Inhibition of Hydrogen Evolution by a Bifunctional Membrane between Anode and Electrolyte of Aluminum–Air Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Characterization and Electrochemical Tests
3. Results
3.1. Characterization of the Al2O3@PAN Membrane
3.2. Corrosion Resistance of the Al2O3@PAN Membrane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Logeshwaran, N.; Ramakrishnan, S.; Chandrasekaran, S.S.; Vinothkannan, M.; Kim, A.R.; Sengodan, S.; Velusamy, D.B.; Varadhan, P.; He, J.H.; Yoo, D.J. An efficient and durable trifunctional electrocatalyst for zinc–air batteries driven overall water splitting. Appl. Catal. B Environ. 2021, 297, 120405. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Velusamy, D.B.; Sengodan, S.; Nagaraju, G.; Kim, D.H.; Kim, A.R.; Yoo, D.J. Rational design of multifunctional electrocatalyst: An approach towards efficient overall water splitting and rechargeable flexible solid-state zinc–air battery. Appl. Catal. B Environ. 2022, 300, 120752. [Google Scholar] [CrossRef]
- Sathiskumar, C.; Ramakrishnan, S.; Vinothkannan, M.; Kim, A.R.; Karthikeyan, S.; Yoo, D.J. Nitrogen-doped porous carbon derived from biomass used as trifunctional electrocatalyst toward oxygen reduction, oxygen evolution and hydrogen evolution reactions. Nanomaterials 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elayappan, V.; Shanmugam, R.; Chinnusamy, S.; Yoo, D.J.; Mayakrishnan, G.; Kim, K.; Noh, H.S.; Kim, M.K.; Lee, H. Three-dimensional bimetal TMO supported carbon based electrocatalyst developed via dry synthesis for hydrogen and oxygen evolution. Appl. Surf. Sci. 2020, 505, 144642. [Google Scholar] [CrossRef]
- Goel, P.; Dobhal, D.; Sharma, R.C. Aluminum–air batteries: A viability review. J. Energy Storage 2020, 28, 101287. [Google Scholar] [CrossRef]
- Luo, Z.; Yin, L.; Xiang, L.; Liu, T.X.; Song, Z.; Li, Y.; Zhou, L.; Luo, K.; Wu, K.; Jiang, J. AuPt Nanoparticles/ Multi-Walled carbon nanotubes catalyst as high active and stable oxygen reduction catalyst for Al–air batteries. Appl. Surf. Sci. 2021, 564, 150474. [Google Scholar] [CrossRef]
- Wei, Y.; Shi, Y.; Chen, Y.; Xiao, C.; Ding, S. Development of solid electrolytes in Zn-air and Al–air batteries: From material selection to performance improvement strategies. J. Mater. Chem. A 2021, 9, 4415–4453. [Google Scholar] [CrossRef]
- Elia, G.A.; Marquardt, K.; Hoeppner, K.; Fantini, S.; Lin, R.; Knipping, E.; Peters, W.; Drillet, J.F.; Passerini, S.; Hahn, R. An Overview and Future Perspectives of Aluminum Batteries. Adv. Mater. 2016, 28, 7564–7579. [Google Scholar] [CrossRef]
- Buckingham, R.; Asset, T.; Atanassov, P. Aluminum-air batteries: A review of alloys, electrolytes and design. J. Power Sources 2021, 498, 229762. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, D.; Luo, B.; Wang, L. Recent Progress and Future Trends of Aluminum Batteries. Energy Technol. 2019, 7, 86–106. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Wu, S.; Sun, D.; Tang, Y.; Wang, H. A Review of Al Alloy Anodes for Al–Air Batteries in Neutral and Alkaline Aqueous Electrolytes. Acta Metall. Sin. English Lett. 2021, 34, 309–320. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Zhang, D.; Gao, L.; Qu, J.; Lin, T. Synergistic effect of 8-aminoquinoline and ZnO as hybrid additives in alkaline electrolyte for Al–air battery. J. Mol. Liq. 2021, 322, 114946. [Google Scholar] [CrossRef]
