Kenics Static Mixer Combined with Gas Sparging for the Improvement of Cross-Flow Microfiltration: Modeling and Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Bacillus velezensis Cultivation Broth
2.2. Microfiltration Experimental Setup
2.3. Experimental Data Analysis—Modeling and Optimization
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prabakaran, G.; Hoti, S.L. Application of different downstream processing methods and their comparison for the large-scale preparation of Bacillus thuringiensis var. israelensis after fermentation for mosquito control. Biologicals 2008, 36, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 2006, 41, 323–342. [Google Scholar] [CrossRef]
- Bartlett, M.; Bird, M.R.; Howell, J.A. An experimental study for the development of a qualitative membrane cleaning model. J. Membr. Sci. 1995, 105, 147–157. [Google Scholar] [CrossRef]
- Jokić, A.; Pajčin, I.; Lukić, N.; Vlajkov, V.; Kiralj, A.; Dmitrović, S.; Grahovac, J. Modeling and Optimization of Gas Sparging-Assisted Bacterial Cultivation Broth Microfiltration by Response Surface Methodology and Genetic Algorithm. Membranes 2021, 11, 681. [Google Scholar] [CrossRef] [PubMed]
- Jokić, A.; Pajčin, I.; Grahovac, J.; Lukić, N.; Dodić, J.; Rončević, Z.; Šereš, Z. Energy efficient turbulence promoter flux-enhanced microfiltration for the harvesting of rod-shaped bacteria using tubular ceramic membrane. Chem. Eng. Res. Des. 2019, 150, 359–368. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Wu, Y.-J. Flux enhancement and cake formation in air-sparged cross-flow microfiltration. Chem. Eng. J. 2008, 139, 296–303. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Hsu, C.-E. Effect of gas–liquid flow pattern on air-sparged cross-flow microfiltration of yeast suspension. Chem. Eng. J. 2009, 151, 160–167. [Google Scholar] [CrossRef]
- Mercier, M.; Fonade, C.; Lafforgue-Delorme, C. How slug flow can enhance the ultrafiltration flux in mineral tubular membranes. J. Membr. Sci. 1997, 128, 103–113. [Google Scholar] [CrossRef]
- Armbruster, S.; Brochard, A.; Lölsberg, J.; Yüce, S.; Wessling, M. Aerating static mixers prevent fouling. J. Membr. Sci. 2019, 570–571, 537–546. [Google Scholar] [CrossRef]
- Krstić, D.; Tekić, M.; Carić, M.; Milanović, S. Kenics Static Mixer as Turbulence Promoter in Cross-Flow Microfiltration of Skim Milk. Sep. Sci. Technol. 2003, 38, 1549–1560. [Google Scholar] [CrossRef]
- Krstić, D.; Tekić, M.N.; Carić, M.D.; Milanović, S.D. Static turbulence promoter in cross-flow microfiltration of skim milk. Desalination 2004, 163, 297–309. [Google Scholar] [CrossRef]
- Armbruster, S.; Stockmeier, F.; Junker, M.; Schiller-Becerra, M.; Yüce, S.; Wessling, M. Short and spaced twisted tapes to mitigate fouling in tubular membranes. J. Membr. Sci. 2020, 595, 117426. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.F.; Wright, K.I.T. Flux enhancements with gas sparging in downwards crossflow ultrafiltration: Performance and mechanism. J. Membr. Sci. 1996, 117, 109–116. [Google Scholar] [CrossRef]
- Cabassud, C.; Laborie, S.; Lainé, J.M. How slug flow can improve ultrafiltration flux in organic hollow fibres. J. Membr. Sci. 1997, 128, 93–101. [Google Scholar] [CrossRef]
- Bellara, S.R.; Cui, Z.F.; Pepper, D.S. Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes. J. Membr. Sci. 1996, 121, 175–184. [Google Scholar] [CrossRef]
