A Contrastive Study of Self-Assembly and Physical Blending Mechanism of TiO2 Blended Polyethersulfone Membranes for Enhanced Humic Acid Removal and Alleviation of Membrane Fouling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Formulation and Casting Method
2.3. Membrane Characterisation
2.4. Assessment of the Filtration Performance
2.5. Analysis of Fouling Resistance
2.6. Fouling Mechanism Recognition
3. Results
3.1. Membrane Morphology and Surface Analysis
3.2. Membrane Hydrophilicity and Porosity
3.3. Permeation Performance
3.4. Antifouling Properties Evaluation
3.5. Fouling Mechanism Recognition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsui, T.-H.; Wong, J.W.C. A Critical Review: Emerging Bioeconomy and Waste-to-Energy Technologies for Sustainable Municipal Solid Waste Management. Waste Dispos. Sustain. Energy 2019, 1, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Tsui, T.-H.; Ekama, G.A.; Chen, G.-H. Quantitative Characterization and Analysis of Granule Transformations: Role of Intermittent Gas Sparging in a Super High-Rate Anaerobic System. Water Res. 2018, 139, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Katsoufidou, K.; Yiantsios, S.G.; Karabelas, A.J. A Study of Ultrafiltration Membrane Fouling by Humic Acids and Flux Recovery by Backwashing: Experiments and Modeling. J. Membr. Sci. 2005, 266, 40–50. [Google Scholar] [CrossRef]
- Jones, K.L.; O’Melia, C.R. Protein and Humic Acid Adsorption onto Hydrophilic Membrane Surfaces: Effects of PH and Ionic Strength. J. Membr. Sci. 2000, 165, 31–46. [Google Scholar] [CrossRef]
- Zhao, W.; Mou, Q.; Zhang, X.; Shi, J.; Sun, S.; Zhao, C. Preparation and Characterization of Sulfonated Polyethersulfone Membranes by a Facile Approach. Eur. Polym. J. 2013, 49, 738–751. [Google Scholar] [CrossRef]
- Zou, M.; Fang, J.; Liu, J.; Li, C.; Guan, R. Synthesis and Preparation of Sulfonated Hyperbranched Poly(Arylene Ether Sulfone)/Poly(Ether Sulfone) Blend Membranes for Proton Exchange Membranes. Solid State Ion. 2012, 220, 23–31. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, X.; Wang, M.; Chen, J.; Zhang, A.; Gu, Z.; Zhao, C. BSA-Modified Polyethersulfone Membrane: Preparation, Characterization and Biocompatibility. J. Biomater. Sci. Polym. Ed. 2009, 20, 377–397. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Su, Y.-L.; Sun, Q.; Ma, X.-L.; Jiang, Z.-Y. Generation of Anti-Biofouling Ultrafiltration Membrane Surface by Blending Novel Branched Amphiphilic Polymers with Polyethersulfone. J. Membr. Sci. 2006, 286, 228–236. [Google Scholar] [CrossRef]
- Richards, H.; Baker, P.; Iwuoha, E. Metal Nanoparticle Modified Polysulfone Membranes for Use in Wastewater Treatment: A Critical Review. J. Surf. Eng. Mater. Adv. Technol. 2012, 2, 183. [Google Scholar] [CrossRef] [Green Version]
