Silicic Acid Removal by Metal-Organic Frameworks for Silica-Scale Mitigation in Reverse Osmosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MIL-101(Fe) Fabrication and Characterization
2.3. Evaluation of Adsorption Performance
2.4. Membrane Silica-Scaling Experiment
3. Results and Discussion
3.1. Structural Morphology of MIL-101(Fe)
3.2. Chemical Composition of MIL-101(Fe)
3.3. Silicic Acid Adsorption of MIL-101(Fe)
3.3.1. Effect of Initial pH on Silicic Acid Adsorption
3.3.2. Effect of Mixing Time and Kinetics on Silicic Acid Adsorption
3.3.3. Effect of Initial Concentration and Adsorption Isotherm Study
3.3.4. Effect of Temperature and Adsorption Thermodynamics Study
3.3.5. Adsorption Mechanism Study
3.3.6. Silica-Scale Mitigation on RO Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mauter, M.S.; Zucker, I.; Perreault, F.; Werber, J.R.; Kim, J.-H.; Elimelech, M. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 2018, 1, 166–175. [Google Scholar] [CrossRef]
- Zhang, P.P.; Liao, Q.H.; Yao, H.Z.; Huang, Y.X.; Cheng, H.H.; Qu, L.T. Direct solar steam generation system for clean water production. Energy Storage Mater. 2019, 18, 429–446. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Ezugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Fane, A.G. A grand challenge for membrane desalination: More water, less carbon. Desalination 2018, 426, 155–163. [Google Scholar] [CrossRef]
- Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F. Membrane fouling in desalination and its mitigation strategies. Desalination 2018, 425, 130–155. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef]
- Zhao, J.J.; Wang, M.H.; Lababidi, H.M.S.; Al-Adwani, H.; Gleason, K.K. A review of heterogeneous nucleation of calcium carbonate and control strategies for scale formation in multi-stage flash (MSF) desalination plants. Desalination 2018, 442, 75–88. [Google Scholar] [CrossRef]
- Tzotzi, C.; Pahiadaki, T.; Yiantsios, S.G.; Karabelas, A.J.; Andritsos, N. A study of CaCO3 scale formation and inhibition in RO and NF membrane processes. J. Membr. Sci. 2007, 296, 171–184. [Google Scholar] [CrossRef]
- Lin, C.J.; Shirazi, S.; Rao, P.; Agarwal, S. Effects of operational parameters on cake formation of CaSO4 in nanofiltration. Water Res. 2006, 40, 806–816. [Google Scholar] [CrossRef]
- Park, D.J.; Supekar, O.D.; Greenberg, A.R.; Gopinath, J.T.; Bright, V.M. Real-time monitoring of calcium sulfate scale removal from RO desalination membranes using Raman spectroscopy. Desalination 2021, 497, 114736. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Tow, E.W.; Maswadeh, L.A.; Connors, G.B.; Swaminathan, J.; Lienhard, V.J.H. Inorganic fouling mitigation by salinity cycling in batch reverse osmosis. Water Res. 2018, 137, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Zaman, M.; Birkett, G.; Pratt, C.; Stuart, B.; Pratt, S. Downstream processing of reverse osmosis brine: Characterisation of potential scaling compounds. Water Res. 2015, 80, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Sahachaiyunta, P.; Koo, T.; Sheikholeslami, R. Effect of several inorganic species on silica fouling in RO membranes. Desalination 2002, 144, 373–378. [Google Scholar] [CrossRef]
- Hater, W.; zum Kolk, C.; Braun, G.; Jaworski, J. The performance of anti-scalants on silica-scaling in reverse osmosis plants. Desalination Water Treat. 2013, 51, 908–914. [Google Scholar] [CrossRef]