- Chen, X.; Ali, I.; Song, L.; Song, P.; Zhang, Y.; Maria, S.; Nazmus, S.; Yang, W.; Dhakal, H.N.; Li, H.; et al. A review on recent advancement of nano-structured-fiber-based metAl–air batteries and future perspective. Renew. Sustain. Energy Rev. 2020, 134, 110085. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Q.; Sun, D.; Luan, J.; Shi, H.; Hu, S.; Tang, Y.; Wang, H. Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery. Chem. Eng. J. 2020, 383, 123162. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Zou, J.; Shen, X.; Qin, K.; Ban, C.; Cui, J.; Nagaumi, H. Enhancement of the discharge performance of Al-0.5Mg-0.1Sn-0.05Ga (wt. %) anode for Al–air battery by directional solidification technique and subsequent rolling process. J. Alloys Compd. 2020, 827, 154272. [Google Scholar] [CrossRef]
- Ren, J.; Ma, J.; Zhang, J.; Fu, C.; Sun, B. Electrochemical performance of pure Al, Al–Sn, Al–Mg and Al–Mg–Sn anodes for Al–air batteries. J. Alloys Compd. 2019, 808, 151708. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, S.; Li, W.; Yang, Y.; Yang, L.; Zhang, Z. Inhibition effect and mechanism of inorganic-organic hybrid additives on three-dimension porous aluminum foam in alkaline Al–air battery. J. Power Sources 2020, 448, 227460. [Google Scholar] [CrossRef]
- Kang, Q.X.; Zhang, T.Y.; Wang, X.; Wang, Y.; Zhang, X.Y. Effect of cerium acetate and L-glutamic acid as hybrid electrolyte additives on the performance of Al–air battery. J. Power Sources 2019, 443, 227251. [Google Scholar] [CrossRef]
- Mutlu, R.N.; Yazıcı, B. Copper-deposited aluminum anode for aluminum-air battery. J. Solid State Electrochem. 2019, 23, 529–541. [Google Scholar] [CrossRef]
- Lee, J.; Yim, C.; Lee, D.W.; Park, S.S. Manufacturing and characterization of physically modified aluminum anodes based air battery with electrolyte circulation. Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4, 53–57. [Google Scholar] [CrossRef]
- Cui, L.; Liu, H.; Zhang, W.; Han, Z.; Deng, M. Journal of Materials Science & Technology Corrosion resistance of a superhydrophobic micro-arc oxidation coating on Mg-4Li-1Ca alloy. J. Manuf. Syst. 2017, 33, 1263–1271. [Google Scholar]
- Zheng, Z.; Wei, Y.; Jing, Z.; Rong, X.; Zeng, C.; Qin, F.; Zhen, W.; Wang, L. Corrosion Resistance of Superhydrophobic Mg(OH)2/Calcium Myristate Composite Coating on Magnesium Alloy AZ31. Acta Metall. Sin. English Lett. 2021, 34, 1618–1634. [Google Scholar]
- Wang, Y.; Yu, Y.; Wang, J.; Peng, L.; Zuo, Y.; Zuo, C. Novel Multifunctional Janus-Type Membrane on Al Anode for Corrosion Protection. Adv. Mater. Interfaces 2021, 8, 2100786. [Google Scholar] [CrossRef]
- Yu, Y.; Zuo, Y.; Zhang, Z.; Wu, L.; Ning, C.; Zuo, C. Al2O3 Coatings on Zinc for Anti-Corrosion in Alkaline Solution by Electrospinning. Coatings 2019, 9, 692. [Google Scholar] [CrossRef] [Green Version]
- Ehsani, A.; Mahjani, M.G.; Nasseri, M.; Jafarian, M. Influence of electrosynthesis conditions and Al2O3 nanoparticles on corrosion protection effect of polypyrrole films. Anti-Corrosion Methods Mater. 2014, 61, 146–152. [Google Scholar] [CrossRef]
