Removal of Contaminants from Water by Membrane Filtration: A Review
Abstract
:1. Introduction
2. Membrane Separation Processes
2.1. Pharmaceutical Compound Removal
PhACs Class | Name | Process | Polymer | Additive | Nanomaterial | % Removal | Sample | Ref. |
---|---|---|---|---|---|---|---|---|
Antibiotics | Sulfadiazine | UF | PVDF | PVP | TiO2 | 91.4 | synthetic | [49] |
NF | PATF | PVP | Zeolite | >90 | synthetic | [43] | ||
Amoxicillin | NF | PES | PVP | - | 56–99 | wastewater | [61] | |
Ampicillin Cephalexin-hydrate Ciprofloxacin Erythromycin Nalidixic acid Norfloxacin Roxithromycin Sulfamethazine | PATF | PVP | - | >90 | synthetic | [43] | ||
Zeolite | ||||||||
Chloramphenicol | NF | PATF | PVP | - | 81 | synthetic | [43] | |
Zeolite | 84 | |||||||
Sulfamethoxazole | NF | PATF | PVP | - | >90 | [43] | ||
RO | CATF | - | - | 82 | [39] | |||
PATF | - | - | 70 | [39] | ||||
Tetracycline | UF | PES | PVP | HMCN | 97 | [47] | ||
Antidepressants | Sulpiride | NF | PATF | PVP | - | >90 | synthetic | [43] |
Zeolite | ||||||||
Antihistamine | Ranitidine | NF | PATF | PVP | - | 88 | synthetic | |
Zeolite | 84 | |||||||
Nizatidine | NF | PATF | PVP | - | >90 | |||
Zeolite | ||||||||
Anti-hypertensives | Atenolol | NF | PATF | - | - | >85 | synthetic | [42] |
RO | 99.5 | [41] | ||||||
Diltiazem | NF | PATF | PVP | - | >90 | synthetic | [43] | |
Zeolite | ||||||||
Metoprolol | NF | PATF | - | - | >85 | synthetic | [42] | |
PVP | - | 88 | [43] | |||||
Zeolite | 82 | |||||||
Propranolol | UF | PVDF | PVP | β-CDP | 99.9 | synthetic | [58] | |
Primidone | NF | PATF | - | - | 87 | synthetic | [40] | |
RO | CATF | 85 | [39] | |||||
PATF | 84–87 | [39,40] | ||||||
Carbamazepine | NF | PES | - | - | 31–39 | synthetic | [37] | |
PATF | - | - | >85 | [42] | ||||
PATF | PVP | - | 89 | [43] | ||||
Zeolite | 85 | |||||||
RO | CATF | - | - | 85 | [39] | |||
PATF | - | - | 91 | |||||
Lipid regulator | Clofibric acid | NF | PATF | - | - | >85 | synthetic | [42] |
PVP | - | >90 | [43] | |||||
Zeolite | ||||||||
Gemfibrozil | NF | PATF | - | - | >85 | [42] | ||
PVP | - | >90 | [43] | |||||
Zeolite | ||||||||
RO | PATF | - | - | 99.5 | [41] | |||
Non-steroidal anti-inflammatory | Acetaminophen | UF | PSU | MC | - | 7 | synthetic | [46] |
PAC | 41.57 | |||||||
PI | - | - | 15 | [48] | ||||
SiO2 | 99.9 | [48] | ||||||
NF | PATF | - | - | 46 | [44] | |||
ZIF-8 | >55 | |||||||
Diclofenac | UF | PSU | MC | - | 44.41 | synthetic | [46] | |
PAC | 50.44 | [46] | ||||||
NF | PES | - | - | 55–61 | [37] | |||
PATF | - | - | 85–93 | [40,42] | ||||
PVP | - | >90 | [43] | |||||
Zeolite | ||||||||
RO | PATF | - | - | 95 | [40] | |||
Ibuprofen | UF | PI | - | - | 11 | synthetic | [48] | |
SiO2 | 87 | |||||||
NF | PES | - | - | 55–61 | [37] | |||
PATF | >85 | [42] | ||||||
RO | PATF | - | - | 99.8 | [41] | |||
Naproxen | NF | PATF | - | - | >85 | synthetic | [42] | |
Phenacetine | NF | PATF | - | - | 19 | synthetic | [40] | |
RO | CATF | - | - | 10 | [39] | |||
PATF | 71–74 | [39,40] | ||||||
