Virucidal and Bactericidal Filtration Media from Electrospun Polylactic Acid Nanofibres Capable of Protecting against COVID-19
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Electrospinning of Nanofibre and Characterisation
2.3. Pressure Drop and Breathing Resistance
2.4. Filtration Performance Testing
2.5. Electrospinning Solutions
2.6. Antimicrobial Activity
2.6.1. Antibacterial Activity
2.6.2. Antiviral Activity
2.6.3. Anti-Fungal Activity
2.7. Washability of the Filter Media
3. Results and Discussion
3.1. Filtration Performance of PLA NF Filter Media
3.2. Antimicrobial Activity of PLA Nanofibers Containing Manuka Triketone
3.2.1. Antibacterial Activity of PLA Nanofibers Containing Manuka Triketone
3.2.2. Antiviral Activity of PLA Nanofibers Containing Manuka Triketone
3.2.3. Antifungal Activity of PLA Nanofibers Containing Manuka Triketone
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Babaahmadi, V.; Amid, H.; Naeimirad, M.; Ramakrishna, S. Biodegradable and multifunctional surgical face masks: A brief review on demands during COVID-19 pandemic, recent developments, and future perspectives. Sci. Total Environ. 2021, 798, 149233. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Fan, C.; Li, M.; Nie, H.-L.; Wang, F.-B.; Wang, H.; Wang, R.; Xia, J.; Zheng, X.; Zuo, X.; et al. COVID-19: A Call for Physical Scientists and Engineers. ACS Nano 2020, 14, 3747–3754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacitto, A.; Amato, F.; Salmatonidis, A.; Moreno, T.; Alastuey, A.; Reche, C.; Buonanno, G.; Benito, C.; Querol, X. Effectiveness of commercial face masks to reduce personal PM exposure. Sci. Total Environ. 2019, 650, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Prather Kimberly, A.; Wang Chia, C.; Schooley Robert, T. Reducing transmission of SARS-CoV-2. Science 2020, 368, 1422–1424. [Google Scholar] [CrossRef]
- Pullangott, G.; Kannan, U.; Gayathri, S.; Kiran, D.V.; Maliyekkal, S.M. A comprehensive review on antimicrobial face masks: An emerging weapon in fighting pandemics. RSC Adv. 2021, 11, 6544–6576. [Google Scholar] [CrossRef]
- Pasanen, A.L.; Keinanen, J.; Kalliokoski, P.; Martikainen, P.I.; Ruuskanen, J. Microbial growth on respirator filters from improper storage. Scand. J. Work. Environ. Health 1993, 6, 421–425. [Google Scholar] [CrossRef]
- Brosseau, L.M.; McCullough, N.V.; Vesley, D. Bacterial Survival on Respirator Filters and Surgical Masks. J. Am. Biol. Saf. Assoc. 1997, 2, 32–43. [Google Scholar] [CrossRef]
- Zheng, C.R.; Li, S.; Ye, C.; Li, X.; Zhang, C.; Yu, X. Particulate Respirators Functionalized with Silver Nanoparticles Showed Excellent Real-Time Antimicrobial Effects against Pathogens. Environ. Sci. Technol. 2016, 50, 7144–7151. [Google Scholar] [CrossRef]
- Fadare, O.O.; Okoffo, E.D. Covid-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef]
- Rengasamy, S.; Fisher, E.; Shaffer, R.E. Evaluation of the survivability of MS2 viral aerosols deposited on filtering face piece respirator samples incorporating antimicrobial technologies. Am. J. Infect. Control. 2010, 38, 9–17. [Google Scholar] [CrossRef]
- Karabulut, F.N.H.; Höfler, G.; Ashok Chand, N.; Beckermann, G.W. Electrospun Nanofibre Filtration Media to Protect against Biological or Nonbiological Airborne Particles. Polymers 2021, 13, 3257. [Google Scholar] [CrossRef] [PubMed]
