Pinto JJ, Mánuel V, Moreno C. A Green Method for the Determination of Cadmium in Natural Waters Based on Multi-Fibre Supported Liquid Membranes. Membranes. 2023; 13(3):327. https://doi.org/10.3390/membranes13030327
Chicago/Turabian StylePinto, Juan J., Victoria Mánuel, and Carlos Moreno. 2023. "A Green Method for the Determination of Cadmium in Natural Waters Based on Multi-Fibre Supported Liquid Membranes" Membranes 13, no. 3: 327. https://doi.org/10.3390/membranes13030327
APA StylePinto, J. J., Mánuel, V., & Moreno, C. (2023). A Green Method for the Determination of Cadmium in Natural Waters Based on Multi-Fibre Supported Liquid Membranes. Membranes, 13(3), 327. https://doi.org/10.3390/membranes13030327