Ultrafiltration Membranes System: A Proposal to Remove Emerging Pollutants in Urban Wastewater
Abstract
:1. Introduction
- –
- Establishment of protocols for monitoring CECs and risk assessment, both for health and the environment, with the aim of establishing new quality parameters for safe reuse.
- –
- Study of the effectiveness in the elimination of CECs of the treatment technologies installed in WWTPs.
- –
- Development and implementation of advanced regeneration systems that are economically favorable in terms of increasing the quality of WWTP effluents for reuse, guaranteeing the elimination of CECs, thus minimizing the associated environmental risks, and enabling the transition towards a more circular model.
2. Materials and Methods
2.1. Analysis of the Facilities under Study
2.2. Indicators of Emerging Pollutants
2.3. Strategy for the Analysis of Pollutants of Emerging Concern
2.4. Work Plan
- –
- Raw water at the inlet of the treatment plant (M1);
- –
- After biological treatment (M2);
- –
- Treated water leaving the MBR (M3);
- –
- Samples of the accumulated sludge (M4) are also taken.
- –
- Single sample: a discrete sample taken at a given time and place. The main disadvantage of this type of sampling is the uncertainty as to the choice of the optimal time to take the sample, due to the variations that may occur during the day.
- –
- Composite or integrated sampling: samples collected at the same point at different times (over 24 h). This type of sample takes into account the usual variability of a WWTP, since discharges of different characteristics may occur within a day.
- Initial assessment of the variability and prevalence of micropollutants in the wastewater entering the WWTPs under study (M1).
- To assess the need for sampling at point M2 in order to decide on consecutive sampling.
3. Results
- –
- Very low (10–20%): antiepileptic, insecticide, and antiseptic.
- –
- Low (30–40%): antibiotics.
- –
- Medium (50–60%): anti-inflammatories, antibiotics, and hormonal.
- –
- High (60–70%): contraceptives and hormonal.
- –
- Very high <90: Anti-inflammatories.
- –
- Medium (40–60%): antiepileptic, antiseptic, and insecticide.
- –
- High (60–80%): antibiotics.
- –
- Very high <90%: anti-inflammatory, hormonal, and contraceptives.
4. Discussion and Conclusions
- –
- Carrying out an environmental assessment of pharmaceutical products before they are marketed and substituting those that are more harmful to the environment.
- –
- Apply the Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) regulation to these compounds [49].
- –
- Promote education and good practices among producers, distributors, and consumers for the rational use of these substances.
- –
- Provide specific treatment at the main emission sources such as hospitals, health centers, nursing homes, the pharmaceutical industry, etc.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Reuse of Treated Water for Agricultural Irrigation in the Region of Murcia. ESAMUR 2019. Available online: https://www.esamur.com/reutilizacion (accessed on 10 October 2022).
- United Nations Organization (UNO). Transforming Our World: The 2030 Agenda for Sustainable Development; UNO: New York, NY, USA, 2015; pp. 1–41. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 26 November 2021).
- European Union Regulation 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse. Off. J. Eur. Union 2020, 177, 32. Available online: https://www.boe.es/doue/2020/177/L00032-00055.pdf (accessed on 26 November 2021).
- The Council of the European Communities. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, 327, 1–73. [Google Scholar]
- The Council of the European Communities. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC and 86/280/EEC, and amending Directive 2000/60/EC. Off. J. Eur. Union 2008, 348, 84–97. [Google Scholar]
- The Council of the European Communities. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union 2013, 226, 1–17. [Google Scholar]
- Royal Decree 1620/2007, of 7 December, Which Establishes the Legal Regime for the Reuse of Treated Water. Ministry of the Presidency, 2017. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2007-21092 (accessed on 26 November 2021).
