Improving the Separation Properties of Polybenzimidazole Membranes by Adding Acetonitrile for Organic Solvent Nanofiltration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Fabrication
2.3. Membrane Characterization
2.4. OSN Test
3. Results and Discussion
3.1. Effects of MeCN Concentration
3.1.1. Membrane Morphology
3.1.2. OSN Performance of PBI Membranes
3.2. Crosslinking Effect on Membrane Properties
3.2.1. FT-IR/XPS Analysis
3.2.2. Membrane Morphology
3.2.3. OSN Performance of Crosslinked Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marchetti, P.; Jimenez Solomon, M.F.; Szekely, G.; Livingston, A.G. Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 2014, 114, 10735–10806. [Google Scholar] [CrossRef] [PubMed]
- Székely, G.; Valtcheva, I.B.; Kim, J.F.; Livingston, A.G. Molecularly imprinted organic solvent nanofiltration membranes–Revealing molecular recognition and solute rejection behaviour. React. Funct. Polym. 2015, 86, 215–224. [Google Scholar] [CrossRef]
- Ali, S.; Shah, I.A.; Ihsanullah, I.; Feng, X. Nanocomposite membranes for organic solvent nanofiltration: Recent advances, challenges, and prospects. Chemosphere 2022, 308, 136329. [Google Scholar] [CrossRef] [PubMed]
- Buonomenna, M.; Bae, J. Organic solvent nanofiltration in pharmaceutical industry. Sep. Purif. Rev. 2015, 44, 157–182. [Google Scholar] [CrossRef]
- Rundquist, E.M.; Pink, C.J.; Livingston, A.G. Organic solvent nanofiltration: A potential alternative to distillation for solvent recovery from crystallisation mother liquors. Green Chem. 2012, 14, 2197–2205. [Google Scholar] [CrossRef]
- Firman, L.R.; Ochoa, N.A.; Marchese, J.; Pagliero, C.L. Deacidification and solvent recovery of soybean oil by nanofiltration membranes. J. Membr. Sci. 2013, 431, 187–196. [Google Scholar] [CrossRef]
- Sereewatthanawut, I.; Lim, F.W.; Bhole, Y.S.; Ormerod, D.; Horvath, A.; Boam, A.T.; Livingston, A.G. Demonstration of molecular purification in polar aprotic solvents by organic solvent nanofiltration. Org. Process Res. Dev. 2010, 14, 600–611. [Google Scholar] [CrossRef]
- Lim, S.K.; Goh, K.; Bae, T.-H.; Wang, R. Polymer-based membranes for solvent-resistant nanofiltration: A review. Chin. J. Chem. Eng. 2017, 25, 1653–1675. [Google Scholar] [CrossRef]
- Farahani, M.H.D.A.; Chung, T.-S. Solvent resistant hollow fiber membranes comprising P84 polyimide and amine-functionalized carbon nanotubes with potential applications in pharmaceutical, food, and petrochemical industries. Chem. Eng. J. 2018, 345, 174–185. [Google Scholar] [CrossRef]
- Yadav, D.; Karki, S.; Ingole, P.G. Nanofiltration (NF) Membrane Processing in the Food Industry. Food Eng. Rev. 2022, 14, 579–595. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Song, X.; Su, B.; Mandal, B.; Prasad, B.; Gao, X.; Gao, C. Graphene quantum dots-doped thin film nanocomposite polyimide membranes with enhanced solvent resistance for solvent-resistant nanofiltration. ACS Appl. Mater. Interfaces 2019, 11, 6527–6540. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, S.; Lv, L.; Su, B.; Hu, M.Z. High solvent-resistant and integrally crosslinked polyimide-based composite membranes for organic solvent nanofiltration. J. Membr. Sci. 2018, 564, 10–21. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, S.; Qin, G.; Guo, J.; Zhang, Q.; Li, S.; Zhang, S. A chemical-induced crystallization strategy to fabricate poly (ether ether ketone) asymmetric membranes for organic solvent nanofiltration. J. Membr. Sci. 2021, 620, 118899. [Google Scholar] [CrossRef]
- da Silva Burgal, J.; Peeva, L.G.; Kumbharkar, S.; Livingston, A. Organic solvent resistant poly (ether-ether-ketone) nanofiltration membranes. J. Membr. Sci. 2015, 479, 105–116. [Google Scholar] [CrossRef]