Hormones and endocrine disruptive compounds. | 17β-Estradiol | UF | PES | PVP | HMCN | 94 | [47] | |
RO | CATF | - | - | 29 | synthetic | [39] | ||
PATF | 83 | |||||||
Bisphenol A | UF | PES | PVP | - | 25 | water treatment plant | [60] | |
SiO2 | 87 | |||||||
PVC | PVP | - | >40 | synthetic | [59] | |||
COOH-MWCNT | >50 | |||||||
MWCNT/Fe3O4 | 57.4 | |||||||
PVDF | β-CDP | >99.9 | [58] | |||||
TF—thin-film membrane |
2.2. Pesticide Removal
2.3. Microorganism Removal
2.4. Dye Removal
2.5. Heavy Metals Removal
Heavy Metals | Process | Polymer | Additive | Nanomaterial | % Removal | Sample | Ref. |
---|---|---|---|---|---|---|---|
Arsenic (As) | UF | PSU | - | - | 10.9 | synthetic | [79] |
Amide-MWCNT | 79.4 | ||||||
Azide -MWCNT | 80.9 | ||||||
Oxidized- MWCNT | 83.6 | ||||||
GO | 83.65 | [80] | |||||
Cadmium (Cd) | UF | PSU | - | - | 9.9 | [79] | |
Amide-MWCNT | 78.2 | ||||||
Azide -MWCNT | 79.1 | ||||||
Oxidized- MWCNT | 71.6 | ||||||
Chromium (Cr) | UF | CA | - | - | 35.72 | synthetic | [86] |
PEG | - | 31.89 | |||||
nanochitosan | 95 | Tannery effluent | [82] | ||||
PSU | - | - | 10.2 | synthetic | [79] | ||
Amide-MWCNT | 94.2 | ||||||
Azide -MWCNT | 94.8 | ||||||
Oxidized- MWCNT | 86.2 | ||||||
NF | PATF | - | - | 96–99 | [77,78] | ||
Copper (Cu) | UF | CA | PVP | - | 29 | synthetic | [87] |
CA/PSU | - | - | 78 | wastewater | [75] | ||
Al2O3 | 84 | ||||||
nZVI | 88 | ||||||
PSU | - | - | 10.1 | synthetic | [79] | ||
Amide-MWCNT | 93.1 | ||||||
Azide -MWCNT | 93.9 | ||||||
Oxidized- MWCNT | 79.3 | ||||||
NF | PES | PVP | - | 25 | [85] | ||
AL2O3 | 60 | ||||||
Fe3O4 | ∼30 | [84] | |||||
Fe3O4/SiO2 | ∼40 | ||||||
Fe3O4/SiO2-Met | ∼92 | ||||||
Fe3O4/SiO2-Amide | ∼75 | ||||||
PANI/Fe3O4 | 80–85 | [83] | |||||
PATF | - | - | 95.33 | [78] | |||
Lead (Pb) | UF | PSU | - | - | 10.5 | synthetic | [79] |
Amide-MWCNT | 90.1 | ||||||
Azide -MWCNT | 90.8 | ||||||
Oxidized- MWCNT | 41.3 | ||||||
Nickel (Ni) | NF | PATF | - | - | 94.99 | synthetic | [78] |
TF—thin-film membrane |
2.6. Mycotoxins Removal
2.7. Policyclic Aromatic Hydrocarbon (PAH) and Phthalate (PAE) Removal
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sargen, M. Biological Roles of Water: Why Is Water Necessary for Life? Available online: https://sitn.hms.harvard.edu/uncategorized/2019/biological-roles-of-water-why-is-water-necessary-for-life/ (accessed on 10 December 2021).
- United Nations University-Institute for Water Environment and Health. Water-Related Sustainable Development Goals: Accelerating Success for Water-related Sustainable Development Goals. Available online: https://inweh.unu.edu/projects/water-related-sustainable-development-goals/#1552973275168-fb16751e-efe1 (accessed on 10 December 2021).
- WHO/UNICEF. Drinking Water. Available online: https://data.unicef.org/topic/water-and-sanitation/drinking-water/ (accessed on 10 December 2021).
- Enzler, S.M. History of Water Treatment. Available online: https://www.lenntech.com/history-water-treatment.htm#ixzz6YwTGINlx (accessed on 12 December 2021).
