Feasibility Study of Anaerobic Baffled Reactor Coupled with Anaerobic Filter Followed by Membrane Filtration for Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactor Design
2.2. Filter Media Characteristics
2.3. Seed Sludge and Wastewater Characteristics
2.4. Operational Strategy
2.5. Analytical Methods
3. Results and Discussion
3.1. COD and Nutrients Removal in Phase I
3.2. COD Removal in Phase II
3.3. TP Removal in Phase II
3.4. TKN Removal in Phase II
3.5. COD and Turbidity Removal in Membrane Reactor (Phase III)
3.6. TMP Profile of the Flat-Sheet Membrane Module
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belli, T.; Battistelli, A.; Costa, R.; Vidal, C.; Schlegel, A.; Lapolli, F. Evaluating the performance and membrane fouling of an electro-membrane bioreactor treating textile industrial wastewater. Int. J. Environ. Sci. Technol. 2019, 16, 6817–6826. [Google Scholar] [CrossRef]
- Ibrahim, S.; Azab El-Liethy, M.; Abia, A.L.K.; Abdel-Gabbar, M.; Mahmoud Al Zanaty, A.; Mohamed Kamel, M. Design of a bioaugmented multistage biofilter for accelerated municipal wastewater treatment and deactivation of pathogenic microorganisms. Sci. Total Environ. 2020, 703, 134786. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, H.; Khan, S.J.; Manzoor, K.; Adnan, M. Optimization of nutrient rich solution for direct fertigation using novel side stream anaerobic forward osmosis process to treat textile wastewater. J. Environ. Manag. 2021, 300, 113691. [Google Scholar] [CrossRef]
- Shebl, A.; Hassan, A.; Salama, D.M.; El-Aziz, A.; Abd Elwahed, M.S. Green synthesis of nanofertilizers and their application as a foliar for Cucurbita pepo L. J. Nanomater. 2019, 2019, 3476347. [Google Scholar] [CrossRef] [Green Version]
- Van Lier, J.B. High-Rate anaerobic wastewater treatment: Diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Sci. Technol. 2008, 57, 1137–1148. [Google Scholar] [CrossRef]
- Zerrouki, S.; Rihani, R.; Lekikot, K.; Ramdhane, I. Enhanced biogas production from anaerobic digestion of wastewater from the fruit juice industry by sonolysis: Experiments and modelling. Water Sci. Technol. 2021, 84, 644–655. [Google Scholar] [CrossRef]
- Hu, S.; Yang, F.; Liu, S.; Yu, L. The development of a novel hybrid aerating membrane-anaerobic baffled reactor for the simultaneous nitrogen and organic carbon removal from wastewater. Water Res. 2009, 43, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Ratanatamskul, C.; Charoenphol, C.; Yamamoto, K. Development of the anaerobic baffled reactor-membrane bioreactor (ABR-MBR) as a biological nutrient removal system for high-rise building wastewater recycling. Desalination Water Treat. 2015, 54, 908–915. [Google Scholar] [CrossRef]
- Sung, H.-N.; Katsou, E.; Statiris, E.; Anguilano, L.; Malamis, S. Operation of a modified anaerobic baffled reactor coupled with a membrane bioreactor for the treatment of municipal wastewater in Taiwan. Environ. Technol. 2019, 40, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Gholipour, A.; Stefanakis, A.I. A full-scale anaerobic baffled reactor and hybrid constructed wetland for university dormitory wastewater treatment and reuse in an arid and warm climate. Ecol. Eng. 2021, 170, 106360. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Watari, T.; Hatamoto, M.; Sutani, D.; Setiadi, T.; Yamaguchi, T. Evaluation of a combined anaerobic baffled reactor–downflow hanging sponge biosystem for treatment of synthetic dyeing wastewater. Environ. Technol. Innov. 2020, 19, 100913. [Google Scholar] [CrossRef]