- Essa, W.K.; Yasin, S.A.; Saeed, I.A.; Ali, G.A.M. Nanofiber-Based Face Masks and Respirators as COVID-19 Protection: A Review. Membranes 2021, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ji, D.; He, H.; Ramakrishna, S. Electrospun ultrafine fibers for advanced face masks. Mater. Sci. Eng. R Rep. 2021, 143, 100594. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, S.; Fujihara, K.; Teo, W.E.; Yong, T.; Ma, Z.; Ramaseshan, R. Electrospun nanofibers; solving global issues. Mater. Today 2006, 9, 40–50. [Google Scholar] [CrossRef]
- Prata, J.C.; Silva, A.L.P.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 2020, 54, 7760–7765. [Google Scholar] [CrossRef]
- Hamdan, N.; Yamin, A.; Hamid, S.A.; Khodir, W.K.; Guarino, V. Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances. J. Funct. Biomater. 2021, 12, 59. [Google Scholar] [CrossRef]
- Gao, Y.; Bach Truong, Y.; Zhu, Y.; Louis Kyratzis, I. Electrospun antibacterial nanofibers: Production, activity, and in vivo applications. J. Appl. Polym. Sci. 2014, 131, 40797. [Google Scholar] [CrossRef]
- Kumar, S.; Jang, J.; Oh, H.; Jung, B.J.; Lee, Y.; Park, H.; Yang, K.H.; Chang Seong, Y.; Lee, J.-S. Antibacterial Polymeric Nanofibers from Zwitterionic Terpolymers by Electrospinning for Air Filtration. ACS Appl. Nano Mater. 2021, 4, 2375–2385. [Google Scholar] [CrossRef]
- Pardo-Figuerez, M.; Chiva-Flor, A.; Figueroa-Lopez, K.; Prieto, C.; Lagaron, J.M. Antimicrobial Nanofiber Based Filters for High Filtration Efficiency Respirators. Nanomaterials 2021, 11, 900. [Google Scholar] [CrossRef]
- Song, K.; Wu, Q.; Zhang, Z.; Ren, S.; Lei, T.; Negulescu, I.I.; Zhang, Q. Porous Carbon Nanofibers from Electrospun Biomass Tar/Polyacrylonitrile/Silver Hybrids as Antimicrobial Materials. ACS Appl. Mater. Interfaces 2015, 7, 15108–15116. [Google Scholar] [CrossRef]
- Castro-Mayorga, J.L.; Fabra, M.J.; Lagaron, J.M. Stabilized nanosilver based antimicrobial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites of interest in active food packaging. Innov. Food Sci. Emerg. Technol. 2016, 33, 524–533. [Google Scholar] [CrossRef]
- Blosi, M.; Costa, A.L.; Ortelli, S.; Belosi, F.; Ravegnani, F.; Varesano, A.; Tonetti, C.; Zanoni, I.; Vineis, C. Polyvinyl alcohol/silver electrospun nanofibers: Biocidal filter media capturing virus-size particles. J. Appl. Polym. Sci. 2021, 138, 51380. [Google Scholar] [CrossRef] [PubMed]
- Ditaranto, N.; Basoli, F.; Trombetta, M.; Cioffi, N.; Rainer, A. Electrospun Nanomaterials Implementing Antibacterial Inorganic Nanophases. Appl. Sci. 2018, 8, 1643. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ronca, S.; Mele, E. Electrospun Nanofibres Containing Antimicrobial Plant Extracts. Nanomaterials 2017, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.H.; Yeh, J.Y.; Chen, Y.S.; Li, M.H.; Huang, C.H. Wound-healing effect of electrospun gelatin nanofibres containing Centella asiatica extract in a rat model. J. Tissue Eng. Regen. Med. 2017, 11, 905–915. [Google Scholar] [CrossRef]
- Jin, G.; Prabhakaran, M.P.; Kai, D.; Annamalai, S.K.; Arunachalam, K.D.; Ramakrishna, S. Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials 2013, 34, 724–734. [Google Scholar] [CrossRef]
- Agnes Mary, S.; Giri Dev, V.R. Electrospun herbal nanofibrous wound dressings for skin tissue engineering. J. Text. Inst. 2015, 106, 886–895. [Google Scholar] [CrossRef]