- Hater, W.; zum Kolk, C.; Dupoiron, C.; Braun, G.; Harrer, T.; Gotz, T. Silica scaling on reverse osmosis membranes—Investigation and new test methods. Desalination Water Treat. 2011, 31, 326–330. [Google Scholar] [CrossRef]
- Kempter, A.; Gaedt, T.; Boyko, V.; Nied, S.; Hirsch, K. New insights into silica scaling on RO-membranes. Desalination Water Treat. 2013, 51, 899–907. [Google Scholar] [CrossRef]
- Park, Y.M.; Yeon, K.M.; Park, C.H. Silica treatment technologies in reverse osmosis for industrial desalination: A review. Environ. Eng. Res. 2020, 25, 819–829. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, G.-R.; Das, R. Inorganic scaling in reverse osmosis (RO) desalination: Mechanisms, monitoring, and inhibition strategies. Desalination 2019, 468, 114065. [Google Scholar] [CrossRef]
- Bush, J.A.; Vanneste, J.; Gustafson, E.M.; Waechter, C.A.; Jassby, D.; Turchi, C.S.; Cath, T.Y. Prevention and management of silica scaling in membrane distillation using pH adjustment. J. Membr. Sci. 2018, 554, 366–377. [Google Scholar] [CrossRef]
- Tan, M.; Fang, L.; Zhang, B.; Zhao, Y.; Meng, X.; Li, F. Synergistic inhibition effect and mechanism of polycation and polyanion on colloidal silica. Colloids Surf. A-Physicochem. Eng. Asp. 2021, 610, 125701. [Google Scholar] [CrossRef]
- Rolf, J.; Cao, T.; Huang, X.; Boo, C.; Li, Q.; Elimelech, M. Inorganic Scaling in Membrane Desalination: Models, Mechanisms, and Characterization Methods. Environ. Sci. Technol. 2022, 56, 7484–7511. [Google Scholar] [CrossRef] [PubMed]
- Bush, J.A.; Vanneste, J.; Cath, T.Y. Comparison of membrane distillation and high-temperature nanofiltration processes for treatment of silica-saturated water. J. Membr. Sci. 2019, 570, 258–269. [Google Scholar] [CrossRef]
- Jiang, A.; Wang, H.; Lin, Y.; Cheng, W.; Wang, J. A study on optimal schedule of membrane cleaning and replacement for spiral-wound SWRO system. Desalination 2017, 404, 259–269. [Google Scholar] [CrossRef]
- Antony, A.; Low, J.H.; Gray, S.; Childress, A.E.; Le-Clech, P.; Leslie, G. Scale formation and control in high pressure membrane water treatment systems: A review. J. Membr. Sci. 2011, 383, 1–16. [Google Scholar] [CrossRef]
- Choudhury, R.R.; Gohil, J.M.; Mohanty, S.; Nayak, S.K. Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. J. Mater. Chem. A 2018, 6, 313–333. [Google Scholar] [CrossRef]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef]
- Milne, N.A.; O’Reilly, T.; Sanciolo, P.; Ostarcevic, E.; Beighton, M.; Taylor, K.; Mullett, M.; Tarquin, A.J.; Gray, S.R. Chemistry of silica scale mitigation for RO desalination with particular reference to remote operations. Water Res. 2014, 65, 107–133. [Google Scholar] [CrossRef]
- Guan, Y.-F.; Marcos-Hernández, M.; Lu, X.; Cheng, W.; Yu, H.-Q.; Elimelech, M.; Villagrán, D. Silica Removal Using Magnetic Iron–Aluminum Hybrid Nanomaterials: Measurements, Adsorption Mechanisms, and Implications for Silica Scaling in Reverse Osmosis. Environ. Sci. Technol. 2019, 53, 13302–13311. [Google Scholar] [CrossRef]
- Naren, G.; Ohashi, H.; Okaue, Y.; Yokoyama, T. Adsorption kinetics of silicic acid on akaganeite. J. Colloid Interface Sci. 2013, 399, 87–91. [Google Scholar] [CrossRef]
- Qiu, S.L.; Xue, M.; Zhu, G.S. Metal-organic framework membranes: From synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116–6140. [Google Scholar] [CrossRef]