- Gupta, B.S.; Hasan, S.; Hashim, M.A.; Cui, Z.F. Effects of colloidal fouling and gas sparging on microfiltration of yeast suspension. Bioprocess. Biosyst. Eng. 2005, 27, 407–413. [Google Scholar] [CrossRef]
- Sur, H.W.; Cui, Z.F. Enhancement of microfiltration of yeast suspensions using gas sparging–effect of feed conditions. Sep. Purif. Technol. 2005, 41, 313–319. [Google Scholar] [CrossRef]
- Mikulášek, P.; Pospíšil, P.; Doleček, P.; Cakl, J. Gas—liquid two-phase flow in microfiltration mineral tubular membranes: Relationship between flux enhancement and hydrodynamic parameters. Desalination 2002, 146, 103–109. [Google Scholar] [CrossRef]
- Fouladitajar, A.; Zokaee Ashtiani, F.; Rezaei, H.; Haghmoradi, A.; Kargari, A. Gas sparging to enhance permeate flux and reduce fouling resistances in cross flow microfiltration. J. Ind. Eng. Chem. 2014, 20, 624–632. [Google Scholar] [CrossRef]
- Javadi, N.; Zokaee Ashtiani, F.; Fouladitajar, A.; Moosavi Zenooz, A. Experimental studies and statistical analysis of membrane fouling behavior and performance in microfiltration of microalgae by a gas sparging assisted process. Bioresour. Technol. 2014, 162, 350–357. [Google Scholar] [CrossRef]
- Alsalhy, Q.F.; Albyati, T.M.; Zablouk, M.A. A Study of the Effect of Operating Conditions on Reverse Osmosis Membrane Performance with and without Air Sparging Technique. Chem. Eng. Commun. 2013, 200, 1–19. [Google Scholar] [CrossRef]
- Cabassud, C.; Laborie, S.; Durand-Bourlier, L.; Lainé, J.M. Air sparging in ultrafiltration hollow fibers: Relationship between flux enhancement, cake characteristics and hydrodynamic parameters. J. Membr. Sci. 2001, 181, 57–69. [Google Scholar] [CrossRef]
- Derradji, A.F.; Bernabeu-Madico, A.; Taha, S.; Dorange, G. The effect of a static mixer on the ultrafiltration of a two-phase flow. Desalination 2000, 128, 223–230. [Google Scholar] [CrossRef]
- Vatai, G.N.; Krstic, D.M.; Höflinger, W.; Koris, A.K.; Tekic, M.N. Combining air sparging and the use of a static mixer in cross-flow ultrafiltration of oil/water emulsion. Desalination 2007, 204, 255–264. [Google Scholar] [CrossRef]
- Lazic, Z.R. Design of Experiments in Chemical Engineering: A Practical Guide; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Mohammed Redha, Z.; Bu-Ali, Q.; Saeed, Y.A.; Ali, A.M. Optimization of the Asymmetric Cellulose Acetate Membrane Synthesis Variables for Porosity and Pure Water Permeation Flux Using Response Surface Methodology: Microfiltration Application. Arab. J. Sci. Eng. 2021, 46, 6593–6607. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Zhao, M.; Zhang, L.; Ji, X.; Sun, H.; Sun, Y.; Ma, Z.; Xue, J.; Gao, X. Fabrication of a Cation-Exchange Membrane via the Blending of SPES/N-Phthaloyl Chitosan/MIL-101(Fe) Using Response Surface Methodology for Desalination. Membranes 2022, 12, 144. [Google Scholar] [CrossRef]
- Jung, J.; Ko, Y.-H.; Choi, J.-S.; Lee, S. Optimization of chemical cleaning condition for microfiltration process using response surface methodology. Desalination Water Treat. 2016, 57, 7466–7478. [Google Scholar] [CrossRef]
- Waqas, S.; Harun, N.Y.; Bilad, M.R.; Samsuri, T.; Nordin, N.A.H.M.; Shamsuddin, N.; Nandiyanto, A.B.D.; Huda, N.; Roslan, J. Response Surface Methodology for Optimization of Rotating Biological Contactor Combined with External Membrane Filtration for Wastewater Treatment. Membranes 2022, 12, 271. [Google Scholar] [CrossRef]