- Khataee, A.R.; Kasiri, M.B. Photocatalytic Degradation of Organic Dyes in the Presence of Nanostructured Titanium Dioxide: Influence of the Chemical Structure of Dyes. J. Mol. Catal. 2010, 328, 8–26. [Google Scholar] [CrossRef]
- Li, X.; Fang, X.; Pang, R.; Li, J.; Sun, X.; Shen, J.; Han, W.; Wang, L. Self-Assembly of TiO2 Nanoparticles around the Pores of PES Ultrafiltration Membrane for Mitigating Organic Fouling. J. Membr. Sci. 2014, 467, 226–235. [Google Scholar] [CrossRef]
- Razmjou, A.; Mansouri, J.; Chen, V. The Effects of Mechanical and Chemical Modification of TiO2 Nanoparticles on the Surface Chemistry, Structure and Fouling Performance of PES Ultrafiltration Membranes. J. Membr. Sci. 2011, 378, 73–84. [Google Scholar] [CrossRef]
- Razmjou, A.; Resosudarmo, A.; Holmes, R.L.; Li, H.; Mansouri, J.; Chen, V. The Effect of Modified TiO2 Nanoparticles on the Polyethersulfone Ultrafiltration Hollow Fiber Membranes. Desalination 2012, 287, 271–280. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Pang, W.Y.; Mohd Shafie, Z.M.H.; Zaulkiflee, N.D. PES/PVP/TiO2 Mixed Matrix Hollow Fiber Membrane with Antifouling Properties for Humic Acid Removal. J. Water Process. Eng. 2019, 31, 100827. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, L.; Wang, Z.; Fan, H.; Wang, J.; Huang, H. Humic Acid Fouling Mitigation by Ultrasonic Irradiation in Membrane Distillation Process. Sep. Purif. Technol. 2015, 154, 328–337. [Google Scholar] [CrossRef]
- Koparal, A.S.; Yildiz, Y.Ş.; Keskinler, B.; Demircioğlu, N. Effect of Initial PH on the Removal of Humic Substances from Wastewater by Electrocoagulation. Sep. Purif. Technol. 2008, 59, 175–182. [Google Scholar] [CrossRef]
- Feng, H.-J.; Hu, L.-F.; Mahmood, Q.; Long, Y.; Shen, D.-S. Study on Biosorption of Humic Acid by Activated Sludge. Biochem. Eng. J. 2008, 39, 478–485. [Google Scholar] [CrossRef]
- Hermia, J. Blocking Filtration. Application to Non-Newtonian Fluids. In Mathematical Models and Design Methods in Solid-Liquid Separation; Rushton, A., Ed.; Springer: Dordrecht, The Netherlands, 1985; pp. 83–89. ISBN 978-94-009-5091-7. [Google Scholar]
- Bolton, G.; LaCasse, D.; Kuriyel, R. Combined Models of Membrane Fouling: Development and Application to Microfiltration and Ultrafiltration of Biological Fluids. J. Membr. Sci. 2006, 277, 75–84. [Google Scholar] [CrossRef]
- Menazea, A.A.; Ahmed, M.K. Nanosecond Laser Ablation Assisted the Enhancement of Antibacterial Activity of Copper Oxide Nano Particles Embedded Though Polyethylene Oxide/Polyvinyl Pyrrolidone Blend Matrix. Radiat. Phys. Chem. 2020, 174, 108911. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, W.; Shi, M.; Wang, Z.; Wang, J.; Wang, S. Improving Permeability and Antifouling Performance of Polyethersulfone Ultrafiltration Membrane by Incorporation of ZnO-DMF Dispersion Containing Nano-ZnO and Polyvinylpyrrolidone. J. Membr. Sci. 2015, 478, 105–116. [Google Scholar] [CrossRef]