- Union, E. European Union Directive 2000/60/EC of the European Parliament of the Council of 23 October 2000 establishing a framework for community action in the field of water policy (Water Framework Directive). Off. J. Eur. Communities 2000, 327, 1–93. [Google Scholar]
- Bell, K.Y.; Bandy, J.; Beck, S.; Keen, O.; Kolankowsky, N.; Parker, A.M.; Linden, K. Emerging Pollutants—Part II: Treatment. Water Environ. Res. 2012, 84, 1909–1940. [Google Scholar] [CrossRef]
- Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-watertreatment plant. Sci. Total Environ. 2004, 329, 99–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, N.H.; Urase, T.; Kusakabe, O. Biodegradation Characteristics of Pharmaceutical Substances by whole fungal culture trametes versicolor and its laccase. J. Water Environ. Technol. 2010, 8, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kyoung, H.C.; Al-Hamadani, Y.A.J.; Park, C.M.; Jang, M.; Kim, D.H.; Yu, M.; Heo, J.; Yoon, Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J. 2018, 335, 896–914. [Google Scholar] [CrossRef]
- Taheran, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y.; Zhang, T.C.; Valero, J.R. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci. Total Environ. 2016, 547, 60–77. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Bringas, E.; Tan, N.R.; Ortiz, I.; Ghahramani, M.; Alaei Shahmirzadi, M.A. Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: A review. J. Water Process. Eng. 2016, 9, 78–110. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Khajeh, A.; Mesbah, M. Membrane filtration of wastewater from gas and oil production. Environ. Chem. Lett. 2018, 16, 367–388. [Google Scholar] [CrossRef]
- Cai, Z.; Dwivedi, A.D.; Lee, W.N.; Zhao, X.; Liu, W.; Sillanpää, M.; Zhao, D.; Huang, C.H.; Fu, J. Application of nanotechnologies for removing pharmaceutically active compounds from water: Development and future trends. Environ. Sci. Nano 2018, 5, 27–47. [Google Scholar] [CrossRef]
- Ying, Y.; Ying, W.; Li, Q.; Meng, D.; Ren, G.; Yan, R.; Peng, X. Recent advances of nanomaterial-based membrane for water purification. Appl. Mater Today 2017, 7, 144–158. [Google Scholar] [CrossRef]
- Khraisheh, M.; Elhenawy, S.; AlMomani, F.; Al-Ghouti, M.; Hassan, M.K.; Hameed, B.H. Recent Progress on Nanomaterial-Based Membranes for Water Treatment. Membranes 2021, 11, 995. [Google Scholar] [CrossRef] [PubMed]
- Alaei Shahmirzadi, M.A.; Kargari, A. 9-Nanocomposite membranes. In Emerging Technologies for Sustainable Desalination Handbook; Gude, V.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 285–330. [Google Scholar]
- Yin, J.; Deng, B. Polymer-matrix nanocomposite membranes for water treatment. J. Membr. Sci. 2015, 479, 256–275. [Google Scholar] [CrossRef]
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018. [Google Scholar] [CrossRef]
- Ji, C.; Zhai, Z.; Jiang, C.; Hu, P.; Zhao, S.; Xue, S.; Yang, Z.; He, T.; Niu, Q.J. Recent advances in high-performance TFC membranes: A review of the functional interlayers. Desalination 2021, 500, 114869. [Google Scholar] [CrossRef]
- Strathmann, H. Membrane Separation Processes, 1. Principles. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinhein, Germany, 2011. [Google Scholar] [CrossRef]
- Li, N.N.; Fane, A.G.; Ho, W.W.; Matsuura, T. Advanced Membrane Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Mamba, F.B.; Mbuli, B.S.; Ramontja, J. Recent Advances in Biopolymeric Membranes towards the Removal of Emerging Organic Pollutants from Water. Membranes 2021, 11, 798. [Google Scholar] [CrossRef]
- Siddique, T.; Dutta, N.K.; Choudhury, N.R. Mixed-Matrix Membrane Fabrication for Water Treatment. Membranes 2021, 11, 557. [Google Scholar] [CrossRef]
- Tasselli, F. Membrane Preparation Techniques. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–3. [Google Scholar]
