The Design of Ternary Composite Polyurethane Membranes with an Enhanced Photocatalytic Degradation Potential for the Removal of Anionic Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis
2.2.1. Synthesis of GO
2.2.2. Synthesis of Aminated Graphene Oxide (NH2-GO)
2.2.3. Synthesis of Nickel Oxide NiO Nanoparticles
2.2.4. Fabrication of NiO/NH2-GO Composite
2.2.5. Fabrication of NiO/NH2-GO-Based Thermoplastic Polyurethane Membrane (TPU- NiO/NH2-GO)
2.3. Characterizations
2.4. Photocatalytic Experimentation
3. Results and Discussion
3.1. Physicochemical Characterization
3.1.1. FTIR
3.1.2. XRD
3.1.3. SEM
3.1.4. Mechanical Performance
3.2. Influence of Key Reaction Parameters
3.2.1. Effect of Solution pH
3.2.2. Effect of Oxidant Dose
3.2.3. Effect of Reaction Time
3.2.4. Stability of Composite Membrane (TNG-08) in Terms of Reusability
3.2.5. Radical Scavenging Test
3.2.6. Proposed Photocatalysis Reaction Mechanism
3.2.7. Effect of NiO/NH2-GO Concentration on TPU Membrane Performance
3.3. Kinetic Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gholami, S.; Llacuna, J.L.; Vatanpour, V.; Dehqan, A.; Paziresh, S.; Cortina, J.L. Impact of a new functionalization of multiwalled carbon nanotubes on antifouling and permeability of PVDF nanocomposite membranes for dye wastewater treatment. Chemosphere 2022, 294, 133699. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Shukla, S.; Jangid, N.K.; Srivastava, M.; Vishwakarma, R. World of the Dye. In Research Anthology on Emerging Techniques in Environmental Remediation; IGI Global: Hershey, PA, USA, 2022; pp. 493–507. [Google Scholar]
- Nadeem, N.; Abbas, Q.; Yaseen, M.; Jilani, A.; Zahid, M.; Iqbal, J.; Murtaza, A.; Janczarek, M.; Jesionowski, T. Coal fly ash-based copper ferrite nanocomposites as potential heterogeneous photocatalysts for wastewater remediation. Appl. Surf. Sci. 2021, 565, 150542. [Google Scholar] [CrossRef]
- Ashiq, H.; Nadeem, N.; Mansha, A.; Iqbal, J.; Yaseen, M.; Zahid, M.; Shahid, I. G-C3N4/Ag@CoWO4: A novel sunlight active ternary nanocomposite for potential photocatalytic degradation of rhodamine B dye. J. Phys. Chem. Solids 2021, 161, 110437. [Google Scholar] [CrossRef]
- Nadeem, N.; Zahid, M.; Rehan, Z.A.; Hanif, M.A.; Yaseen, M. Improved photocatalytic degradation of dye using coal fly ash-based zinc ferrite (CFA/ZnFe2O4) composite. Int. J. Environ. Sci. Technol. 2022, 19, 3045–3060. [Google Scholar] [CrossRef]
- Zahid, M.; Nadeem, N.; Tahir, N.; Majeed, M.I.; Naqvi, S.A.R.; Hussain, T. Hybrid nanomaterials for water purification. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 155–188. [Google Scholar]
- Gičević, A.; Hindija, L.; Karačić, A. Toxicity of azo dyes in pharmaceutical industry. In Proceedings of the International Conference on Medical and Biological Engineering (CMBEBIH 2019), Banja Luka, Bosnia and Herzegovina, 16–18 May 2019; Springer: Cham, Switzerland, 2020; pp. 581–587. [Google Scholar]
- Pandey, S.; Jana, K.K.; Aswal, V.K.; Rana, D.; Maiti, P. Effect of nanoparticle on the mechanical and gas barrier properties of thermoplastic polyurethane. Appl. Clay Sci. 2017, 146, 468–474. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, S.; Hu, Y.; Sun, S. Membrane technology in wastewater treatment enhanced by functional nanomaterials. J. Clean. Prod. 2018, 197, 339–348. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, R.; Liu, Y.; He, M.; Su, Y.; Gao, C.; Jiang, Z. Antifouling membrane surface construction: Chemistry plays a critical role. J. Membr. Sci. 2018, 551, 145–171. [Google Scholar] [CrossRef]