- Teow, Y.H.; Ooi, B.S.; Ahmad, A.L. Study on PVDF-TiO2 Mixed-Matrix Membrane Behaviour towards Humic Acid Adsorption. J. Water Process. Eng. 2017, 15, 99–106. [Google Scholar] [CrossRef]
- Guo, Y.; Cui, W.; Xu, W.; Jiang, Y.; Liu, H.; Xu, J.; Gao, Z.; Liu, L. Effect of PVP Hydrophilic Additive on the Morphology and Properties of PVDF Porous Membranes. Adv. Mater. Res. 2014, 981, 891–894. [Google Scholar] [CrossRef]
- Sotto, A.; Boromand, A.; Zhang, R.; Luis, P.; Arsuaga, J.M.; Kim, J.; Van der Bruggen, B. Effect of Nanoparticle Aggregation at Low Concentrations of TiO2 on the Hydrophilicity, Morphology, and Fouling Resistance of PES–TiO2 Membranes. J. Colloid Interface Sci. 2011, 363, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Su, Y.; Li, C.; Shi, Q.; Ning, X.; Jiang, Z. Fabrication of Antifouling Polyethersulfone Ultrafiltration Membranes Using Pluronic F127 as Both Surface Modifier and Pore-Forming Agent. J. Membr. Sci. 2008, 318, 405–412. [Google Scholar] [CrossRef]
- Amirilargani, M.; Saljoughi, E.; Mohammadi, T. Effects of Tween 80 Concentration as a Surfactant Additive on Morphology and Permeability of Flat Sheet Polyethersulfone (PES) Membranes. Desalination 2009, 249, 837–842. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Yu, L.E.; Lai, J.-Y.; Chung, T.-S. Effects of Pluronic F127 on Phase Inversion and Membrane Formation of PAN Hollow Fibers for Air Filtration. J. Membr. Sci. 2019, 584, 137–147. [Google Scholar] [CrossRef]
- Alvi, M.A.U.R.; Khalid, M.W.; Ahmad, N.M.; Niazi, M.B.K.; Anwar, M.N.; Batool, M.; Cheema, W.; Rafiq, S. Polymer Concentration and Solvent Variation Correlation with the Morphology and Water Filtration Analysis of Polyether Sulfone Microfiltration Membrane. Adv. Polym. Technol. 2019, 2019, 8074626. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, K.-H. Effect of PEG Additive on Membrane Formation by Phase Inversion. J. Membr. Sci. 1998, 138, 153–163. [Google Scholar] [CrossRef]
- Kim, J.; Van der Bruggen, B. The Use of Nanoparticles in Polymeric and Ceramic Membrane Structures: Review of Manufacturing Procedures and Performance Improvement for Water Treatment. Environ. Pollut. 2010, 158, 2335–2349. [Google Scholar] [CrossRef] [PubMed]
- Drelich, J.; Chibowski, E. Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control. Langmuir 2010, 26, 18621–18623. [Google Scholar] [CrossRef] [PubMed]
- Rana, D.; Matsuura, T. Surface Modifications for Antifouling Membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef]
- Agosta, L.; Brandt, E.G.; Lyubartsev, A.P. Diffusion and Reaction Pathways of Water near Fully Hydrated TiO2 Surfaces from Ab Initio Molecular Dynamics. J. Chem. Phys. 2017, 147, 024704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vela, M.C.V.; Blanco, S.Á.; García, J.L.; Rodríguez, E.B. Analysis of Membrane Pore Blocking Models Applied to the Ultrafiltration of PEG. Sep. Purif. Technol. 2008, 62, 489–498. [Google Scholar] [CrossRef]