- Hołda, A.K.; Vankelecom, I.F. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [Google Scholar] [CrossRef]
- Smolders, C.A.; Reuvers, A.J.; Boom, R.M.; Wienk, I.M. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 1992, 73, 259–275. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J. Membr. Sci. 2008, 315, 36–47. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Effect of molecular weight of PEG on membrane morphology and transport properties. J. Membr. Sci. 2008, 309, 209–221. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maryam, B.; Buscio, V.; Odabasi, S.U.; Buyukgungor, H. A study on behavior, interaction and rejection of Paracetamol, Diclofenac and Ibuprofen (PhACs) from wastewater by nanofiltration membranes. Environ. Technol. Innov. 2020, 18, 100641. [Google Scholar] [CrossRef]
- Couto, C.F.; Santos, A.V.; Amaral, M.C.S.; Lange, L.C.; de Andrade, L.H.; Foureaux, A.F.S.; Fernandes, B.S. Assessing potential of nanofiltration, reverse osmosis and membrane distillation drinking water treatment for pharmaceutically active compounds (PhACs) removal. J. Water Process. Eng. 2020, 33, 101029. [Google Scholar] [CrossRef]
- Deegan, A.M.; Shaik, B.; Nolan, K.; Urell, K.; Oelgemöller, M.; Tobin, J.; Morrissey, A. Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol. 2011, 8, 649–666. [Google Scholar] [CrossRef] [Green Version]
- Couto, C.F.; Lange, L.C.; Amaral, M.C.S. A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. J. Water Process. Eng. 2018, 26, 156–175. [Google Scholar] [CrossRef]
- Snyder, S.A.; Adham, S.; Redding, A.M.; Cannon, F.S.; DeCarolis, J.; Oppenheimer, J.; Wert, E.C.; Yoon, Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2007, 202, 156–181. [Google Scholar] [CrossRef]
- Vergili, I. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J. Environ. Manag. 2013, 127, 177–187. [Google Scholar] [CrossRef]
- Kong, F.-X.; Yang, H.-W.; Wang, X.-M.; Xie, Y.F. Assessment of the hindered transport model in predicting the rejection of trace organic compounds by nanofiltration. J. Membr. Sci. 2016, 498, 57–66. [Google Scholar] [CrossRef]
- Kimura, K.; Toshima, S.; Amy, G.; Watanabe, Y. Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. J. Membr. Sci. 2004, 245, 71–78. [Google Scholar] [CrossRef]
- Kimura, K.; Amy, G.; Drewes, J.E.; Heberer, T.; Kim, T.-U.; Watanabe, Y. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci. 2003, 227, 113–121. [Google Scholar] [CrossRef]
- Urtiaga, A.M.; Pérez, G.; Ibáñez, R.; Ortiz, I. Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination 2013, 331, 26–34. [Google Scholar] [CrossRef]
- Botton, S.; Verliefde, A.R.D.; Quach, N.T.; Cornelissen, E.R. Influence of biofouling on pharmaceuticals rejection in NF membrane filtration. Water Res. 2012, 46, 5848–5860. [Google Scholar] [CrossRef]
- Dong, L.X.; Huang, X.C.; Wang, Z.; Yang, Z.; Wang, X.M.; Tang, C.Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Sep. Purif. Technol. 2016, 166, 230–239. [Google Scholar] [CrossRef]
- Basu, S.; Balakrishnan, M. Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams. Sep. Purif. Technol. 2017, 179, 118–125. [Google Scholar] [CrossRef]
- Lau, W.J.; Ismail, A.F.; Misdan, N.; Kassim, M.A. A recent progress in thin film composite membrane: A review. Desalination 2012, 287, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Nadour, M.; Boukraa, F.; Benaboura, A. Removal of Diclofenac, Paracetamol and Metronidazole using a carbon-polymeric membrane. J. Environ. Chem. Eng. 2019, 7, 12. [Google Scholar] [CrossRef]
- Liao, Z.P.; Nguyen, M.N.; Wan, G.J.; Xie, J.; Ni, L.H.; Qi, J.W.; Li, J.S.; Schafer, A.I. Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants. J. Hazard Mater. 2020, 397, 10. [Google Scholar] [CrossRef]