- Paseta, L.; Luque-Alled, J.M.; Malankowska, M.; Navarro, M.; Gorgojo, P.; Coronas, J.; Téllez, C. Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration. Sep. Purif. Technol. 2020, 247, 116995. [Google Scholar] [CrossRef]
- Gu, B.-X.; Liu, Z.-Z.; Zhang, K.; Ji, Y.-L.; Zhou, Y.; Gao, C.-J. Biomimetic asymmetric structural polyamide OSN membranes fabricated via fluorinated polymeric networks regulated interfacial polymerization. J. Membr. Sci. 2021, 625, 119112. [Google Scholar] [CrossRef]
- Kumbharkar, S.; Li, K. Structurally modified polybenzimidazole hollow fibre membranes with enhanced gas permeation properties. J. Membr. Sci. 2012, 415, 793–800. [Google Scholar] [CrossRef]
- Shin, S.J.; Park, Y.-I.; Park, H.; Cho, Y.H.; Won, G.Y.; Yoo, Y. A facile crosslinking method for polybenzimidazole membranes toward enhanced organic solvent nanofiltration performance. Sep. Purif. Technol. 2022, 299, 121783. [Google Scholar] [CrossRef]
- Vandezande, P.; Gevers, L.E.; Vankelecom, I.F. Solvent resistant nanofiltration: Separating on a molecular level. Chem. Soc. Rev. 2008, 37, 365–405. [Google Scholar] [CrossRef]
- Tashvigh, A.A.; Chung, T.-S. Robust polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration. J. Membr. Sci. 2019, 572, 580–587. [Google Scholar] [CrossRef]
- Naderi, A.; Tashvigh, A.A.; Chung, T.-S. H2/CO2 separation enhancement via chemical modification of polybenzimidazole nanostructure. J. Membr. Sci. 2019, 572, 343–349. [Google Scholar] [CrossRef]
- Flanagan, M.F.; Escobar, I.C. Novel charged and hydrophilized polybenzimidazole (PBI) membranes for forward osmosis. J. Membr. Sci. 2013, 434, 85–92. [Google Scholar] [CrossRef]
- Zhu, W.-P.; Sun, S.-P.; Gao, J.; Fu, F.-J.; Chung, T.-S. Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. J. Membr. Sci. 2014, 456, 117–127. [Google Scholar] [CrossRef]
- Chen, D.; Yu, S.; Yang, M.; Li, D.; Li, X. Solvent resistant nanofiltration membranes based on crosslinked polybenzimidazole. RSC Adv. 2016, 6, 16925–16932. [Google Scholar] [CrossRef]
- Chen, D.; Yu, S.; Zhang, H.; Li, X. Solvent resistant nanofiltration membrane based on polybenzimidazole. Sep. Purif. Technol. 2015, 142, 299–306. [Google Scholar] [CrossRef]
- Hołda, A.K.; Vankelecom, I.F.J. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci. 2015, 132, 42130. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, C.; Li, P.; Li, Y.; Wang, J. Effect of non-solvent additives on the morphology and separation performance of poly (m-phenylene isophthalamide) (PMIA) hollow fiber nanofiltration membrane. Desalination 2015, 365, 293–307. [Google Scholar] [CrossRef]
- Miller-Chou, B.A.; Koenig, J.L. A review of polymer dissolution. Prog. Polym. Sci. 2003, 28, 1223–1270. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Teo, W.; Li, K. Preparation and characterization of high-flux polysulfone hollow fibre gas separation membranes. J. Membr. Sci. 2002, 204, 247–256. [Google Scholar] [CrossRef]
- Aroon, M.; Ismail, A.; Montazer-Rahmati, M.; Matsuura, T. Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent. Sep. Purif. Technol. 2010, 72, 194–202. [Google Scholar] [CrossRef]
- Marquié, C. Chemical reactions in cottonseed protein cross-linking by formaldehyde, glutaraldehyde, and glyoxal for the formation of protein films with enhanced mechanical properties. J. Agric. Food Chem. 2001, 49, 4676–4681. [Google Scholar] [CrossRef]
- Xing, D.Y.; Chan, S.Y.; Chung, T.-S. The ionic liquid [EMIM] OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration. Green Chem. 2014, 16, 1383–1392. [Google Scholar] [CrossRef]
- Farahani, M.H.D.A.; Chung, T.-S. A novel crosslinking technique towards the fabrication of high-flux polybenzimidazole (PBI) membranes for organic solvent nanofiltration (OSN). Sep. Purif. Technol. 2019, 209, 182–192. [Google Scholar] [CrossRef]