- Wang, J.; Hou, L.; Yao, Z.; Dou, W.; Li, G.; Zhang, L. Antifouling sandwich-structured electrospun nanofibrous membranes by integrating fluffy and hydrophobic layers for long-term airborne particulate matter segregation. Environ. Sci. Nano 2021, 8, 3322–3330. [Google Scholar] [CrossRef]
- Sabetzadeh, N.; Akbar, A.; Javanbakht, M. Porous PAN micro/nano fi ber separators for enhanced lithium-ion battery performance. Solid State Ionics 2018, 325, 251–257. [Google Scholar] [CrossRef]
- Bahari, B.S.M.B.A. Studying electrical characteristics of Al2O3/PVP nano-hybrid composites as OFET gate dielectric. J. Mater. Sci. Mater. Electron. 2017, 28, 4378–4387. [Google Scholar]
- Pandey, M.; Joshi, G.M.; Mukherjee, A.; Thomas, P. Electrical properties and thermal degradation of poly(vinyl chloride)/polyvinylidene fluoride/ZnO polymer nanocomposites. Polym. Int. 2016, 65, 1098–1106. [Google Scholar] [CrossRef]
- Wongrujipairoj, K.; Poolnapol, L.; Arpornwichanop, A.; Suren, S.; Kheawhom, S. Suppression of zinc anode corrosion for printed flexible zinc-air battery. Phys. Status Solidi B 2017, 254, 1600442. [Google Scholar] [CrossRef]
- Mori, R. A novel aluminium-Air rechargeable battery with Al2O3 as the buffer to suppress byproduct accumulation directly onto an aluminium anode and air cathode. RSC Adv. 2014, 4, 30346–30351. [Google Scholar] [CrossRef]
- Verma, C.B.; Singh, P.; Bahadur, I.; Ebenso, E.E.; Quraishi, M.A. Electrochemical, thermodynamic, surface and theoretical investigation of 2-aminobenzene-1,3-dicarbonitriles as green corrosion inhibitor for aluminum in 0.5 M NaOH. J. Mol. Liq. 2015, 209, 767–778. [Google Scholar] [CrossRef]
- Nestoridi, M.; Pletcher, D.; Wood, R.J.K.; Wang, S.; Jones, R.L.; Stokes, K.R.; Wilcock, I. The study of aluminium anodes for high power density Al/air batteries with brine electrolytes. J. Power Sources 2008, 178, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.N.; Kang, S.H.; Prasanna, K.; Eom, S.W.; Lee, C.W. Shield effect of polyaniline between zinc active material and aqueous electrolyte in zinc-air batteries. Appl. Surf. Sci. 2017, 422, 406–412. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, Y.J.; Eom, S.W.; Choi, N.S.; Kim, K.W.; Cho, S.B. Improvement in self-discharge of Zn anode by applying surface modification for Zn-air batteries with high energy density. J. Power Sources 2013, 227, 177–184. [Google Scholar] [CrossRef]
- Fan, L.; Lu, H.; Leng, J. Performance of fine structured aluminum anodes in neutral and alkaline electrolytes for Al–air batteries. Electrochim. Acta 2015, 165, 22–28. [Google Scholar] [CrossRef]
- Fan, H.; Li, S.; Zhao, Z.; Wang, H.; Shi, Z.; Zhang, L. Inhibition of brass corrosion in sodium chloride solutions by self-assembled silane films. Corros. Sci. 2011, 53, 4273–4281. [Google Scholar] [CrossRef]
- Emregül, K.C.; Atakol, O. Corrosion inhibition of mild steel with Schiff base compounds in 1 M HCl. Mater. Chem. Phys. 2003, 82, 188–193. [Google Scholar] [CrossRef]
- Ma, X.; Xu, L.; Wang, W.; Lin, Z.; Li, X. Synthesis and characterisation of composite nanoparticles of mesoporous silica loaded with inhibitor for corrosion protection of Cu-Zn alloy. Corros. Sci. 2017, 120, 139–147. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, H.; Wu, A.; Zhang, D.; Gao, L.; Lin, T. Modified alkaline electrolyte with 8-hydroxyquinoline and ZnO complex additives to improve Al–air battery. J. Power Sources 2019, 432, 55–64. [Google Scholar] [CrossRef]