- Kuttiani Ali, J.; Abi Jaoude, M.; Alhseinat, E. Polyimide ultrafiltration membrane embedded with reline-functionalized nanosilica for the remediation of pharmaceuticals in water. Sep. Purif. Technol. 2021, 266, 118585. [Google Scholar] [CrossRef]
- Zhou, A.; Jia, R.; Wang, Y.; Sun, S.; Xin, X.; Wang, M.; Zhao, Q.; Zhu, H. Abatement of sulfadiazine in water under a modified ultrafiltration membrane (PVDF-PVP-TiO2-dopamine) filtration-photocatalysis system. Sep. Purif. Technol. 2020, 234, 116099. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, K.; Kang, R.; Xia, J.; Yu, G.; Deng, S. A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: Kinetics, isotherms and mechanisms. J. Hazard Mater. 2018, 359, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Jun, B.-M.; Heo, J.; Park, C.M.; Yoon, Y. Comprehensive evaluation of the removal mechanism of carbamazepine and ibuprofen by metal organic framework. Chemosphere 2019, 235, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Sewoon, K.; Muñoz-Senmache, J.C.; Jun, B.-M.; Park, C.M.; Jang, A.; Yu, M.; Hernández-Maldonado, A.J.; Yoon, Y. A metal organic framework-ultrafiltration hybrid system for removing selected pharmaceuticals and natural organic matter. Chem. Eng. J. 2020, 382, 122920. [Google Scholar] [CrossRef]
- Krieg, H.M.; Breytenbach, J.C.; Keizer, K. Chiral resolution by β-cyclodextrin polymer-impregnated ceramic membranes. J. Membr. Sci. 2000, 164, 177–185. [Google Scholar] [CrossRef]
- Yanagioka, M.; Kurita, H.; Yamaguchi, T.; Nakao, S.-i. Development of a Molecular Recognition Separation Membrane Using Cyclodextrin Complexation Controlled by Thermosensitive Polymer Chains. Ind. Eng. Chem. Res. 2003, 42, 380–385. [Google Scholar] [CrossRef]
- Moulahcene, L.; Skiba, M.; Bounoure, F.; Benamor, M.; Milon, N.; Hallouard, F.; Lahiani-Skiba, M. New Polymer Inclusion Membrane Containing -Cyclodextrin Polymer: Application for Pharmaceutical Pollutant Removal from Waste Water. Int. J. Environ. Res. Public Health 2019, 16, 414. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.H.; Chung, J.W.; Priestley, R.D.; Kwak, S.-Y. Functionalization of polysulfone hollow fiber membranes with amphiphilic β-cyclodextrin and their applications for the removal of endocrine disrupting plasticizer. J. Membr. Sci. 2012, 409–410, 75–81. [Google Scholar] [CrossRef]
- Nagy, Z.M.; Molnár, M.; Fekete-Kertész, I.; Molnár-Perl, I.; Fenyvesi, É.; Gruiz, K. Removal of emerging micropollutants from water using cyclodextrin. Sci. Total Environ. 2014, 485–486, 711–719. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Fang, C.; Liu, Z.; Fang, J.; Zhu, L. Macroporous membranes doped with micro-mesoporous β-cyclodextrin polymers for ultrafast removal of organic micropollutants from water. Carbohyd. Polym. 2019, 222, 114970. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Qu, F.; Liang, H.; Niu, X.; Li, G. Preparation and properties of polyvinyl chloride ultrafiltration membranes blended with functionalized multi-walled carbon nanotubes and MWCNTs/Fe3O4 hybrids. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Muhamad, M.S.; Salim, M.R.; Lau, W.J.; Yuzir, M.A.; Yunus, S. Fabrication of mixed matric membrane incorporated with modified silica nanoparticles for bisphenol a removal. J. Teknol. 2015, 74, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Moarefian, A.; Golestani, H.A.; Bahmanpour, H. Removal of amoxicillin from wastewater by self-made Polyethersulfone membrane using nanofiltration. J. Environ. Health Sci. Eng. 2014, 12, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiso, Y.; Nishimura, Y.; Kitao, T.; Nishimura, K. Rejection properties of non-phenylic pesticides with nanofiltration membranes. J. Membr. Sci. 2000, 171, 229–237. [Google Scholar] [CrossRef]
- Kiso, Y.; Sugiura, Y.; Kitao, T.; Nishimura, K. Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes. J. Membr. Sci. 2001, 192, 1–10. [Google Scholar] [CrossRef]