- Pérez-González, A.; Pinos-Vélez, V.; Cipriani-Avila, I.; Capparelli, M.; Jara-Negrete, E.; Alvarado, A.; Cisneros, J.F.; Tripaldi, P. Adsorption of Estradiol by Natural Clays and Daphnia magna Biological Filter in an Aqueous Mixture with Emerging Contaminants. Eng 2021, 2, 312–324. [Google Scholar] [CrossRef]
- Guedes-Alonso, R.; Montesdeoca-Esponda, S.; Pacheco-Juárez, J.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. A Survey of the Presence of Pharmaceutical Residues in Wastewaters. Evaluation of Their Removal using Conventional and Natural Treatment Procedures. Molecules 2020, 25, 1639. [Google Scholar] [CrossRef] [Green Version]
- Moles, S.; Gozzo, S.; Ormad, M.P.; Mosteo, R.; Gómez, J.; Laborda, F.; Szpunar, J. Long-Term Study of Antibiotic Presence in Ebro River Basin (Spain): Identification of the Emission Sources. Water 2022, 14, 1033. [Google Scholar] [CrossRef]
- Gil, M.J.; Soto, A.M.; Usma, J.I.; Gutiérrez, O.D. Emerging pollutants in water, effects and possible treatments. Clean. Prod. 2012, 7, 52–73. Available online: https://www.researchgate.net/publication/262784014 (accessed on 26 October 2022).
- Giler-Molina, J.M.; Zambrano-Intriago, L.A.; Quiroz-Fernández, L.S.; Napoleão, D.C.; Dos Santos Vieira, J.; Simões Oliveira, N.; Rodríguez-Díaz, J.M. Degradation of oxytetracycline in aqueous solutions: Application of homogeneous and heterogeneous advanced oxidative processes. Sustainability 2020, 12, 8807. [Google Scholar] [CrossRef]
- Rosero Parra, L.; Guerrero Pantoja, L.; Mena, N.L.; Machuca-Martínez, F.; Urresta, J. Evaluation of TiO2 and SnO Supported on Graphene Oxide (TiO2-GO and SnO-GO) Photocatalysts for Treatment of Hospital Wastewater. Water 2020, 12, 1438. [Google Scholar] [CrossRef]
- Colina Márquez, J.A.; Guerra, M.M.; Arrieta Perez, R. Modeling of a Solar Heterogeneous Photocatalytic Reactor with TiO2 for Treatment of Wastewater Contaminated By Albendazole. Eng. Compet. 2019, 21, 8105. [Google Scholar] [CrossRef]
- Lozano, A.B.; del Cerro, F.; Llorens, M. Methodology for Energy Optimization in Wastewater Treatment Plants. Phase I: Control of the best operating conditions. Sustainability 2019, 11, 3919. [Google Scholar] [CrossRef] [Green Version]
- Lozano, A.B.; del Cerro, F.; Llorens, M. Methodology for Energy Optimization in Wastewater Treatment Plants. Phase II: Reduction of Air Requirements and Redesign of the Biological Aeration Installation. Water 2020, 12, 1143. [Google Scholar] [CrossRef]
- Lozano, A.B.; del Cerro, F.; Llorens, M. Methodology for Energy Optimization in Wastewater Treatment Plants. Phase III: Implementation of an Integrated Control System for the Aeration Stage in the Biological Activated Sludge Process and the Membrane Biological Reactor. Sensors 2020, 20, 4342. [Google Scholar] [CrossRef]
- Lesjean, B.; Huisjes, E.H. Survey of the European MBR market: Trends and perspectives. Desalination 2008, 231, 71–81. [Google Scholar] [CrossRef]
- Barceló, D.; López de Alda, M.J. Contamination and Chemical Quality of Water: The Problem of Emerging Pollutants. New Water Culture Foundation. Scientific-Technical Panel for Monitoring Water Policy. Institute for Chemical and Environmental Research-CSIC 2012. Barcelona. Available online: https://fnca.eu/phocadownload/P.CIENTIFICO/inf_contaminacion.pdf (accessed on 26 October 2022).
- De la Torre, T.; Alonso, E.; Santos, J.L.; Rodríguez, C.; Gómez, M.A.; Malfeito, J.J. Removal of trace organic substances by three membrane bioreactor configurations: MBR, IFAS-MBR and MBMBR. Water Sci. Technol. 2015, 71, 761–768. [Google Scholar] [CrossRef]
- Simón Andreu, P.J.; Lardín Mifsut, C.; González Herrero, R.; Sánchez Beltrán, A.V.; Vicente González, J.A. Study of the presence of emerging pollutants in the different stages of wastewater treatment plants. Retema 2015, 193, 54–61. Available online: http://www.emacsa.es/wp-content/uploads/2014/02/RETEMA193-2016-68-74.pdf (accessed on 26 October 2022).