- Zhou, L.; Li, G.; An, T.; Li, Y. Synthesis and characterization of novel magnetic Fe3O4/polyurethane foam composite applied to the carrier of immobilized microorganisms for wastewater treatment. Res. Chem. Intermed. 2010, 36, 277–288. [Google Scholar] [CrossRef]
- Kumari, S.; Chauhan, G.S.; Monga, S.; Kaushik, A.; Ahn, J.-H. New lignin-based polyurethane foam for wastewater treatment. RSC Adv. 2016, 6, 77768–77776. [Google Scholar] [CrossRef]
- Crini, G. Cyclodextrin–epichlorohydrin polymers synthesis, characterization and applications to wastewater treatment: A review. Environ. Chem. Lett. 2021, 19, 2383–2403. [Google Scholar] [CrossRef]
- Sheng, G.-P.; Yu, H.-Q.; Li, X.-Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, S.; Davarnejad, R.; Matsuura, T.; Ismail, A.F. Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polym. Test. 2020, 84, 106381. [Google Scholar] [CrossRef]
- Massot, A.; Mietton-Peuchot, M.; Peuchot, C.; Milisic, V. Nanofiltration and reverse osmosis in winemaking. Desalination 2008, 231, 283–289. [Google Scholar] [CrossRef]
- Garcia, N.; Moreno, J.; Cartmell, E.; Rodriguez-Roda, I.; Judd, S. The application of microfiltration-reverse osmosis/nanofiltration to trace organics removal for municipal wastewater reuse. Environ. Technol. 2013, 34, 3183–3189. [Google Scholar] [CrossRef]
- Liao, Z.; Zhu, J.; Li, X.; Van der Bruggen, B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Sep. Purif. Technol. 2021, 266, 118567. [Google Scholar] [CrossRef]
- Ng, L.Y.; Chua, H.S.; Ng, C.Y. Incorporation of graphene oxide-based nanocomposite in the polymeric membrane for water and wastewater treatment: A review on recent development. J. Environ. Chem. Eng. 2021, 9, 105994. [Google Scholar] [CrossRef]
- Tabasum, A.; Alghuthaymi, M.; Qazi, U.Y.; Shahid, I.; Abbas, Q.; Javaid, R.; Nadeem, N.; Zahid, M. UV-Accelerated Photocatalytic Degradation of Pesticide over Magnetite and Cobalt Ferrite Decorated Graphene Oxide Composite. Plants 2021, 10, 6. [Google Scholar] [CrossRef]
- Nadeem, N.; Zahid, M.; Tabasum, A.; Mansha, A.; Jilani, A.; Bhatti, I.A.; Bhatti, H.N. Degradation of reactive dye using heterogeneous photo-Fenton catalysts: ZnFe2O4 and GO-ZnFe2O4 composite. Mater. Res. Express 2020, 7, 015519. [Google Scholar] [CrossRef]
- Jiang, Y.; Zeng, Q.; Biswas, P.; Fortner, J.D. Graphene oxides as nanofillers in polysulfone ultrafiltration membranes: Shape matters. J. Membr. Sci. 2019, 581, 453–461. [Google Scholar] [CrossRef]
- Zhang, N.; Qi, W.; Huang, L.; Jiang, E.; Bao, J.; Zhang, X.; An, B.; He, G. Review on structural control and modification of graphene oxide-based membranes in water treatment: From separation performance to robust operation. Chin. J. Chem. Eng. 2019, 27, 1348–1360. [Google Scholar] [CrossRef]
- Chen, X.; Liu, G.; Zhang, H.; Fan, Y. Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol. Chin. J. Chem. Eng. 2015, 23, 1102–1109. [Google Scholar] [CrossRef]
- Kim, J.; Cote, L.J.; Huang, J. Two Dimensional Soft Material: New Faces of Graphene Oxide. Acc. Chem. Res. 2012, 45, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, A.S.; Oyekunle, J.A.; Oluwafemi, O.S.; Joshua, A.O.; Makinde, A.O.; Ogunfowokan, A.O.; Eleruja, M.A.; Ebenso, E.E. Comparative catalytic properties of Ni(OH)2 and NiO nanoparticles towards the degradation of nitrite (NO2−) and nitric oxide (NO). Int. J. Electrochem. Sci. 2014, 9, 3008–3021. [Google Scholar]
- Bhol, P.; Yadav, S.; Altaee, A.; Saxena, M.; Misra, P.K.; Samal, A.K. Graphene-based membranes for water and wastewater treatment: A review. ACS Appl. Nano Mater. 2021, 4, 3274–3293. [Google Scholar] [CrossRef]