- Wang, Q.; Miao, H.; Xue, Y.; Sun, S.; Li, S.; Liu, Z. Performances of an Al-0.15 Bi-0.15 Pb-0.035 Ga alloy as an anode for Al–air batteries in neutral and alkaline electrolytes. RSC Adv. 2017, 7, 25838–25847. [Google Scholar] [CrossRef] [Green Version]
Samples | Specific Surface Area (m2/g) | Average Pore Size (nm) |
---|---|---|
PAN | 8.57 | 11.43 |
0.77 wt. % Al2O3@PAN | 14.95 | 6.92 |
1.13 wt. % Al2O3@PAN | 10.72 | 7.37 |
1.48 wt. % Al2O3@PAN | 9.29 | 7.52 |
1.82 wt. % Al2O3@PAN | 8.37 | 7.28 |
2.14 wt. % Al2O3@PAN | 6.35 | 13.4 |
Materials | |||
---|---|---|---|
Pure Al | −1.77 | 36.88 | — |
Al with PAN | −1.79 | 11.10 | 69.9 |
Al with 0.77 wt. % Al2O3@PAN | −1.89 | 8.23 | 77.68 |
Al with 1.13 wt. % Al2O3@PAN | −1.92 | 6.10 | 83.46 |
Al with 1.48 wt. % Al2O3@PAN | −1.95 | 5.52 | 85.03 |
Al with 1.82 wt. % Al2O3@PAN | −1.86 | 3.23 | 89.24 |
Al with 2.14 wt. % Al2O3@PAN | −1.87 | 6.41 | 82.62 |
Materials | Rs (Ω cm2) | Rf (Ω cm2) | Qc (×10−4 μF cm−2) | Rct (Ω cm2) | Qdl (×10−2 μF cm−2) |
---|---|---|---|---|---|
Pure Al | 0.23 | 1.21 | 0.32 | 3.13 | 1.49 |
Al with PAN | 0.24 | 1.49 | 2.54 | 4.94 | 3.28 |
Al with 0.77 wt. % Al2O3@PAN | 0.22 | 1.53 | 2.43 | 8.65 | 4.39 |
Al with 1.13 wt. % Al2O3@PAN | 0.20 | 1.67 | 2.21 | 12.21 | 5.16 |
Al with 1.48 wt. % Al2O3@PAN | 0.21 | 1.74 | 2.15 | 22.32 | 5.79 |
Al with 1.82 wt. % Al2O3@PAN | 0.22 | 1.98 | 2.06 | 26.13 | 6.87 |
Al with 2.14 wt. % Al2O3@PAN | 0.22 | 1.70 | 2.17 | 17.45 | 5.38 |
Materials | 3 (mA cm−2) | 5 (mA cm−2) | 10 (mA cm−2) | |||
---|---|---|---|---|---|---|
Capacities (mAh g−1) | Utilization Rate (%) | Capacities (mAh g−1) | Utilization Rate (%) | Capacities (mAh g−1) | Utilization Rate (%) | |
Pure Al | 432 | 32.4 | 521 | 35.6 | 1008 | 38.1 |
Al with PAN | 497 | 36.2 | 595 | 41.7 | 1156 | 42.7 |
Al with 0.77 wt. % Al2O3@PAN | 548 | 38.9 | 699 | 44.4 | 1245 | 48.3 |
Al with 1.13 wt. % Al2O3@PAN | 651 | 41.8 | 807 | 47.3 | 1316 | 50.2 |
Al with 1.48 wt. % Al2O3@PAN | 821 | 51.9 | 1214 | 53.4 | 1694 | 55.7 |
Al with 1.82 wt. % Al2O3@PAN | 984 | 58.4 | 1433 | 59.2 | 1950 | 61.2 |
Al with 2.14 wt. % Al2O3@PAN | 708 | 44.7 | 1009 | 49.8 | 1430 | 52.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Y.; Yu, Y.; Shi, H.; Wang, J.; Zuo, C.; Dong, X. Inhibition of Hydrogen Evolution by a Bifunctional Membrane between Anode and Electrolyte of Aluminum–Air Battery. Membranes 2022, 12, 407. https://doi.org/10.3390/membranes12040407
Zuo Y, Yu Y, Shi H, Wang J, Zuo C, Dong X. Inhibition of Hydrogen Evolution by a Bifunctional Membrane between Anode and Electrolyte of Aluminum–Air Battery. Membranes. 2022; 12(4):407. https://doi.org/10.3390/membranes12040407
Chicago/Turabian StyleZuo, Yuxin, Ying Yu, Haoqin Shi, Jiale Wang, Chuncheng Zuo, and Xiaowei Dong. 2022. "Inhibition of Hydrogen Evolution by a Bifunctional Membrane between Anode and Electrolyte of Aluminum–Air Battery" Membranes 12, no. 4: 407. https://doi.org/10.3390/membranes12040407
APA StyleZuo, Y., Yu, Y., Shi, H., Wang, J., Zuo, C., & Dong, X. (2022). Inhibition of Hydrogen Evolution by a Bifunctional Membrane between Anode and Electrolyte of Aluminum–Air Battery. Membranes, 12(4), 407. https://doi.org/10.3390/membranes12040407