- Menéndez Manjón, A.; Laca Pérez, A.; Sol Sánchez, D.; Simón Andreu, P.; Abellán Soler, M.; Rancaño Pérez, A. Treatments for the elimination of emerging pollutants in WWTPs. Dialnet 2021, 92, 44–49. Available online: https://es.calameo.com/read/002972145eb661fce7b6e (accessed on 26 October 2022).
- Bouju, H.; Buttiglieri, G.; Malpei, F. Influence of process type and operational parameters on pharmaceutical substances removal—Comparison MBR and CAS. In Proceedings of the Congress: Micropol & Ecohazard 2011, the 7th IWA Specialist Conference on Assessment and Control of Micropollutants/Hazardous Substances in Water, Sydney, NSW, Australia, 11–13 July 2011; pp. 1–3. Available online: https://re.public.polimi.it/handle/11311/700325 (accessed on 26 October 2022).
- Bouju, H.; Buttiglieri, G.; Malpei, F. Are MBRs really more efficient in removing pharmaceuticals? Comparison of a full scale conventional activated sludge process and a MBR pilot plant. In Proceedings of the 5th IWA Specialised Membrane Technology Conference for Water and Wastewater Treatment, Beijing, China, 1–3 September 2009; pp. 1–8. Available online: https://re.public.polimi.it/handle/11311/700332 (accessed on 26 October 2022).
- Simón Andreu, P.J. Advanced Wastewater Treatment Technologies: Membrane Biological Reactors (MBR). ESAMUR 2013. Zaragoza. Available online: https://www.aragon.es/documents/20127/674325/04-%20Pedro%20Simon%20ESAMUR.pdf/c56e9a63-26c6-ab4f-4eaf-abda03290279 (accessed on 26 October 2022).
- Zagalo, P.M.; Ribeiro, P.A.; Raposo, M. Detecting Traces of 17α-Ethinylestradiol in Complex Water Matrices. Sensors 2020, 20, 7324. [Google Scholar] [CrossRef]
- Loos, R.; Locoro, F.; Huber, T.; Wollgast, J.; Christoph, E.H.; de Jager, A.; Gawlik, B.M.; Hanke, G.; Umlauf, G.; Zaldívar, J.M. Analysis of perfluorooctanoate (PFOA) and other perfluorinated compounds (PFCs) in the river Po watershed in N-Italy. Chemosphere 2008, 71, 306–313. [Google Scholar] [CrossRef]
- Sanchís, J.; Nantiani, L.; Llorca, M.; Rubio, F.; Ginebreda, A.; Fraile, J.; Garrido, T.; Farré, M. Determination of glyphosate in groundwater samples using an ultra-sensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 402, 2335–2345. [Google Scholar] [CrossRef] [PubMed]
- ISO 16308; 2014 Water Quality—Determination of Glyphosate and AMPA—Method Using High Performance Liquid Chromatography (HPLC) with Tandem Mass Spectrometric Detection. Technical Committee: ISO/TC 147/SC 2 Physical, Chemical and Biochemical Methods. ISO: Geneva, Switzerland, 2014.
- Munch, J.W.; Bassett, M.V. Method 521: Determination of Nitrosamines in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography with Large Volume Injection and Chemical Ionization Tandem Mass Spectrometry (MS/MS); EPA Document/600/R-05/054 2004; National Exposure Research Laboratory Office of Research and Development US, Environmental Protection Agency: Cincinnati, OH, USA, 2005. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=103912 (accessed on 26 October 2022).