- Asadi Tashvigh, A.; Feng, Y.; Weber, M.; Maletzko, C.; Chung, T.-S. 110th anniversary: Selection of cross-linkers and cross-linking procedures for the fabrication of solvent-resistant nanofiltration membranes: A review. Ind. Eng. Chem. Res. 2019, 58, 10678–10691. [Google Scholar] [CrossRef]
- Valtcheva, I.B.; Marchetti, P.; Livingston, A.G. Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN): Analysis of crosslinking reaction mechanism and effects of reaction parameters. J. Membr. Sci. 2015, 493, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Valtcheva, I.B.; Kumbharkar, S.C.; Kim, J.F.; Bhole, Y.; Livingston, A.G. Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. J. Membr. Sci. 2014, 457, 62–72. [Google Scholar] [CrossRef]
- Chung, T.-S.; Xu, Z.-L. Asymmetric hollow fiber membranes prepared from miscible polybenzimidazole and polyetherimide blends. J. Membr. Sci. 1998, 147, 35–47. [Google Scholar] [CrossRef]
- Bielicka-Daszkiewicz, K.; Voelkel, A.; Pietrzyńska, M.; Héberger, K. Role of Hansen solubility parameters in solid phase extraction. J. Chromatogr. A 2010, 1217, 5564–5570. [Google Scholar] [CrossRef]
- Launay, H.; Hansen, C.M.; Almdal, K. Hansen solubility parameters for a carbon fiber/epoxy composite. Carbon 2007, 45, 2859–2865. [Google Scholar] [CrossRef] [Green Version]
- Burke, J. Solubility Parameters: Theory and Application. 1984. Available online: https://cool.culturalheritage.org/coolaic/sg/bpg/annual/v03/bp03-04.html (accessed on 1 March 2022).
- Wolf, B.A. Intrinsic Viscosities of Polymer Blends and Polymer Compatibility: Self-Organization and Flory–Huggins Interaction Parameters. Macromol. Chem. Phys. 2018, 219, 1800249. [Google Scholar] [CrossRef]
- Soroko, I.; Makowski, M.; Spill, F.; Livingston, A. The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN). Part B: Analysis of evaporation step and the role of a co-solvent. J. Membr. Sci. 2011, 381, 163–171. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Broens, L.; Koenhen, D.; Smolders, C. On the mechanism of formation of asymmetric ultra-and hyper-filtration membranes. Desalination 1977, 22, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kim, S.D.; Won, G.Y.; Shah, A.A.; Park, A.; Park, Y.-I.; Nam, S.-E.; Cho, Y.H.; Park, H. Reinforcing the polybenzimidazole membrane surface by an ultrathin co-crosslinked polydopamine layer for organic solvent nanofiltration applications. J. Membr. Sci. 2021, 636, 119587. [Google Scholar] [CrossRef]
- Beshahwored, S.S.; Huang, Y.-H.; Abdi, Z.G.; Hu, C.-C.; Chung, T.-S. Polybenzimidazole (PBI) membranes cross-linked with various cross-linkers and impregnated with 4-sulfocalix [4] arene (SCA4) for organic solvent nanofiltration (OSN). J. Membr. Sci. 2022, 663, 121039. [Google Scholar] [CrossRef]
- Geens, J.; Peeters, K.; Van der Bruggen, B.; Vandecasteele, C. Polymeric nanofiltration of binary water–alcohol mixtures: Influence of feed composition and membrane properties on permeability and rejection. J. Membr. Sci. 2005, 255, 255–264. [Google Scholar] [CrossRef]
- Darvishmanesh, S.; Degrève, J.; Van der Bruggen, B. Mechanisms of solute rejection in solvent resistant nanofiltration: The effect of solvent on solute rejection. Phys. Chem. Chem. Phys. 2010, 12, 13333–13342. [Google Scholar] [CrossRef]
- Feng, Y.; Weber, M.; Maletzko, C.; Chung, T.-S. Facile fabrication of sulfonated polyphenylenesulfone (sPPSU) membranes with high separation performance for organic solvent nanofiltration. J. Membr. Sci. 2018, 549, 550–558. [Google Scholar] [CrossRef]
- Tashvigh, A.A.; Luo, L.; Chung, T.-S.; Weber, M.; Maletzko, C. Performance enhancement in organic solvent nanofiltration by double crosslinking technique using sulfonated polyphenylsulfone (sPPSU) and polybenzimidazole (PBI). J. Membr. Sci. 2018, 551, 204–213. [Google Scholar] [CrossRef]