- Lin, S.; Chen, M.; Jiang, H.; Fan, L.; Sun, B.; Yu, F.; Yang, X.; Lou, X.; He, C.; Wang, H. Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect. Colloids Surf. B Biointerfaces 2016, 139, 156–163. [Google Scholar] [CrossRef]
- Patel, B. Corporate Uniform Fabrics with Antimicrobial Edge: Preparation and Evaluation Methodology. Int. Dye. 2014, 2, 33–38. [Google Scholar]
- Radetić, M.; Marković, D. Nano-finishing of cellulose textile materials with copper and copper oxide nanoparticles. Cellulose 2019, 26, 8971–8991. [Google Scholar] [CrossRef]
- Rezaie, A.B.; Montazer, M.; Rad, M.M. A cleaner route for nanocolouration of wool fabric via green assembling of cupric oxide nanoparticles along with antibacterial and UV protection properties. J. Clean. Prod. 2017, 166, 221–231. [Google Scholar] [CrossRef]
- Kale, R.; Vade, A.; Kane, P. Antibacterial and Conductive Polyester Developed using Nano Copper Oxide and Polypyrrole Coating. J. Text. Assoc. 2019, 79, 340–346. [Google Scholar]
- Nischala, K.; Rao, T.N.; Hebalkar, N. Silica–silver core–shell particles for antibacterial textile application. Colloids Surf. B Biointerfaces 2011, 82, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Eremenko, A.M.; Petrik, I.S.; Smirnova, N.P.; Rudenko, A.V.; Marikvas, Y.S. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles. Nanoscale Res. Lett. 2016, 11, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, N.A.; Eid, B.M.; Hashem, M.M.; Refai, R.; El-Hossamy, M. Smart Options for Functional Finishing of Linen-containing Fabrics. J. Ind. Text. 2010, 39, 233–265. [Google Scholar] [CrossRef]
- Irfan, M.; Perero, S.; Miola, M.; Maina, G.; Ferri, A.; Ferraris, M.; Balagna, C. Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose 2017, 24, 2331–2345. [Google Scholar] [CrossRef]
- Merkl, P.; Long, S.; McInerney, G.M.; Sotiriou, G.A. Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2. Nanomaterials 2021, 11, 1312. [Google Scholar] [CrossRef]
- Pollard, Z.A.; Karod, M.; Goldfarb, J.L. Metal leaching from antimicrobial cloth face masks intended to slow the spread of COVID-19. Sci. Rep. 2021, 11, 19216. [Google Scholar] [CrossRef]
- Kapoor, N.; Yadav, R. Manuka honey: A promising wound dressing material for the chronic nonhealing discharging wounds: A retrospective study. Natl. J. Maxillofac. Surg. 2021, 12, 233–237. [Google Scholar] [CrossRef]
- ASTM International—ASTM F2299-03—Standard Test Method for Determining the Initial Efficiency of Materials Used in Medical Face Masks to Penetration by Particulates Using Latex Spheres. Available online: https://www.astm.org/f2299-03.html (accessed on 20 April 2022).
- ASTM International—ASTM F3502—Barrier Face Coverings and Workplace Performance/Performance Plus Masks. Available online: https://www.astm.org/f3502-21.html (accessed on 20 April 2022).
- NIOSH 42 CFR Part 84—Respiratory Protective Devices. Available online: https://www.cdc.gov/niosh/npptl/topics/respirators/pt84abs2.html (accessed on 20 April 2022).
- ISO 20743:2013 Textiles—Determination of Antibacterial Activity of Textile Products. Available online: https://www.iso.org/standard/59586.html (accessed on 20 April 2022).
- ISO 18184:2019 Textiles—Determination of Antiviral Activity of Textile Products. Available online: https://www.iso.org/standard/71292.html (accessed on 20 April 2022).
- ASTM G21-15(2021)e1—Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi. Available online: https://standards.globalspec.com/std/14393372/astm-g21-15-2021-e1 (accessed on 20 April 2022).