- Martín-Pozo, L.; Alarcón-Gómez, B.; Rodríguez-Gómez, R.; García-Córcoles, M.T.; Çipa, M.; Zafra-Gómez, A. Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 2019, 192, 508–533. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.B.; Vanapalli, K.R.; Shankar Cheela, V.R.; Ranjan, V.P.; Jaglan, A.K.; Dubey, B.; Goel, S.; Bhattacharya, J. Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resour. Conserv. Recycl. 2020, 162, 105052. [Google Scholar] [CrossRef]
- Peysson, W.; Vulliet, E. Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography-time-of-flight-mass spectrometry. J. Chromatogr. A 2013, 1290, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Rossini, D.; Ciofi, L.; Ancilotti, C.; Checchini, L.; Bruzzoniti, M.C.; Rivoira, L.; Fibbi, D.; Orlandini, S.; Del Bubba, M. Innovative combination of QuEChERS extraction with on-line solid-phase extract purification and pre-concentration, followed by liquid chromatography-tandem mass spectrometry for the determination of non-steroidal anti-inflammatory drugs and their metabolites in sewage sludge. Anal. Chim. Acta 2016, 935, 269–281. [Google Scholar] [CrossRef] [PubMed]
- De la Obra, I.; Ponce-Robles, L.; Miralles-Cuevas, W.; Oller, I.; Malato, S.; Sánchez Pérez, J.A. Microcontaminant removal in secondary effluents by solar photo-Fenton at circumneutral pH in raceway pond reactors. Catal. Today 2017, 287, 10–14. [Google Scholar] [CrossRef]
- European Union. Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for monitoring purposes at Union level in the field of water policy in accordance with Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union 2015, 178, 40–42. [Google Scholar]
- European Union. Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for monitoring purposes at Union level in the field of water policy in accordance with Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495. Off. J. Eur. Union 2018, 141, 9–12. [Google Scholar]
- European Union. Commission Implementing Decision (EU) 2020/1161 of 4 August 2020 establishing a watch list of substances for monitoring purposes at Union level in the field of water policy in accordance with Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union 2020, 257, 32. Available online: http://data.europa.eu/eli/dec_impl/2020/1161/oj (accessed on 26 October 2022).
- Al Aukidy, M.; Verlicchi, P.; Jelic, A.; Petrovic, M.; Barcelò, D. Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci. Total Environ. 2012, 438, 15–25. [Google Scholar] [CrossRef]
- Fatta-Kassionos, D.; Meric, S.; Nikolaou, A. Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Anal. Bioanal. Chem. 2011, 399, 251–275. [Google Scholar] [CrossRef] [PubMed]
- Ratola, N.; Cincinelli, A.; Alves, A.; Katsoyiannis, A. Occurrence of organic microcontaminants in the wastewater treatment process. J. Hazard. Mater. 2012, 239–240, 1–18. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, T.; Rodríguez, C.; Auset, M.; Alonso, E.; Santos, J.L.; Aparicio, I.; Malfeito, J.J. Membrane Technology in Urban Wastewater Treatment for Reuse. VIII AEDyR Congress 2011. University of Seville. Available online: https://www.interempresas.net/Agua/Articulos/54185-Tecnologia-de-membranas-en-el-tratamiento-de-agua-residual-urbana-para-reutilizacion.html (accessed on 26 October 2022).
- Boix Sales, C.; Ibáñez Martínez, M.; Fabregat-Safont, D.; Morales, E.; Pastor, L.; Llopis, S.; Hernández Hernández, F. Analytical methodologies based on LC-MS/MS for monitoring selected emerging compounds in liquid and solid phases of the sewage sludge. MethodsX 2016, 3, 333–342. [Google Scholar] [CrossRef] [Green Version]
- González Canal, I.; Muga Relloso, I.; Rodríguez Medina, J.; Blanco Miguel, M. Emerging contaminants in urban wastewater and hospital effluents. Tecnoaqua 2018, 29, 1–14. Available online: https://www.researchgate.net/publication/334112683_Contaminantes_emergentes_en_aguas_residuales_urbanas_y_efluentes_hospitalarios_Caracterizacion_rendimientos_de_eliminacion_en_EDAR_y_estimacion_de_la_incidencia_del_vertido_hospitalario_en_la_EDAR_de_ (accessed on 26 October 2022).