- Liang, B.; Zhang, K.; Liu, D.; Yao, S.; Chen, S.; Ma, F.; Wang, Y.; Zhu, T. Exploration and verification of the feasibility of sulfur-based autotrophic denitrification process coupled with vibration method in a modified anaerobic baffled reactor for wastewater treatment. Sci. Total Environ. 2021, 786, 147348. [Google Scholar] [CrossRef]
- Aqaneghad, M.; Moussavi, G. Electrochemically enhancement of the anaerobic baffled reactor performance as an appropriate technology for treatment of municipal wastewater in developing countries. Sustain. Environ. Res. 2016, 26, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Hube, S.; Eskafi, M.; Hrafnkelsdóttir, K.F.; Bjarnadóttir, B.; Bjarnadóttir, M.Á.; Axelsdóttir, S.; Wu, B. Direct membrane filtration for wastewater treatment and resource recovery: A review. Sci. Total Environ. 2020, 710, 136375. [Google Scholar] [CrossRef]
- Maqbool, T.; Khan, S.J.; Lee, C.-H. Effects of filtration modes on membrane fouling behavior and treatment in submerged membrane bioreactor. Bioresour. Technol. 2014, 172, 391–395. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association; Water Environment Federation; American Water Works Association. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Hahn, M.J.; Figueroa, L.A. Pilot scale application of anaerobic baffled reactor for biologically enhanced primary treatment of raw municipal wastewater. Water Res. 2015, 87, 494–502. [Google Scholar] [CrossRef]
- Majid, A.; Mahna, M. Application of Lab-Scale MBBR to Treat Industrial Wastewater using K3 Carriers: Effects of HRT, High COD Influent, and Temperature. Int. J. Environ. Sci. Nat. Resour. 2019, 20, 35–42. [Google Scholar] [CrossRef]
- Jaafari, J.; Javidb, A.B.; Barzanounic, H.; Younesid, A.; Amir, N.; Farahanie, A.; Mousazadeh, M.; Soleimanie, P. Performance of modified one-stage Phoredox reactor with hydraulic up-flow in biological removal of phosphorus from municipal wastewater. Desalination Water Treat. 2019, 171, 216–222. [Google Scholar] [CrossRef]
- Renuka, R.; Mariraj Mohan, S.; Amal Raj, S. Hydrodynamic behaviour and its effects on the treatment performance of panelled anaerobic baffle-cum filter reactor. Int. J. Environ. Sci. Technol. 2016, 13, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Chen, X.; Wang, X.; Zheng, S.; Yang, L. Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)3. Chem. Eng. J. 2018, 335, 443–449. [Google Scholar] [CrossRef]
- Keating, C.; Chin, J.P.; Hughes, D.; Manesiotis, P.; Cysneiros, D.; Mahony, T.; Smith, C.J.; McGrath, J.W.; O’Flaherty, V. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater. Front. Microbiol. 2016, 7, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Wang, Y.; Guo, J.; Wang, W.; Dong, R. Start-Up and performance evaluation of upflow anaerobic sludge blanket reactor treating supernatant of hydrothermally treated municipal sludge: Effect of initial organic loading rate. Biochem. Eng. J. 2021, 166, 107843. [Google Scholar] [CrossRef]
- Ryu, H.-D.; Kim, D.; Kim, K.-Y.; Lee, S.-I. Enhancement of nitrogen removal in a modified dephanox process. Environ. Eng. Sci. 2008, 25, 601–614. [Google Scholar] [CrossRef]
- Assefa, R.; Bai, R.; Leta, S.; Kloos, H. Nitrogen removal in integrated anaerobic–aerobic sequencing batch reactors and constructed wetland system: A field experimental study. Appl. Water Sci. 2019, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Nasr, F.A.; Doma, H.S.; Nassar, H.F. Treatment of domestic wastewater using an anaerobic baffled reactor followed by a duckweed pond for agricultural purposes. Environmentalist 2009, 29, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Zha, X.; Ma, J.; Tsapekos, P.; Lu, X. Evaluation of an anaerobic baffled reactor for pretreating black water: Potential application in rural China. J. Environ. Manag. 2019, 251, 109599. [Google Scholar] [CrossRef]