- Live Lozada, G.S.; García López, A.I.; Martínez-Férez, A.; Ochando-Pulido, J.M. On the modeling and optimization of two-phase olive-oil washing wastewater treatment and polyphenols recovery by ceramic tubular microfiltration membranes. J. Environ. Manag. 2022, 316, 115227. [Google Scholar] [CrossRef]
- Belgada, A.; Charik, F.Z.; Achiou, B.; Ntambwe Kambuyi, T.; Alami Younssi, S.; Beniazza, R.; Dani, A.; Benhida, R.; Ouammou, M. Optimization of phosphate/kaolinite microfiltration membrane using Box–Behnken design for treatment of industrial wastewater. J. Environ. Chem. Eng. 2021, 9, 104972. [Google Scholar] [CrossRef]
- Rajewski, J.; Dobrzyńska-Inger, A. Application of Response Surface Methodology (RSM) for the Optimization of Chromium(III) Synergistic Extraction by Supported Liquid Membrane. Membranes 2021, 11, 854. [Google Scholar] [CrossRef] [PubMed]
- Pajčin, I.; Vlajkov, V.; Frohme, M.; Grebinyk, S.; Grahovac, M.; Mojićević, M.; Grahovac, J. Pepper Bacterial Spot Control by Bacillus velezensis: Bioprocess Solution. Microorganisms 2020, 8, 1463. [Google Scholar] [CrossRef] [PubMed]
- Jokić, A.; Pajčin, I.; Grahovac, J.; Lukić, N.; Dodić, J.; Rončević, Z.; Šereš, Z. Improving energy efficiency of Bacillus velezensis broth microfiltration in tubular ceramic membrane by air sparging and turbulence promoter. J. Chem. Technol. Biotechnol. 2020, 95, 1110–1115. [Google Scholar] [CrossRef]
- Jokić, A.; Zavargo, Z.; Šereš, Z.; Tekić, M. The effect of turbulence promoter on cross-flow microfiltration of yeast suspensions: A response surface methodology approach. J. Membr. Sci. 2010, 350, 269–278. [Google Scholar] [CrossRef]
- Fan, R.; Ebrahimi, M.; Quitmann, H.; Czermak, P. Lactic Acid Production in a Membrane Bioreactor System with Thermophilic Bacillus coagulans: Fouling Analysis of the Used Ceramic Membranes. Sep. Sci. Technol. 2015, 50, 2177–2189. [Google Scholar] [CrossRef]
- Mota, M.; Teixeira, J.A.; Yelshin, A. Influence of cell-shape on the cake resistance in dead-end and cross-flow filtrations. Sep. Purif. Technol. 2002, 27, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Guo, Y.; Shen, L.; Ji, C.; Bao, N. Scalable concentration process of graphene oxide dispersions via cross-flow membrane filtration. Chem. Eng. Sci. 2019, 200, 127–137. [Google Scholar] [CrossRef]
- Mercier-Bonin, M.; Lagane, C.; Fonade, C. Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: Case of a ceramic flat sheet membrane. J. Membr. Sci. 2000, 180, 93–102. [Google Scholar] [CrossRef]
- Cui, Z.F.; Wright, K.I.T. Gas—liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions. J. Membr. Sci. 1994, 90, 183–189. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Chen, L. Effect of air-sparging on the cross-flow microfiltration of microbe/protein bio-suspension. J. Taiwan Inst. Chem. Eng. 2010, 41, 564–569. [Google Scholar] [CrossRef]
- Li, Q.Y.; Cui, Z.F.; Pepper, D.S. Effect of bubble size and frequency on the permeate flux of gas sparged ultrafiltration with tubular membranes. Chem. Eng. J. 1997, 67, 71–75. [Google Scholar] [CrossRef]
Experiment | Factors—Independent Variables | Responses—Dependent Variables | |||
---|---|---|---|---|---|
TMP (bar) | VL (m·s−1) | VG (m·s−1) | J (L·m−2·h−1) | E (kW·h·m−3) | |
1 | 0.2 | 0.53 | 0.23 | 48.5 | 1.6 |
2 | 1.0 | 0.53 | 0.23 | 68.0 | 1.5 |
3 | 0.2 | 1.59 | 0.23 | 96.3 | 3.9 |
4 | 1.0 | 1.59 | 0.23 | 156 | 3.2 |
5 | 0.2 | 1.06 | 0.0 | 56.0 | 1.9 |
6 | 1.0 | 1.06 | 0.0 | 110 | 3.9 |
7 | 0.2 | 1.06 | 0.46 | 78.7 | 3.4 |
8 | 1.0 | 1.06 | 0.46 | 120 | 1.3 |