- Gerrit, D.; Gamage, S.; Jones, D.; Korshin, G.V.; Lee, Y.; Pisarenko, A.; Trenholm, R.A.; Gunten, U.; Wert, E.C.; Snyder, S.A. Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. Water Res. 2012, 46, 6257–6272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.; Kim, D.; Lee, W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Appl. Catal. B Environ. 2013, 134–135, 93–102. [Google Scholar] [CrossRef]
- Lombello Coelho, M.K.; da Silva, D.N.; Pereira, A.C. Development of Electrochemical Sensor Based on Carbonaceal and Metal Phthalocyanines Materials for Determination of Ethinyl Estradiol. Chemosensors 2019, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Magro, C.; Moura, T.; Ribeiro, P.A.; Raposo, M.; Sério, S. Smart Sensing for Antibiotic Monitoring in Mineral and Surface Water: Development of an Electronic Tongue Device. Chem. Proc. 2021, 5, 58. [Google Scholar] [CrossRef]
- Regulation (EC) No 1907/2006 on the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). Ministry for Ecological Transition and Demographic Challenge 2007. Available online: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/productos-quimicos/reglamento-reach/ (accessed on 26 October 2022).
Family | Analytical Methods | Indicators Proposed | Group |
---|---|---|---|
Pharmaceuticals | Solid phase extraction (SPE) in cartridge, liquid chromatography-mass spectrometry (HPLC-MS) analysis | Ibuprofen | Anti-inflammatory |
Diclofenac | Anti-inflammatory | ||
Erythromycin | Antibiotic | ||
Oxytetracycline | Antibiotic | ||
Sulfadiazine | Antibiotic | ||
Carbamazepine | Antiepileptic | ||
Watch list | On-line solid phase extraction (SPE) on the same HPLC-MS equipment | 17-alpha-Estradiol (EE2) | Hormone |
Erythromycin | Antibiotic | ||
Diclofenac | Anti-inflammatory | ||
Imidacloprid | Insecticide | ||
Triclosan | Antiseptic | ||
17-beta-Estradiol (E2) | Contraceptive | ||
Estrone (E1) [26] | Hormone | ||
Glyphosate [27,28,29] | Glyphosate derivatization, SPE extraction, and HPLC-MS | Glyphosate | Herbicide |
Nitrosamines [30] | SPE extraction, gas chromatography-mass spectrometry (GC-MS) analysis | N-nitrosodimethylamine | Industrial products |
Control Parameters | Analytical Method | Wastewater | Secondary Effluent | Effluent MBR Hollow Fiber |
---|---|---|---|---|
Suspended solids (mg/L) | Gravimetric analysis | 196 | 14 | 3.7 |
Biological oxygen demand (mg/L) | Incubation and electrometry | 177 | 17.7 | 7.5 |
Chemical oxygen Demand (mg/L) | Photometric analysis | 392 | 23.5 | 23.8 |
Total nitrogen (mg/L) | Photometric analysis | 60.2 | 6 | 4.2 |
P-total phosphorus (mg/L) | Photometric analysis | 5.7 | 2.9 | 2.3 |
Escherichia coli (ufc/100 mL) | Membrane filtration counting | 8.5 × 105 | 1.1 × 105 | <10 |
Clostridium spores (ufc/100 mL) | Membrane filtration counting | 1.5 × 105 | 5.25 × 104 | 4400 |
Helminths (number of eggs/L) | Modified Bailinger method | 5 × 105 | 1.5 × 105 | <1 |
Control Parameters | Analytical Method | Wastewater | Secondary Effluent | Effluent MBR Flat Fiber |
---|---|---|---|---|
Suspended solids (mg/L) | Gravimetric analysis | 206 | 13.7 | 4.5 |
Biological oxygen demand (mg/L) | Incubation and electrometry | 503 | 50.3 | 18.5 |