- Han, Z.-Y.; Huang, L.-J.; Qu, H.-J.; Wang, Y.-X.; Zhang, Z.-J.; Rong, Q.-L.; Sang, Z.-Q.; Wang, Y.; Kipper, M.J.; Tang, J.-G. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment. J. Mater. Sci. 2021, 56, 9545–9574. [Google Scholar] [CrossRef]
- Du, Y.C.; Huang, L.J.; Wang, Y.X.; Yang, K.; Tang, J.G.; Wang, Y.; Cheng, M.M.; Zhang, Y.; Kipper, M.J.; Belfiore, L.A. Recent developments in graphene-based polymer composite membranes: Preparation, mass transfer mechanism, and applications. J. Appl. Polym. Sci. 2019, 136, 47761. [Google Scholar] [CrossRef] [Green Version]
- Zahid, M.; Akram, S.; Rashid, A.; Rehan, Z.A.; Javed, T.; Shabbir, R.; Hessien, M.M.; El-Sayed, M.E. Investigating the antibacterial activity of polymeric membranes fabricated with aminated graphene oxide. Membranes 2021, 11, 510. [Google Scholar] [CrossRef]
- Xu, P.; Hong, J.; Xu, Z.; Xia, H.; Ni, Q.-Q. Novel aminated graphene quantum dots (GQDs-NH2)-engineered nanofiltration membrane with high Mg2+/Li+ separation efficiency. Sep. Purif. Technol. 2021, 258, 118042. [Google Scholar] [CrossRef]
- Qu, Y.; Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580. [Google Scholar] [CrossRef]
- Liao, Z.; Wu, Y.; Cao, S.; Yuan, S.; Fang, Y.; Qin, J.; Shi, J.; Shi, C.; Ou, C.; Zhu, J. Facile in situ decorating polyacrylonitrile membranes using polyoxometalates for enhanced separation performance. J. Membr. Sci. 2022, 653, 120493. [Google Scholar] [CrossRef]
- Reddy, K.M.; Manorama, S.V.; Reddy, A.R. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 2003, 78, 239–245. [Google Scholar] [CrossRef]
- Roychoudhury, A.; Prateek, A.; Chauhan, N.; Kumar, D.; Basu, S.; Jha, S.K. Tyrosinase-Conjugated Prussian Blue-Modified Nickel Oxide Nanoparticles-Based Interface for Selective Detection of Dopamine. ChemistrySelect 2017, 2, 6118–6128. [Google Scholar] [CrossRef]
- Mohammadijoo, M.; Khorshidi, Z.N.; Sadrnezhaad, S.; Mazinani, V. Synthesis and characterization of nickel oxide nanoparticle with wide band gap energy prepared via thermochemical processing. Nanosci. Nanotechnol. Int. J. 2014, 4, 6–9. [Google Scholar]
- Saheb, M.; Hosseini, H.A.; Hashemzadeh, A.; Elahi, B.; Hasanzadeh, L.; Oskuee, R.K.; Darroudi, M. Photocatalytic and biological attributes of green synthesized nickel oxide nanoparticles by Rheum turkestanicum (RT) root extract. ChemistrySelect 2019, 4, 2416–2420. [Google Scholar] [CrossRef]
- Akbari, A.; Sabouri, Z.; Hosseini, H.A.; Hashemzadeh, A.; Khatami, M.; Darroudi, M. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorg. Chem. Commun. 2020, 115, 107867. [Google Scholar] [CrossRef]
- Ezhilarasi, A.A.; Vijaya, J.J.; Kaviyarasu, K.; Kennedy, L.J.; Ramalingam, R.J.; Al-Lohedan, H.A. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J. Photochem. Photobiol. B Biol. 2018, 180, 39–50. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R.; et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Sathishkumar, K.; Shanmugam, N.; Kannadasan, N.; Cholan, S.; Viruthagiri, G. Opto, magnetic and electrochemical characterization of Ni1−xCoxO nanocrystals. J. Mater. Sci. Mater. Electron. 2015, 26, 1881–1889. [Google Scholar] [CrossRef]
- Hasan, S. A review on nanoparticles: Their synthesis and types. Res. J. Recent Sci. 2015, 2277, 2502. [Google Scholar]
- Neuberger, T.; Schöpf, B.; Hofmann, H.; Hofmann, M.; Von Rechenberg, B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 2005, 293, 483–496. [Google Scholar] [CrossRef]
- Martin Santos, A.; Wong, A.; Araújo Almeida, A.; Fatibello-Filho, O. Simultaneous determination of paracetamol and ciprofloxacin in biological fluid samples using a glassy carbon electrode modified with graphene oxide and nickel oxide nanoparticles. Talanta 2017, 174, 610–618. [Google Scholar] [CrossRef]