- Rutledge, G.C.; Fridrikh, S.V. Formation of fibers by electrospinning. Adv. Drug Deliv. Rev. 2007, 59, 1384–1391. [Google Scholar] [CrossRef]
- EN 14683:2019+AC:2019—Medical Face Masks—Requirements and Test Methods. Available online: https://standards.iteh.ai/catalog/standards/cen/13eebf8f-0ff1-4084-946a-2fb8f6e24928/en-14683-2019 (accessed on 20 April 2022).
- ASTM International—ASTM F2101-19 -Standard Test Method for Evaluating the Bacterial Filtration Efficiency (BFE) of Medical Face Mask Materials, Using a Biological Aerosol of Staphylococcus Aureus. Available online: https://www.astm.org/f2101-19.html (accessed on 20 April 2022).
- ISO 6330:2021 Textiles—Domestic Washing and Drying Procedures for Textile Testing. Available online: https://www.iso.org/standard/75934.html (accessed on 20 April 2022).
- Li, L.; Frey, M.W.; Green, T.B. Modification of Air Filter Media with Nylon-6 Nanofibers. J. Eng. Fibers Fabr. 2006, 1, 155892500600100101. [Google Scholar] [CrossRef] [Green Version]
- ASTM International—ASTM F2100-21—Standard Specification for Performance of Materials Used in Medical Face Masks. Available online: https://standards.globalspec.com/std/14468211/astm-f2100-21 (accessed on 20 April 2022).
Test | Level 1 | Level 2 | Level 3 | |
---|---|---|---|---|
ASTM F2299 (PFE) Filtration at 0.1 µm—28.3 L·min−1 | 95%≤ | 98%≤ | ||
EN14683 (Breathing resistance—Breathability) | ≤49 Pa | ≤58.8 Pa | ||
ASTM F2101 -19 (BFE) Filtration at 3 µm—28.3 L·min−1 | 95%≤ | 98%≤ | ||
ASTM F2101 (VFE) Filtration at 3 µm—28.3 L·min−1 | 95%≤ | 98%≤ | ||
ASTM F3502 Filtration at 0.3 µm—60 L/min | 20% £ | 50%≤ | - | |
ASTM F3502 (Breathing resistance—Breathability) | 15 mmH2O (147.5 Pa) | 5 mmH2O (49 Pa) | - | |
NIOSH 42 CFR 84 Filtration at 0.3 µm—85 L·min−1 | N95 95%≤ | |||
Breathing resistance | Inhalation—120 L·min−1 | <314 Pa | ΔP < 98 Pa | |
Exhalation—85 L·min−1 | <245 Pa |
Antibacterial Activity Value (A) | Efficacy Rating | A Value | Reduction (%) |
---|---|---|---|
Good Effect Level | 1 | 90 | |
2 | 99 | ||
3 | 99.9 | ||
Excellent Effect Level | 4 | 99.99 | |
5 | 99.999 |
Antiviral Activity Value (Mv) | Efficacy Rating | Mv Value | Reduction (%) |
---|---|---|---|
Good Effect Level | 1 | 90 | |
2 | 99 | ||
3 | 99.9 | ||
Excellent Effect Level | 4 | 99.9 | |
5 | 99.999 |
ASTM F2299 | ASTM F3502 | NIOSH 42CFR84 | ||||||
---|---|---|---|---|---|---|---|---|
Filtration Efficiency at 100 nm | ΔP | Filtration Efficiency at 300 nm | ΔP Inh. at 60 LPM | ΔP Exh. at 60 LPM | Filtration Efficiency at 300 nm | ΔP Ex. at 85 LPM | ΔP Inh. at 120 LPM | |
1 | 99.87 | 55.90 | 98.31 | 96.20 | 99.05 | 98.08 | 94.20 | 138.58 |
2 | 99.88 | 55.90 | 98.44 | 96.60 | 100.99 | 98.61 | 102.00 | 149.37 |
3 | 99.59 | 59.00 | 98.83 | 99.13 | 100.63 | 99.18 | 120.47 | 174.84 |
4 | 99.65 | 53.70 | 99.23 | 101.21 | 102.54 | 98.95 | 129.13 | 188.36 |
5 | 99.68 | 49.30 | 99.62 | 101.46 | 103.01 | 99.11 | 142.08 | 206.31 |