- Gonçalves, R.F.; Assis, T.I.; Maciel, G.B.; Borges, R.M.; Cassini, S.T.A. Co-Digestion of municipal wastewater and microalgae biomass in an upflow anaerobic sludge blanket reactor. Algal Res. 2020, 52, 102117. [Google Scholar] [CrossRef]
Media | Surface Area/Piece (mm2) | Total Pieces Filled | Total Surface Area Available (mm2) |
---|---|---|---|
Kaldnes K3 (25 mm × 10 mm) | 500 mm2/mm3 | 687 | 2.45 × 106 |
PVC 25 mm | 1532 | 764 | 1.17 × 106 |
PVC 20 mm | 1296 | 955 | 1.24 × 106 |
PVC 15 mm | 1060 | 1273 | 1.35 × 106 |
Compound | Formula | Concentration (mg/L) |
---|---|---|
Glucose | C6H12O6 | 520 |
Ammonium Chloride | NH4Cl | 133.6 |
Potassium Dihydrogen Phosphate | KH2PO4 | 17.2 |
Calcium Chloride | CaCl2 | 4.8 |
Magnesium Sulfate | MgSO4 | 4.8 |
Ferric Chloride | FeCl3 | 0.5 |
Sodium Bicarbonate | NaHCO3 | 80 |
Cobalt Chloride | CoCl2 | 0.05 |
Zinc Chloride | ZnCl2 | 0.05 |
Nickel Chloride | NiCl2 | 0.05 |
ABR System | ||||
---|---|---|---|---|
HRT (h) | 14 | 12 | 10 | 8 |
OLR (kgCOD/m3.Day) | 0.90 (±0.02) | 1.05 (±0.02) | 1.26 (±0.03) | 1.58 (±0.04) |
Effluent COD (mg/L) | 125.8 (±4.88) | 147.7 (±7.86) | 166.4 (±5.19) | 183.6 (±6.70) |
COD Removal (%) | 74 (±0.97) | 72 (±1.58) | 69 (±1.34) | 65 (±1.73) |
Effluent TKN (mg/L) | 12.38 (±1.87) | 15.74 (±2.89) | 20.28 (±1.46) | 26.12 (±1.19) |
TKN Removal (%) | 63 (±0.89) | 56 (±1.31) | 44 (±1.42) | 27 (±3.34) |
Effluent TP (mg/L) | 9.4 (±1.63) | 9.8 (±1.32) | 10.05 (±1.1) | 10.4 (±1.49) |
TP Removal (%) | 35 (±1.07) | 33 (±1.98) | 31 (±0.58) | 28 (±0.95) |
Media Filled | 25 mm | 20 mm | 15 mm | Kaldnes |
---|---|---|---|---|
Number of Replicates | 15 | 15 | 15 | 15 |
Operational Days | 0–50 | 51–99 | 100–146 | 147–192 |
Influent COD (mg/L) | 534 (±13.7) | 534 (±13.7) | 534 (±13.7) | 534 (±13.7) |
Effluent COD (mg/L) | 118 (±23) | 113 (±21) | 112 (±25) | 102 (±18) |
COD Removal (%) | 78 (±3) | 79 (±5) | 79 (±4) | 81 |
Influent TKN (mg/L) | 33.48 (±2.0) | 33.48 (±2.0) | 33.48 (±2.0) | 33.48 (±2.0) |
Effluent TKN (mg/L) | 11.75 (±1.9) | 12.16 (±1.7) | 11.86 (±2.1) | 10.42 (±2.2) |
TKN Removal (%) | 65 (±2.8) | 63 (±3.2) | 63.1 (±4.5) | 69 (±1.5) |
Influent TP (mg/L) | 14.48 (±0.60) | 14.48 (±0.60) | 14.48 (±0.60) | 14.48 (±0.60) |
Effluent TP (mg/L) | 10.16 (±1.6) | 9.91 (±1.26) | 9.51 (±1.52) | 9.43 (±1.68) |
TP Removal (%) | 29 (±0.58) | 32 (±1.25) | 34.3 (±2.04) | 35 (±1.34) |
ORP (mV) | −334 (±12.8) | −259 (±56.7) | −253 (±57.5) | −342 (±11.1) |
pH | 7.19 (±0.13) | 7.16 (±0.05) | 7.16 (±0.07) | 7.25 (±0.27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Khan, S.J.; Miran, W.; Zaman, W.Q.; Aslam, A.; Shahzad, H.M.A. Feasibility Study of Anaerobic Baffled Reactor Coupled with Anaerobic Filter Followed by Membrane Filtration for Wastewater Treatment. Membranes 2023, 13, 79. https://doi.org/10.3390/membranes13010079
Khan A, Khan SJ, Miran W, Zaman WQ, Aslam A, Shahzad HMA. Feasibility Study of Anaerobic Baffled Reactor Coupled with Anaerobic Filter Followed by Membrane Filtration for Wastewater Treatment. Membranes. 2023; 13(1):79. https://doi.org/10.3390/membranes13010079
Chicago/Turabian StyleKhan, Aamir, Sher Jamal Khan, Waheed Miran, Waqas Qamar Zaman, Alia Aslam, and Hafiz Muhammad Aamir Shahzad. 2023. "Feasibility Study of Anaerobic Baffled Reactor Coupled with Anaerobic Filter Followed by Membrane Filtration for Wastewater Treatment" Membranes 13, no. 1: 79. https://doi.org/10.3390/membranes13010079
APA StyleKhan, A., Khan, S. J., Miran, W., Zaman, W. Q., Aslam, A., & Shahzad, H. M. A. (2023). Feasibility Study of Anaerobic Baffled Reactor Coupled with Anaerobic Filter Followed by Membrane Filtration for Wastewater Treatment. Membranes, 13(1), 79. https://doi.org/10.3390/membranes13010079