- Lian, X.; Erazo-Oliveras, A.; Pellois, J.-P.; Zhou, H.-C. High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Nat. Commun. 2017, 8, 2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Chen, B.; Reineke, T.M.; Li, H.; Eddaoudi, M.; Moler, D.B.; O’Keeffe, M.; Yaghi, O.M. Assembly of Metal−Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures. J. Am. Chem. Soc. 2001, 123, 8239–8247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddaoudi, M.; Li, H.L.; Yaghi, O.M. Highly porous and stable metal-organic frameworks: Structure design and sorption properties. J. Am. Chem. Soc. 2000, 122, 1391–1397. [Google Scholar] [CrossRef]
- Du, Y.J.; Jia, X.T.; Zhong, L.; Jiao, Y.; Zhang, Z.J.; Wang, Z.Y.; Feng, Y.X.; Bilal, M.; Cui, J.D.; Jia, S.R. Metal-organic frameworks with different dimensionalities: An ideal host platform for enzyme@MOF composites. Coord. Chem. Rev. 2022, 454, 214327. [Google Scholar] [CrossRef]
- Ma, X.J.; Chai, Y.T.; Li, P.; Wang, B. Metal-Organic Framework Films and Their Potential Applications in Environmental Pollution Control. Acc. Chem. Res. 2019, 52, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Herm, Z.R.; Swisher, J.A.; Smit, B.; Krishna, R.; Long, J.R. Metal−Organic Frameworks as Adsorbents for Hydrogen Purification and Precombustion Carbon Dioxide Capture. J. Am. Chem. Soc. 2011, 133, 5664–5667. [Google Scholar] [CrossRef]
- Ding, M.L.; Flaig, R.W.; Jiang, H.L.; Yaghi, O.M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828. [Google Scholar] [CrossRef]
- Xu, M.; Feng, L.; Yan, L.-N.; Meng, S.-S.; Yuan, S.; He, M.-J.; Liang, H.; Chen, X.-Y.; Wei, H.-Y.; Gu, Z.-Y.; et al. Discovery of precise pH-controlled biomimetic catalysts: Defective zirconium metal–organic frameworks as alkaline phosphatase mimics. Nanoscale 2019, 11, 11270–11278. [Google Scholar] [CrossRef]
- Chen, B.; Eddaoudi, M.; Hyde, S.T.; O’Keeffe, M.; Yaghi, O.M. Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores. Science 2001, 291, 1021–1023. [Google Scholar] [CrossRef]
- McDonald, T.M.; Lee, W.R.; Mason, J.A.; Wiers, B.M.; Hong, C.S.; Long, J.R. Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 2012, 134, 7056–7065. [Google Scholar] [CrossRef]
- Jia, J.; Xu, F.; Long, Z.; Hou, X.; Sepaniak, M.J. Metal–organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg+. Chem. Commun. 2013, 49, 4670–4672. [Google Scholar] [CrossRef]
- Zhao, X.L.; Zhao, J.; Sun, Y.Y.; Ouyang, H.; Chen, N.; Ren, J.; Li, Y.; Chen, S.; Yang, D.J.; Xing, B.S. Selenite capture by MIL-101(Fe) through Fe-O-Se bonds at free coordination Fe sites. J. Hazard. Mater. 2022, 424, 127715. [Google Scholar] [CrossRef]
- Ni, P.; Fox, J.T. Metal organic frameworks synthesized with green chemistry for the removal of silicic acid from aqueous solutions. Sep. Purif. Technol. 2021, 272, 118118. [Google Scholar] [CrossRef]
- Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042. [Google Scholar] [CrossRef]
- Wang, D.B.; Jia, F.Y.; Wang, H.; Chen, F.; Fang, Y.; Dong, W.B.; Zeng, G.M.; Li, X.M.; Yang, Q.; Yuan, X.Z. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J. Colloid Interface Sci. 2018, 519, 273–284. [Google Scholar] [CrossRef]
- Xie, Q.Y.; Li, Y.; Lv, Z.L.; Zhou, H.; Yang, X.J.; Chen, J.; Guo, H. Effective Adsorption and Removal of Phosphate from Aqueous Solutions and Eutrophic Water by Fe-based MOFs of MIL-101. Sci. Rep. 2017, 7, 3316. [Google Scholar] [CrossRef] [Green Version]
- Latroche, M.; Surble, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P.L.; Lee, J.H.; Chang, J.S.; Jhung, S.H.; Ferey, G. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew. Chem.-Int. Ed. 2006, 45, 8227–8231. [Google Scholar] [CrossRef]