9 | 0.6 | 0.53 | 0.0 | 64.9 | 1.1 |
10 | 0.6 | 1.59 | 0.0 | 127 | 2.6 |
11 | 0.6 | 0.53 | 0.46 | 84.6 | 0.8 |
12 | 0.6 | 1.59 | 0.46 | 140 | 2.6 |
13 | 0.6 | 1.06 | 0.23 | 55.0 | 4.3 |
14 | 0.6 | 1.06 | 0.23 | 52.0 | 4.5 |
15 | 0.6 | 1.06 | 0.23 | 56.0 | 4.2 |
Effects | Steady-State Permeate Flux (L·m−2·h−1) | Specific Energy Consumption (kW·h·m−3) | ||||
---|---|---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | |||
Actual | Coded | Actual | Coded | |||
Intercept | ||||||
b0 | 126.2 | 54.33 | 0.0002 | −6.49 | 4.313 | 0.0002 |
Linear | ||||||
b1 | −81.22 | 21.81 | <0.0001 | 6.46 | −0.112 | 0.220 |
b2 | −157.3 | 31.66 | <0.0001 | 11.87 | 0.912 | <0.0001 |
b3 | −141.2 | 8.18 | 0.0024 | 15.98 | −0.175 | 0.081 |
Quadratic | ||||||
b11 | 77.86 | 12.46 | 0.0020 | −2.85 | −0.457 | 0.012 |
b22 | 90.45 | 25.41 | <0.0001 | −4.65 | −1.307 | 0.0001 |
b33 | 460.9 | 24.38 | <0.0001 | −23.28 | −1.232 | 0.0001 |
Interaction | ||||||
b12 | 47.41 | 10.05 | 0.0043 | −0.708 | −0.15 | 0.244 |
b13 | −34.51 | −3.18 | 0.1797 | −11.14 | −1.025 | 0.0003 |
b23 | −13.74 | −1.68 | 0.4482 | 0.615 | 0.075 | 0.538 |
Source | Response | DF | SS | MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Model | J (L·m−2·h−1) | 9 | 17364.6 | 1929.4 | 116.33 | <0.0001 |
E (kW·h·m−3) | 9 | 22.662 | 2.518 | 48.805 | 0.0002 | |
Residual | J (L·m−2·h−1) | 5 | 82.93 | 16.58 | ||
E (kW·h·m−3) | 5 | 0.258 | 0.052 | |||
Lack-of-fit | J (L·m−2·h−1) | 3 | 74.26 | 24.75 | 5.712 | 0.153 |
E (kW·h·m−3) | 3 | 0.202 | 0.068 | 2.434 | 0.304 | |
Pure error | J (L·m−2·h−1) | 2 | 8.667 | 4.333 | ||
E (kW·h·m−3) | 2 | 0.055 | 0.028 | |||
Total | J (L·m−2·h−1) | 14 | 17447.5 | |||
E (kW·h·m−3) | 14 | 22.920 | ||||
R2 | Adj. R2 | Pred. R2 | Adeq. Precision | |||
J (L·m−2·h−1) | 0.995 | 0.987 | 0.931 | 32.163 | ||
E (kW·h·m−3) | 0.989 | 0.969 | 0.853 | 19.955 |
Factors—Independent Variables | Goal | Optimized Value |
---|---|---|
Transmembrane pressure, TMP (bar) | in range | 1.0 |
Superficial feed velocity, VL (m·s−1) | in range | 1.59 |
Superficial air velocity, VG (m·s−1) | in range | 0.46 |
Responses—Dependent Variables | Goal | Predicted Value |
Steady-state permeate flux, J (L·m−2·h−1)) | maximize | 183.42 |
Specific energy consumption, E (kW·h·m−3) | minimize | 0.844 |
Desirability function | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jokić, A.; Lukić, N.; Pajčin, I.; Vlajkov, V.; Dmitrović, S.; Grahovac, J. Kenics Static Mixer Combined with Gas Sparging for the Improvement of Cross-Flow Microfiltration: Modeling and Optimization. Membranes 2022, 12, 690. https://doi.org/10.3390/membranes12070690
Jokić A, Lukić N, Pajčin I, Vlajkov V, Dmitrović S, Grahovac J. Kenics Static Mixer Combined with Gas Sparging for the Improvement of Cross-Flow Microfiltration: Modeling and Optimization. Membranes. 2022; 12(7):690. https://doi.org/10.3390/membranes12070690
Chicago/Turabian StyleJokić, Aleksandar, Nataša Lukić, Ivana Pajčin, Vanja Vlajkov, Selena Dmitrović, and Jovana Grahovac. 2022. "Kenics Static Mixer Combined with Gas Sparging for the Improvement of Cross-Flow Microfiltration: Modeling and Optimization" Membranes 12, no. 7: 690. https://doi.org/10.3390/membranes12070690
APA StyleJokić, A., Lukić, N., Pajčin, I., Vlajkov, V., Dmitrović, S., & Grahovac, J. (2022). Kenics Static Mixer Combined with Gas Sparging for the Improvement of Cross-Flow Microfiltration: Modeling and Optimization. Membranes, 12(7), 690. https://doi.org/10.3390/membranes12070690