- Fane, A.; Fane, S.A. The role of membrane technology in sustainable decentralized wastewater systems. Water Sci. Technol. 2005, 51, 317–325. [Google Scholar] [CrossRef]
- Gzara, L.; Rehan, Z.A.; Khan, S.B.; Alamry, K.A.; Albeirutty, M.H.; El-Shahawi, M.; Rashid, M.I.; Figoli, A.; Drioli, E.; Asiri, A.M. Preparation and characterization of PES-cobalt nanocomposite membranes with enhanced anti-fouling properties and performances. J. Taiwan Inst. Chem. Eng. 2016, 65, 405–419. [Google Scholar] [CrossRef]
- Enesca, A.; Isac, L.; Andronic, L.; Perniu, D.; Duta, A. Tuning SnO2–TiO2 tandem systems for dyes mineralization. Appl. Catal. B Environ. 2014, 147, 175–184. [Google Scholar] [CrossRef]
- Visa, M.; Bogatu, C.; Duta, A. Tungsten oxide-fly ash oxide composites in adsorption and photocatalysis. J. Hazard. Mater. 2015, 289, 244–256. [Google Scholar] [CrossRef]
- Nadeem, N.; Yaseen, M.; Rehan, Z.A.; Zahid, M.; Shakoor, R.A.; Jilani, A.; Iqbal, J.; Rasul, S.; Shahid, I. Coal fly ash supported CoFe2O4 nanocomposites: Synergetic Fenton-like and photocatalytic degradation of methylene blue. Environ. Res. 2021, 206, 112280. [Google Scholar] [CrossRef]
- Matouq, M.; Al-Anber, Z.; Susumu, N.; Tagawa, T.; Karapanagioti, H. The kinetic of dyes degradation resulted from food industry in wastewater using high frequency of ultrasound. Sep. Purif. Technol. 2014, 135, 42–47. [Google Scholar] [CrossRef]
Names | Membrane | TPU (wt.%) | DMF (%) | NiO-NH2-GO |
---|---|---|---|---|
T0 | TPU | 18 | 82 | --- |
TN-02 | TPU-NiO | 18 | 81.8 | 0.2% |
TNG-02 | TPU-NiO/NH2-GO -1 | 18 | 81.8 | 0.2% |
TNG-04 | TPU-NiO/NH2-GO -2 | 18 | 81.6 | 0.4% |
TNG-06 | TPU-NiO-NH2-GO -3 | 18 | 81.4 | 0.6% |
TNG-08 | TPU-NiO-NH2-GO -4 | 18 | 81.2 | 0.8% |
TNG-10 | TPU-NiO-NH2-GO -5 | 18 | 81 | 1% |
Sr# | Membranes | Porosity (%) |
---|---|---|
1 | T-0 | 80.48 |
2 | TN-02 | 72.77 |
3 | TNG-02 | 73.17 |
4 | TNG-04 | 71.53 |
5 | TNG-06 | 70.42 |
6 | TNG-08 | 68.94 |
7 | TNG-10 | 69.32 |
Photo Catalytic Membrane | First Order | Second Order | ||
---|---|---|---|---|
R2 | K1 (min−1) | R2 | K2 (L µmol−1min−1) | |
TNG-08 | 0.97 | 0.012 | 0.80 | 0.0007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubair, U.; Zahid, M.; Nadeem, N.; Ghazal, K.; AlSalem, H.S.; Binkadem, M.S.; Al-Goul, S.T.; Rehan, Z.A. The Design of Ternary Composite Polyurethane Membranes with an Enhanced Photocatalytic Degradation Potential for the Removal of Anionic Dyes. Membranes 2022, 12, 630. https://doi.org/10.3390/membranes12060630
Zubair U, Zahid M, Nadeem N, Ghazal K, AlSalem HS, Binkadem MS, Al-Goul ST, Rehan ZA. The Design of Ternary Composite Polyurethane Membranes with an Enhanced Photocatalytic Degradation Potential for the Removal of Anionic Dyes. Membranes. 2022; 12(6):630. https://doi.org/10.3390/membranes12060630
Chicago/Turabian StyleZubair, Usman, Muhammad Zahid, Nimra Nadeem, Kainat Ghazal, Huda S. AlSalem, Mona S. Binkadem, Soha T. Al-Goul, and Zulfiqar Ahmad Rehan. 2022. "The Design of Ternary Composite Polyurethane Membranes with an Enhanced Photocatalytic Degradation Potential for the Removal of Anionic Dyes" Membranes 12, no. 6: 630. https://doi.org/10.3390/membranes12060630
APA StyleZubair, U., Zahid, M., Nadeem, N., Ghazal, K., AlSalem, H. S., Binkadem, M. S., Al-Goul, S. T., & Rehan, Z. A. (2022). The Design of Ternary Composite Polyurethane Membranes with an Enhanced Photocatalytic Degradation Potential for the Removal of Anionic Dyes. Membranes, 12(6), 630. https://doi.org/10.3390/membranes12060630