Chemical oxygen demand (mg/L) | Photometric analysis | 651 | 39 | 46 |
Total nitrogen (mg/L) | Photometric analysis | 72.3 | 7.2 | 5 |
P-total phosphorus (mg/L) | Photometric analysis | 15.8 | 7.9 | 5.5 |
Escherichia coli (ufc/100 mL) | Membrane filtration counting | 16.5 × 105 | 21.5 × 104 | <10 |
Clostridium spores (ufc/100 mL) | Membrane filtration counting | 18 × 104 | 6.3 × 104 | 2650 |
Helminths (number of eggs/L) | Modified Bailinger method | 30.5 × 105 | 91.5 × 104 | <1 |
Control Parameters | Secondary Effluent Reduction % | Effluent MBR Hollow Fiber Reduction % | Effluent MBR Flat Fiber Reduction % |
---|---|---|---|
Suspended solids | 93 | 98 | 98 |
Biological oxygen demand | 90 | 96 | 96 |
Chemical oxygen demand | 94 | 94 | 93 |
Total nitrogen | 90 | 93 | 93 |
P-total phosphorus | 50 | 60 | 65 |
Escherichia coli | 87 | 99 | 99 |
Clostridium spores | 65 | 99 | 99 |
Helminths | 70 | 99 | 99 |
Control Parameters | Wastewater | Secondary Effluent | Effluent MBR Hollow Fiber | Sludge |
---|---|---|---|---|
Ibuprofen (µg/L) | 14.02 | 1.40 | 1.12 | 0 |
Diclofenac (µg/L) | 0.85 | 0.38 | 0.04 | 0 |
Erythromycin (µg/L) | 0.7 | 0.43 | 0.18 | 0 |
Oxytetracycline (µg/L) | 1.6 | 0.96 | 0.54 | 0.21 |
Sulfadiazine (µg/L) | 0.09 | 0.04 | 0.02 | 0 |
Carbamazepine (µg/L) | 0.3 | 0.24 | 0.17 | 0 |
EE2 (µg/L) | 1.7 | 0.49 | 0.12 | 0 |
Imidacloprid (µg/L) | 0.52 | 0.43 | 0.26 | 0 |
Triclosan (µg/L) | 1.9 | 1.62 | 0.91 | 0.32 |
E2 (µg/L) | 1.54 | 0.55 | 0.12 | 0 |
E1 (µg/L) | 2.16 | 0.97 | 0.17 | 0 |
N-nitrosodimethylamine (µg/L) | 0 | 0 | 0 | 0 |
Control Parameters | Wastewater | Secondary Effluent | Effluent MBR Hollow Fiber | Sludge |
---|---|---|---|---|
Ibuprofen (µg/L) | 17.4 | 1.74 | 1.57 | 0.25 |
Diclofenac (µg/L) | 0.52 | 0.23 | 0.04 | 0 |
Erythromycin (µg/L) | 1 | 0.62 | 0.30 | 0 |
Oxytetracycline (µg/L) | 0.9 | 0.54 | 0.34 | 0 |
Sulfadiazine (µg/L) | 0 | 0.00 | 0.00 | 0 |
Carbamazepine (µg/L) | 0.71 | 0.57 | 0.43 | 0.12 |
EE2 (µg/L) | 2.5 | 0.73 | 0.25 | 0 |
Imidacloprid (µg/L) | 0.43 | 0.35 | 0.25 | 0 |
Triclosan (µg/L) | 1.34 | 1.14 | 0.70 | 0.43 |
E2 (µg/L) | 1.7 | 0.61 | 0.14 | 0 |
E1 (µg/L) | 1.35 | 0.61 | 0.11 | 0 |
N-nitrosodimethylamine (µg/L) | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano Avilés, A.B.; Del Cerro Velázquez, F.; Lozano Rivas, F. Ultrafiltration Membranes System: A Proposal to Remove Emerging Pollutants in Urban Wastewater. Membranes 2022, 12, 1234. https://doi.org/10.3390/membranes12121234
Lozano Avilés AB, Del Cerro Velázquez F, Lozano Rivas F. Ultrafiltration Membranes System: A Proposal to Remove Emerging Pollutants in Urban Wastewater. Membranes. 2022; 12(12):1234. https://doi.org/10.3390/membranes12121234
Chicago/Turabian StyleLozano Avilés, Ana Belén, Francisco Del Cerro Velázquez, and Fernando Lozano Rivas. 2022. "Ultrafiltration Membranes System: A Proposal to Remove Emerging Pollutants in Urban Wastewater" Membranes 12, no. 12: 1234. https://doi.org/10.3390/membranes12121234
APA StyleLozano Avilés, A. B., Del Cerro Velázquez, F., & Lozano Rivas, F. (2022). Ultrafiltration Membranes System: A Proposal to Remove Emerging Pollutants in Urban Wastewater. Membranes, 12(12), 1234. https://doi.org/10.3390/membranes12121234