6 | 99.33 | 48.20 | 99.51 | 102.28 | 103.16 | 99.64 | 174.00 | 250 |
7 | 99.98 | 53.60 | 100 | 103.12 | 105.21 | 100 | 178.44 | 257.3 |
8 | 99.68 | 49.70 | 100 | 185.48 | 266.18 | |||
9 | 99.24 | 185.77 | 266.95 | |||||
10 | 100 | 189.76 | 273.38 | |||||
11 | 100 | 201.14 | 289.63 | |||||
12 | 100 | 204.18 | 295.12 | |||||
13 | 100 | 205.14 | 295.33 |
ISO 20743:2013 | S. aureus (ATCC 6538P) | E. Coli (ATCC 8739) | K. pneumonia (ATCC 4352) | ||||
---|---|---|---|---|---|---|---|
0 Wash | 5 Washes | 10 Washes | 0 Wash | 0 Wash | 5 Washes | 10 Washes | |
Control | Initial | Initial | Initial | Initial | |||
Log CFU | 4.69 | 4.69 | 4.83 | 4.80 | |||
Contacting time (hours) | - | - | - | - | |||
Control | After contacting | After contacting | After contacting | After contacting | |||
Log CFU | 7.25 | 7.19 | 7.3 | 7.6 | |||
Contacting time (hours) | 18 | 18 | 18 | 18 | |||
Log CFU samples | 2.33 | 2.87 | 3.1 | 3.83 | 4.55 | 4.82 | 5.11 |
Percentage reduction samples (%) | 99.999 | 99.996 | 99.993 | 99.957 | 99.82 | 99.834 | 99.678 |
Log reduction samples | 4.92 | 4.38 | 4.15 | 3.36 | 2.75 | 2.78 | 2.49 |
ISO 18184:2019 | Influenza A (H1N1) (ATCC VR-1469) | Human Coronavirus 229E (ATCC VR-740) | SARS-CoV-2 (Delta Variant) |
---|---|---|---|
Infective titer test | TCID50 method | TCID50 method | Plaque assay |
Log(Va) (Control, immediately) | 5.88 | 4.25 | 3.21 |
Contacting time (hours) | 2 | 2 | 2 |
Log(Vc) (Sample, after contacting) | 3.88 | 1.5 | 0.70 |
Antiviral activity value, Mv | 2 | 2.8 | 2.5 |
Percentage reduction samples (%) | 99 | 99.82 | 99.69 |
Sub-Samples | Control Specimen | Test Specimen |
---|---|---|
Contact time | 28 days | 28 days |
Rating | 4 | 0 |
Observed Growth | High Growth | No Growth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karabulut, F.N.H.; Fomra, D.; Höfler, G.; Chand, N.A.; Beckermann, G.W. Virucidal and Bactericidal Filtration Media from Electrospun Polylactic Acid Nanofibres Capable of Protecting against COVID-19. Membranes 2022, 12, 571. https://doi.org/10.3390/membranes12060571
Karabulut FNH, Fomra D, Höfler G, Chand NA, Beckermann GW. Virucidal and Bactericidal Filtration Media from Electrospun Polylactic Acid Nanofibres Capable of Protecting against COVID-19. Membranes. 2022; 12(6):571. https://doi.org/10.3390/membranes12060571
Chicago/Turabian StyleKarabulut, Fabrice Noël Hakan, Dhevesh Fomra, Günther Höfler, Naveen Ashok Chand, and Gareth Wesley Beckermann. 2022. "Virucidal and Bactericidal Filtration Media from Electrospun Polylactic Acid Nanofibres Capable of Protecting against COVID-19" Membranes 12, no. 6: 571. https://doi.org/10.3390/membranes12060571
APA StyleKarabulut, F. N. H., Fomra, D., Höfler, G., Chand, N. A., & Beckermann, G. W. (2022). Virucidal and Bactericidal Filtration Media from Electrospun Polylactic Acid Nanofibres Capable of Protecting against COVID-19. Membranes, 12(6), 571. https://doi.org/10.3390/membranes12060571