- Mukherjee, A.; Mehta, R.; Saha, S.; Bhattacharya, A.; Biswas, P.K.; Kole, R.K. Removal of multiple pesticide residues from water by low-pressure thin-film composite membrane. Appl. Water Sci. 2020, 10, 244. [Google Scholar] [CrossRef]
- Kacprzyńska-Gołacka, J.; Łożyńska, M.; Barszcz, W.; Sowa, S.; Wieciński, P.; Woskowicz, E. Microfiltration Membranes Modified with Composition of Titanium Oxide and Silver Oxide by Magnetron Sputtering. Polymers 2021, 13, 141. [Google Scholar] [CrossRef]
- Kacprzyńska-Gołacka, J.; Kowalik-Klimczak, A.; Woskowicz, E.; Wieciński, P.; Łożyńska, M.; Sowa, S.; Barszcz, W.; Kaźmierczak, B. Microfiltration Membranes Modified with Silver Oxide by Plasma Treatment. Membranes 2020, 10, 133. [Google Scholar] [CrossRef]
- Shaikh, S.; Nazam, N.; Rizvi, S.M.D.; Ahmad, K.; Baig, M.H.; Lee, E.J.; Choi, I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019, 20, 2468. [Google Scholar] [CrossRef] [Green Version]
- Zodrow, K.; Brunet, L.; Mahendra, S.; Li, D.; Zhang, A.; Li, Q.; Alvarez, P.J.J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009, 43, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Damodar, R.A.; You, S.-J.; Chou, H.-H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard Mater. 2009, 172, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Clifford, D.A.; Chellam, S. Virus removal by iron coagulation–microfiltration. Water Res. 2005, 39, 5153–5161. [Google Scholar] [CrossRef] [PubMed]
- Sawada, I.; Fachrul, R.; Ito, T.; Ohmukai, Y.; Maruyama, T.; Matsuyama, H. Development of a hydrophilic polymer membrane containing silver nanoparticles with both organic antifouling and antibacterial properties. J. Membr. Sci. 2012, 387–388, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Safarpour, M.; Vatanpour, V.; Khataee, A. Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 2016, 393, 65–78. [Google Scholar] [CrossRef]
- Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014, 453, 292–301. [Google Scholar] [CrossRef]
- Kuvarega, A.T.; Khumalo, N.; Dlamini, D.; Mamba, B.B. Polysulfone/N, Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep. Purif. Technol. 2018, 191, 122–133. [Google Scholar] [CrossRef]
- Rajeswari, A.; Jackcina Stobel Christy, E.; Ida Celine Mary, G.; Jayaraj, K.; Pius, A. Cellulose acetate based biopolymeric mixed matrix membranes with various nanoparticles for environmental remediation-A comparative study. J. Environ. Chem. Eng. 2019, 7, 103278. [Google Scholar] [CrossRef]
- Ngang, H.; Ooi, B.; Ahmad, A.; Lai, S. Preparation of PVDF–TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem. Eng. J. 2012, 197, 359–367. [Google Scholar] [CrossRef]
- Otero, J.A.; Mazarrasa, O.; Otero-Fernández, A.; Fernández, M.D.; Hernández, A.; Maroto-Valiente, A. Treatment of Wastewater. Removal of Heavy Metals by Nanofiltration. Case Study: Use of TFC Membranes to Separate Cr (VI) in Industrial Pilot Plant. Procedia Eng. 2012, 44, 2020–2022. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Kong, X.; Wang, S.; Xiang, H.; Wang, J.; Chen, J. Removal of Heavy Metals from Electroplating Wastewater by Thin-Film Composite Nanofiltration Hollow-Fiber Membranes. Ind. Eng. Chem. Res. 2013, 52, 17583–17590. [Google Scholar] [CrossRef]
- Shah, P.; Murthy, C.N. Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J. Membr. Sci. 2013, 437, 90–98. [Google Scholar] [CrossRef]
- Rezaee, R.; Nasseri, S.; Mahvi, A.H.; Nabizadeh, R.; Mousavi, S.A.; Rashidi, A.; Jafari, A.; Nazmara, S. Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water. J. Environ. Health Sci. 2015, 13, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.S.; Chen, X.H.; Xu, L.S.; Yang, Z.; Li, W.H. Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 2005, 43, 1660–1666. [Google Scholar] [CrossRef]