- Torkamanzadeh, M.; Jahanshahi, M.; Peyravi, M.; Shokuhi Rad, A. Comparative Experimental Study on Fouling Mechanisms in Nano-Porous Membrane: Cheese Whey Ultrafiltration as a Case Study. Water Sci. Technol. 2016, 74, 2737–2750. [Google Scholar] [CrossRef] [PubMed]
- Bowen, W.R.; Calvo, J.I.; Hernández, A. Steps of Membrane Blocking in Flux Decline during Protein Microfiltration. J. Membr. Sci. 1995, 101, 153–165. [Google Scholar] [CrossRef]
Membrane Sample | In Situ Corporation Composition | ||||
---|---|---|---|---|---|
PES (g) | PVP (g) | TBT (mL) | F127 (g) | DMAc (mL) | |
Blank | 17 | 5 | 0 | 0 | 76 |
M1 | 17 | 5 | 2 | 0 | 74 |
M2 | 17 | 5 | 0 | 1 | 75 |
M3 | 17 | 5 | 2 | 1 | 73 |
Physical Blending | |||||
PES (g) | PVP (g) | TiO2 (g) | DMAc (mL) | ||
M4 | 17 | 5 | 0.46 | 77.54 |
Fouling Mode | Model | |
---|---|---|
Hermia Model | ||
Cake formation (CF) | (11) | |
Intermediate blocking (IB) | (12) | |
Pore constriction (PC) | (13) | |
Complete blocking (CB) | (14) | |
Bolton model | ||
Cake-complete (CF-CB) | (15) | |
Cake-intermediate (CF-IB) | (16) | |
Complete-standard (PC-CB) | (17) | |
Intermediate-standard (PC-IB) | (18) |
Membrane | C (wt%) | O (wt%) | Ti (wt%) |
---|---|---|---|
M1 | 67.32 | 20.69 | 0.70 |
M2 | 65.55 | 22.76 | - |
M3 | 62.21 | 25.16 | 1.41 |
M4 | 65.16 | 20.97 | 1.33 |
Membrane | Viscosity (cP) |
---|---|
Blank | 666.7 ± 2.1 |
M1 | 800 ± 1.7 |
M2 | 800 ± 2.2 |
M3 | 1100 ± 3.1 |
M4 | 850 ± 2.5 |
Membrane Sample | Contact Angle (°) | Porosity, ε (%) |
---|---|---|
Blank | 70.0 | 70.0 |
M1 | 61.2 | 75.7 |
M2 | 60.7 | 84.3 |
M3 | 43.9 | 89.4 |
M4 | 61.8 | 77.9 |
Membrane Sample | Surface Area (µm2) | Roughness | ||
---|---|---|---|---|
Ra (nm) | Rq (nm) | Rz (nm) | ||
Blank | 25.09 ± 0.04 | 7.18 ± 0.83 | 12.65 ± 0.56 | 85.64 ± 7.02 |
M3 | 25.11 ± 0.03 | 6.05 ± 0.51 | 8.97 ± 0.49 | 71.83 ± 2.09 |
M4 | 25.08 ± 0.01 | 16.63 ± 0.58 | 31.07 ± 1.38 | 141.2 ± 6.8 |
Membrane | Pure Water Flux (L m−2 h−1) | Permeate Flux (L m−2 h−1) | HAR (%) |
---|---|---|---|
Blank | 24.81 ± 1.73 | 20.30 ± 2.58 | 92.0 |
M1 | 37.10 ± 2.43 | 33.16 ± 3.21 | 92.3 |
M2 | 52.95 ± 3.48 | 46.92 ± 3.53 | 92.5 |
M3 | 59.83 ± 2.87 | 55.40 ± 1.77 | 95.0 |
M4 | 66.10 ± 4.78 | 55.15 ± 3.23 | 96.2 |
Membrane | FRR (%) | RFR (%) |
---|---|---|
Pristine | 77.04 | 29.92 |
M1 | 88.64 | 19.74 |
M2 | 83.94 | 21.10 |
M3 | 88.76 | 12.10 |
M4 | 82.93 | 26.55 |
Hermia Models | Bolton Models | |||||||
---|---|---|---|---|---|---|---|---|
CF | IB | PC | CB | CF-CB | CF-IB | PC-CB | PC-IB | |
Blank | R2 = 0.9188 | R2 = 0.9188 | R2 = 0.9196 | R2 = 0.9203 | R2 = 0.9203 | R2 = 0.9196 | R2 = 0.9203 | R2 = 0.9196 |