- Liu, R.J.; Xie, Y.D.; Cui, K.F.; Xie, J.; Zhang, Y.X.; Huang, Y.P. Adsorption behavior and adsorption mechanism of glyphosate in water by amino-MIL-101(Fe). J. Phys. Chem. Solids 2022, 161, 110403. [Google Scholar] [CrossRef]
- Thanh, H.T.M.; Phuong, T.T.T.; Hang, P.T.L.; Toan, T.T.T.; Tuyen, T.N.; Mau, T.X.; Khieu, D.Q. Comparative study of Pb(II) adsorption onto MIL-101 and Fe-MIL-101 from aqueous solutions. J. Environ. Chem. Eng. 2018, 6, 4093–4102. [Google Scholar] [CrossRef]
- Tang, J.; Yang, M.; Yang, M.; Wang, J.J.; Dong, W.J.; Wang, G. Heterogeneous Fe-MIL-101 catalysts for efficient one-pot four-component coupling synthesis of highly substituted pyrroles. New J. Chem. 2015, 39, 4919–4923. [Google Scholar] [CrossRef]
- Wu, Y.P.; Zhou, C.L.; Xue, S.S.; Li, C.; Lin, Y.H.; Zheng, Z.H.; Ding, X.B. Preparation and Oil Absorption of Magnetic and Porous Materials Based on Carboxymethyl Cellulose Sodium Modified Polyurethane Foams. Acta Polym. Sin. 2017, 516–523. [Google Scholar] [CrossRef]
- Lin, L.H.; Lee, H.T. A new modified silicone-TiO2 polymer composite film and its photocatalytic degradation. J. Appl. Polym. Sci. 2006, 102, 3341–3344. [Google Scholar] [CrossRef]
- Zheng, S.X.; Guo, S.; Wang, L. Influence of curing temperature on SiO2/resole hybrid coating films. J. Sol-Gel Sci. Technol. 2022, 101, 185–192. [Google Scholar] [CrossRef]
- He, L.; Dong, Y.N.; Zheng, Y.N.; Jia, Q.M.; Shan, S.Y.; Zhang, Y.Q. A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J. Hazard. Mater. 2019, 361, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, R. Derivation of Pseudo-First-Order, Pseudo-Second-Order and Modified Pseudo-First-Order rate equations from Langmuir and Freundlich isotherms for adsorption. Chem. Eng. J. 2020, 392, 123705. [Google Scholar] [CrossRef]
- Lima, E.C.; Gomes, A.A.; Tran, H.N. Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (Delta S degrees and Delta H degrees). J. Mol. Liq. 2020, 311, 113315. [Google Scholar] [CrossRef]
Adsorbent | qe (mg·g−1) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
k1 | qe,c (mg·g−1) | R2 | k2 | qe,c (mg·g−1) | R2 | ||
MIL-101(Fe) | 220.1 | 0.0342 | 13.54 | 0.9501 | 9.78 × 10−4 | 222.22 | 0.9971 |
Adsorbent | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
qm (mg·g−1) | b | R2 | Kf (mg·g−1) | n | R2 | |
MIL-101(Fe) | 185.18 | 0.1484 | 0.9879 | 8.6727 | 1.7578 | 0.9902 |
T (K) | ΔG (kJ·mol−1) | ΔH (kJ·mol−1) | ΔS (J·mol−1·K−1) |
---|---|---|---|
298.15 | −3.276 | 2.628 | 19.786 |
308.15 | −3.459 | ||
318.15 | −3.673 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Zhang, J.; Mufanebadza, T.N.; Tian, X.; Xie, L.; Zhao, S. Silicic Acid Removal by Metal-Organic Frameworks for Silica-Scale Mitigation in Reverse Osmosis. Membranes 2023, 13, 78. https://doi.org/10.3390/membranes13010078
Guo R, Zhang J, Mufanebadza TN, Tian X, Xie L, Zhao S. Silicic Acid Removal by Metal-Organic Frameworks for Silica-Scale Mitigation in Reverse Osmosis. Membranes. 2023; 13(1):78. https://doi.org/10.3390/membranes13010078
Chicago/Turabian StyleGuo, Rui, Jun Zhang, Taona Nashel Mufanebadza, Xinxia Tian, Lixin Xie, and Song Zhao. 2023. "Silicic Acid Removal by Metal-Organic Frameworks for Silica-Scale Mitigation in Reverse Osmosis" Membranes 13, no. 1: 78. https://doi.org/10.3390/membranes13010078
APA StyleGuo, R., Zhang, J., Mufanebadza, T. N., Tian, X., Xie, L., & Zhao, S. (2023). Silicic Acid Removal by Metal-Organic Frameworks for Silica-Scale Mitigation in Reverse Osmosis. Membranes, 13(1), 78. https://doi.org/10.3390/membranes13010078