- Vinodhini, P.A.; Sudha, P.N. Removal of heavy metal chromium from tannery effluent using ultrafiltration membrane. Text. Cloth. Sustain. 2016, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Salehi, E.; Khadivi, M.A.; Moradian, R.; Astinchap, B. Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water. J. Membr. Sci. 2012, 415–416, 250–259. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Daraei, P.; Rajabi, H.; Zinadini, S.; Alizadeh, A.; Heydari, R.; Beygzadeh, M.; Ghouzivand, S. Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: Application of new functionalized Fe3O4 nanoparticles. Chem. Eng. J. 2015, 263, 101–112. [Google Scholar] [CrossRef]
- Ghaemi, N. A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles. Appl. Surf. Sci. 2016, 364, 221–228. [Google Scholar] [CrossRef]
- Mulyati, S.; Aprilia, S.; Safiah; Syawaliah; Armando, M.A.; Mawardi, H. The effect of poly ethylene glycol additive on the characteristics and performance of cellulose acetate ultrafiltration membrane for removal of Cr(III) from aqueous solution. IOP Conf. Ser. Mater. Sci. Eng. 2018, 352, 012051. [Google Scholar] [CrossRef]
- Krason, J.; Pietrzak, R. Membranes obtained on the basis of cellulose acetate and their use in removal of metal ions from liquid phase. Pol. J. Chem. Technol. 2016, 18, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tian, G.; Dong, G.; Bai, S.; Han, X.; Liang, J.; Meng, J.; Zhang, H. Research progress on the raw and modified montmorillonites as adsorbents for mycotoxins: A review. Appl. Clay Sci. 2018, 163, 299–311. [Google Scholar] [CrossRef]
- Ren, Z.; Luo, J.; Wan, Y. Enzyme-Like Metal–Organic Frameworks in Polymeric Membranes for Efficient Removal of Aflatoxin B1. ACS Appl. Mater. Interfaces 2019, 11, 30542–30550. [Google Scholar] [CrossRef] [PubMed]
- Hasan, Z.; Jhung, S.H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard Mater. 2015, 283, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Fan, J.; Chen, X.; Zhu, Z.; Luo, J.; Wan, Y. Sandwich structured membrane adsorber with metal organic frameworks for aflatoxin B1 removal. Sep. Purif. Technol. 2020, 246, 116907. [Google Scholar] [CrossRef]
- Kiso, Y.; Kon, T.; Kitao, T.; Nishimura, K. Rejection properties of alkyl phthalates with nanofiltration membranes. J. Membr. Sci. 2001, 182, 205–214. [Google Scholar] [CrossRef]
Pesticide Class | Name | Process | Polymer | Additive | Nanomaterial | % Removal | Sample | Ref. |
---|---|---|---|---|---|---|---|---|
Benzimidazole fungicide Triazole fungicides | Carbendazim | NF | PATF | - | - | 64.15 | synthetic | [64] |
Difenoconazole | 100 | |||||||
Hexaconazole | 79.38 | |||||||
Propiconazole | PVA/PA | 96.9 | [63] | |||||
Tetraconazole | PATF | 72.94 | [64] | |||||
Carbamate insecticides | Carbaryl | NF | PVA/PA | - | - | 86–92 | synthetic | [63,64] |
Carbofuran | PATF | 89.98 | [64] | |||||
Esprocarb | PVA/PA | 99.94 | [63] | |||||
Fenobucarb | 94.8 | |||||||
Thiram | 97.7 | [62] | ||||||
Molinate | 98.5 | |||||||
Chloroacetamide herbicides | Alachlor | NF | PATF | - | - | 86.18 | synthetic | [64] |
Butachor | 100 | |||||||
Chlorophenoxy herbicide derivative | 2,4-dichlorophenol | UF | PVDF | PVP | β-CDP | 99.9 | synthetic | [58] |
Neo-nicotinoid insecticides | Acetamiprid | NF | PATF | - | - | 81.05 | synthetic | [64] |
Imidacloprid | 89.17 | |||||||
PVA/PA | 97.6 | [62] | ||||||
Thiachloprid | PATF | 80.58 | [64] | |||||
Thiamethoxam | 66.61 | |||||||
Organochlorine insecticides | Aldrin | NF | PATF | - | - | 89.61 | synthetic | [64] |
α-Endosufan | 100 | |||||||
α-HCH | 89.18 | |||||||
β-Endosulfan | 100 | |||||||
β-HCH | 90.41 | |||||||
δ-HCH | 88.18 | |||||||
Dicofol | 72.17 | |||||||
Dieldrin | 82.56 | |||||||
Endosulfan sulphate | 100 | |||||||
γ-HCH | 99.85 | |||||||
op-DDD | 94.47 | |||||||
op-DDE | 95.07 | |||||||
op-DDT | 94.64 | |||||||
pp-DDD | 94.13 | |||||||