KCF = 4.8 × 10−7 | KIB = 1.92 × 10−6 | KPC = 1.87 × 10−6 | KCB = 0.0001 | KCB = 7.57 × 10−28 KCF = 0.7808 | KCF = 7.95 × 10−9 KIB = 4.67 × 10−7 | KPC = 4.78 × 10−33 KCB = 0.0001 | KPC = 1.87 × 10−6 KIB = 3.99 × 10−13 | |
M1 | R2 = 0.8911 | R2 = 0.8911 | R2 = 0.8925 | R2 = 0.8937 | R2 = 0.8937 | R2 = 0.8925 | R2 = 0.8937 | R2 = 0.8925 |
KCF = 8.69 × 10−7 | KIB = 3.48 × 10−6 | KPC = 3.32 × 10−6 | KCB = 0.0001 | KCB = 4.04 × 10−28 KCF = 0.1886 | KCF = 2.23 × 10−8 KIB = 8.29 × 10−7 | KPC = 7.83 × 10−22 KCB = 0.0001 | KPC = 3.32 × 10−6 KIB = 1.46 × 10−12 | |
M2 | R2 = 0.6971 | R2 = 0.6971 | R2 = 0.7025 | R2 = 0.7080 | R2 = 0.7080 | R2 = 0.7025 | R2 = 0.7080 | R2 = 0.7025 |
KCF = 3.38 × 10−7 | KIB = 1.35 × 10−6 | KPC = 1.33 × 10−6 | KCB = 6.52 × 10−5 | KCB = 1.46 × 10−28 KCF = 0.9034 | KCF = 6.66 × 10−9 KIB = 3.32 × 10−7 | KPC = 3.44 × 10−21 KCB = 6.52 × 10−5 | KPC = 1.33 × 10−6 KIB = 5.55 × 10−14 | |
M3 | R2 = 0.7514 | R2 = 0.7514 | R2 = 0.7666 | R2 = 0.7820 | R2 = 0.7820 | R2 = 0.7666 | R2 = 0.7820 | R2 = 0.7666 |
KCF = 2.99 × 10−6 | KIB = 1.2 × 10−5 | KPC = 1.13 × 10−5 | KCB = 0.0003 | KCB = 2.02 × 10−28 KCF = 0.1433 | KCF = 1.19 × 10−7 KIB = 2.83 × 10−6 | KPC = 9.89 × 10−21 KCB = 0.0003 | KPC = 1.13 × 10−5 KIB = 1.03 × 10−25 | |
M4 | R2 = 0.9598 | R2 = 0.9598 | R2 = 0.9591 | R2 = 0.9584 | R2 = 0.9637 | R2 = 0.9598 | R2 = 0.9591 | R2 = 0.9598 |
KCF = 2.16 × 10−7 | KIB = 8.64 × 10−7 | KPC = 8.46 × 10−7 | KCB = 5.73 × 10−5 | KCB = 4.32 × 10−9 KCF = 3.6 × 10−6 | KCF = 1.56 × 10−9 KIB = 4.08 × 10−27 | KPC = 8.46 × 10−7 KCB = 8.75 × 10−13 | KPC = 1.1 × 10−22 KIB = 8.64 × 10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.L.; Che Lah, N.F.; Norzli, N.A.; Pang, W.Y. A Contrastive Study of Self-Assembly and Physical Blending Mechanism of TiO2 Blended Polyethersulfone Membranes for Enhanced Humic Acid Removal and Alleviation of Membrane Fouling. Membranes 2022, 12, 162. https://doi.org/10.3390/membranes12020162
Ahmad AL, Che Lah NF, Norzli NA, Pang WY. A Contrastive Study of Self-Assembly and Physical Blending Mechanism of TiO2 Blended Polyethersulfone Membranes for Enhanced Humic Acid Removal and Alleviation of Membrane Fouling. Membranes. 2022; 12(2):162. https://doi.org/10.3390/membranes12020162
Chicago/Turabian StyleAhmad, Abdul Latif, Nuur Fahanis Che Lah, Nur Amelia Norzli, and Wen Yu Pang. 2022. "A Contrastive Study of Self-Assembly and Physical Blending Mechanism of TiO2 Blended Polyethersulfone Membranes for Enhanced Humic Acid Removal and Alleviation of Membrane Fouling" Membranes 12, no. 2: 162. https://doi.org/10.3390/membranes12020162
APA StyleAhmad, A. L., Che Lah, N. F., Norzli, N. A., & Pang, W. Y. (2022). A Contrastive Study of Self-Assembly and Physical Blending Mechanism of TiO2 Blended Polyethersulfone Membranes for Enhanced Humic Acid Removal and Alleviation of Membrane Fouling. Membranes, 12(2), 162. https://doi.org/10.3390/membranes12020162