- Lee, J.; Yang, H.; Park, G.; Bae, T.-H. Highly stable epoxy-crosslinked polybenzimidazole membranes for organic solvent nanofiltration under strongly basic conditions. J. Membr. Sci. 2022, 661, 120951. [Google Scholar] [CrossRef]
- Peng, N.; Chung, T.-S.; Wang, K.Y. Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes. In Hollow Fiber Membranes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 141–161. [Google Scholar]
- Zhu, K.; Zhang, S.; Luan, J.; Mu, Y.; Du, Y.; Wang, G. Fabrication of ultrafiltration membranes with enhanced antifouling capability and stable mechanical properties via the strategies of blending and crosslinking. J. Membr. Sci. 2017, 539, 116–127. [Google Scholar] [CrossRef]
- Wang, J.; Chen, P.; Shi, B.; Guo, W.; Jaroniec, M.; Qiao, S.Z. A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. Angew. Chem. Int. Ed. Engl. 2018, 57, 6814–6818. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, X.; Guo, D.; Shinde, D.B.; Lu, D.; Chen, L.; Liu, X.; Cao, L.; Aboalsaud, A.M.; Hu, Y. Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving. Nat. Commun. 2020, 11, 5323. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, P.; Butté, A.; Livingston, A.G. An improved phenomenological model for prediction of solvent permeation through ceramic NF and UF membranes. J. Membr. Sci. 2012, 415, 444–458. [Google Scholar] [CrossRef]
Membrane | Materials | DBX Crosslink | ||
---|---|---|---|---|
PBI (wt%) | DMAc (wt%) | MeCN (wt%) | ||
M1 | 18 | 82 | 0 | No |
M1-X | 18 | 82 | 0 | Yes |
M2 | 18 | 72 | 10 | No |
M2-X | 18 | 72 | 10 | Yes |
M3 | 18 | 67 | 15 | No |
M3-X | 18 | 67 | 15 | Yes |
M4 | 18 | 62 | 20 | No |
M4-X | 18 | 62 | 20 | Yes |
Materials | Hansen Solubility Parameter (MPa0.5) | RHSP (Mpa0.5) | Boiling Point (°C) | ||
---|---|---|---|---|---|
δd | δp | δh | δS-P | ||
PBI | 20.4 | 6.6 | 7.5 | - | - |
DMAc | 16.8 | 11.5 | 10.2 | 9.7 | 165 |
MeCN | 15.3 | 18.0 | 6.1 | 16.0 | 82 |
Membrane | Ethanol Permeance (L m−2 h−1 bar−1) | Solute | Rejection (%) | Ref. |
---|---|---|---|---|
PBI/MeCN-DBX | 2.7 | PPG (366 g/mol) | 96.56 | This work |
MPF-50 a | 4.2 | Raffinose (504 g/mol) | 41 | [48] |
STAPMEMTM 122 a | 2.4 | Sudan black (456 g/mol) | 94.1 | [49] |
DuraMem® 300 a | 0.3 | Methyl orange (327 g/mol) | 94.5 | [50] |
PEI2K-GA | 1.4 | Methyl orange (327 g/mol) | 89.6 | [50] |
PBI-PXDC | 0.3 | Crystal violet (408 g/mol) | 75.7 | [24] |
PBI-50sPPSU-DBX-HPEI25k | 4.24 | Tetracycline (444 g/mol) | 83 | [51] |
PBI-NGDGE | 19 | Methyl orange (327 g/mol) | 14.12 | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, G.Y.; Park, A.; Yoo, Y.; Park, Y.-I.; Lee, J.-H.; Kim, I.-C.; Cho, Y.H.; Park, H. Improving the Separation Properties of Polybenzimidazole Membranes by Adding Acetonitrile for Organic Solvent Nanofiltration. Membranes 2023, 13, 104. https://doi.org/10.3390/membranes13010104
Won GY, Park A, Yoo Y, Park Y-I, Lee J-H, Kim I-C, Cho YH, Park H. Improving the Separation Properties of Polybenzimidazole Membranes by Adding Acetonitrile for Organic Solvent Nanofiltration. Membranes. 2023; 13(1):104. https://doi.org/10.3390/membranes13010104
Chicago/Turabian StyleWon, Ga Yeon, Ahrumi Park, Youngmin Yoo, You-In Park, Jung-Hyun Lee, In-Chul Kim, Young Hoon Cho, and Hosik Park. 2023. "Improving the Separation Properties of Polybenzimidazole Membranes by Adding Acetonitrile for Organic Solvent Nanofiltration" Membranes 13, no. 1: 104. https://doi.org/10.3390/membranes13010104
APA StyleWon, G. Y., Park, A., Yoo, Y., Park, Y. -I., Lee, J. -H., Kim, I. -C., Cho, Y. H., & Park, H. (2023). Improving the Separation Properties of Polybenzimidazole Membranes by Adding Acetonitrile for Organic Solvent Nanofiltration. Membranes, 13(1), 104. https://doi.org/10.3390/membranes13010104