pp-DDE | 95.95 | |||||||
pp-DDT | 96.02 | |||||||
Organophosphorus insecticides | Chlorpyrifos | NF | PATF | - | - | 86.9 | synthetic | [64] |
PVA/PA | >99.9 | [62] | ||||||
Diazinon | 99.52 | |||||||
Dimethoate | PATF | 73.67 | [64] | |||||
Dichlorvos | PVA/PA | 86.7 | [62] | |||||
Isoxathion | 99.84 | [63] | ||||||
Ethion | PATF | 90.94 | [64] | |||||
Malathion | 55.51 | |||||||
PVA/PA | 99.64 | [62] | ||||||
Methyl parathion | PATF | 48.26 | [64] | |||||
Monocrotophos | 37.82 | |||||||
Parathion | 55.61 | |||||||
Phenyl-amide fungicide | Metalaxyl | NF | PATF | - | - | 85.64 | synthetic | [64] |
Phosphorothiolate fungicide | Isoprothiolane | NF | PATF | - | - | 85.49 | synthetic | [64] |
PVA/PA | 99.76 | [62] | ||||||
Synthetic pyrithroid insecticides | α-Cypermethrin | NF | PATF | - | - | 84.27 | synthetic | [64] |
Bifenthrin | 87.26 | |||||||
Permethrin | 80.14 | |||||||
Thiazole fungicide | Mefenacet | NF | PVA/PA | - | - | 99.1 | synthetic | [63] |
Tricyclazole | PATF | 81.05 | [64] | |||||
PVA/PA | 79.6 | [63] | ||||||
Triazine herbicide | Atrazine | NF | PVA/PA | - | - | 93–97.5 | synthetic | [62,64] |
Simazine | 96.7 | [62] | ||||||
Simetryn | 98.6 | |||||||
Urea herbicide | Isoproturon | NF | PATF | - | - | 87.25 | synthetic | [64] |
TF—thin-film membrane |
Dyes | Process | Polymer | Additive | Nanomaterial | % Removal | Sample | Ref. |
---|---|---|---|---|---|---|---|
methylene blue (MB) | UF | CA/PSU | - | - | 82 | wastewater | [75] |
Al2O3 | 91 | wastewater | |||||
nZVI | 94 | ||||||
eosin yellow | UF | PSU | - | - | 67 | synthetic | [74,76] |
TiO2 | 87–97 | ||||||
direct red 16 (DR16) | NF | PES | PVP | - | 90 | [73] | |
GO | 99 | ||||||
direct yellow 12 (DY12) | NF | PES | PVP | - | 89 | [72] | |
GO | >90 | ||||||
TiO2 | >90 | ||||||
GO-TiO2 | 95.4 | ||||||
reactive green 19 (RG19) | NF | PES | PVP | - | 93.2 | ||
GO | >90 | ||||||
TiO2 | >90 | ||||||
GO-TiO2 | 99.4 | ||||||
reactive blue 21 (RB21) | NF | PES | PVP | - | 61.4 | ||
GO | 69.7 | ||||||
TiO2 | 73.5 | ||||||
GO-TiO2 | 81.4 |
Hydrocarbons/ Phthalates | Process | Polymer | Additive | Nanomaterial | % Removal | Sample | Ref. |
---|---|---|---|---|---|---|---|
Aniline | NF | PVA/PA | - | - | 17.9 | synthetic | [92] |
Anisole | 27.8 | ||||||
Benzene | 62.0 | ||||||
Chlorobenzene | 63.4 | ||||||
Dimethyl phthalate | 96.4 | ||||||
p-Dimethyl phthalate | 65.1 | ||||||
Diethyl phthalate | 98.4 | ||||||
p-Diethyl phthalate | 80.5 | ||||||
Di-n-propyl phthalate | 99.6 | ||||||
Di-iso-propyl phthalate | 99.1 | ||||||
Di-n-butyl phthalate | 99.4 | ||||||
Di-iso-butyl phthalate | 99.8 | ||||||
Dicyclohexyl phthalate | 99.8 | ||||||
Di-n-octyl phthalate | ≧99.9 | ||||||
Nitrobenzene | 50.6 | ||||||
Toluene | 66.9 | ||||||
Phenol | 23.4 | ||||||
Di-(2-ethylhexyl) phthalate | 99.9 | ||||||
MF-UF | PSU | PVP | β-CD | 70 | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cevallos-Mendoza, J.; Amorim, C.G.; Rodríguez-Díaz, J.M.; Montenegro, M.d.C.B.S.M. Removal of Contaminants from Water by Membrane Filtration: A Review. Membranes 2022, 12, 570. https://doi.org/10.3390/membranes12060570
Cevallos-Mendoza J, Amorim CG, Rodríguez-Díaz JM, Montenegro MdCBSM. Removal of Contaminants from Water by Membrane Filtration: A Review. Membranes. 2022; 12(6):570. https://doi.org/10.3390/membranes12060570
Chicago/Turabian StyleCevallos-Mendoza, Jaime, Célia G. Amorim, Joan Manuel Rodríguez-Díaz, and Maria da Conceição B. S. M. Montenegro. 2022. "Removal of Contaminants from Water by Membrane Filtration: A Review" Membranes 12, no. 6: 570. https://doi.org/10.3390/membranes12060570
APA StyleCevallos-Mendoza, J., Amorim, C. G., Rodríguez-Díaz, J. M., & Montenegro, M. d. C. B. S. M. (2022). Removal of Contaminants from Water by Membrane Filtration: A Review. Membranes, 12(6), 570. https://doi.org/10.3390/membranes12060570